)
' s V Institute of Sound
and Vibration Research

Input Signal Reconstruction for Nonlinear Systems using
Iterative Learning Procedures

J.S. Seo and S.J. Elliott
ISVR Technical Memorandum 872

October 2001

University
of Southampton




SCIENTIFIC PUBLICATIONS BY THE ISVR

Technical Reports are published to promote timely dissemination of research results
by ISVR personnel. This medium permits more detailed presentation than is usually
acceptable for scientific journals. Responsibility for both the content and any
opinions expressed rests entirely with the author(s).

Technical Memoranda are produced to enable the early or preliminary release of
information by ISVR personnel where such release is deemed to the appropriate.
Information contained in these memoranda may be incomplete, or form part of a
continuing programme; this should be borne in mind when using or quoting from
these documents.

Contract Reports are produced to record the results of scientific work carried out for
sponsors, under contract. The ISVR treats these reports as confidential to sponsors
and does not make them available for general circulation. Individual sponsors may,
however, authorize subsequent release of the material.

COPYRIGHT NOTICE
(c) ISVR University of Southampton All rights reserved.

ISVR authorises you to view and download the Materials at this Web site ("Site™)
only for your personal, non-commercial use. This authorization is not a transfer of
title in the Materials and copies of the Materials and is subject to the following
restrictions: 1) you must retain, on all copies of the Materials downloaded, all
copyright and other proprietary notices contained in the Materials; 2) you may not
modify the Materials in any way or reproduce or publicly display, perform, or
distribute or otherwise use them for any public or commercial purpose; and 3) you
must not transfer the Materials to any other person unless you give them notice of,
and they agree to accept, the obligations arising under these terms and conditions of
use. You agree to abide by all additional restrictions displayed on the Site as it may
be updated from time to time. This Site, including all Materials, is protected by
worldwide copyright laws and treaty provisions. You agree to comply with all
copyright laws worldwide in your use of this Site and to prevent any unauthorised
copying of the Materials.



UNIVERSITY OF SOUTHAMPTON
INSTITUTE OF SOUND AND VIBRATION RESEARCH
SIGNAL PROCESSING & CONTROL GROUP

Input Signal Reconstruction for Nonlinear Systems

using Iterative Learning Procedures

by

4.5, Seo and S.J. Elliott

ISVR Technical Memorandum No. 872

October 2001

© Institute of Sound & Vibration Research



Acknowledgements

This work is the minor component of grant GR/L62979/01, whose major
component was concerned with the adaptive feedforward control of non-stationary

systems.

ii



ABSTRACT

This paper demonstrates the reconstruction of input signals from only the
measured signal for the simulation and endurance test of automobiles. The aim of
this research is concerned with input signal reconstruction using various iterative
learning algorithm under the condition of system characteristics. From a linear to
nonlinear systems which provides the output signals are estimated in this
algorithm which is based on the frequency domain. Our concerns are that the
algorithm can assure an acceptable stability and convergence compared to the
ordinary iterative learning algorithm.

As a practical application, a % car model with nonlinear damper system is used to
verify the restoration of input signal especially with a modified iterative learning

algorithm.
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1. Introduction

When applying laboratory simulation testing, the test engineer is presented with
the problem of reconstructing the service environment in the test laboratory from a
set of field measurements (road test data). Since the true configuration of the
dynamic behaviour of structure under test (to say ‘the system’) is not fully
identifiable, the reconstruction relies on certain assumptions which must be made
about the system. Using a separable set of signals fed to the system, the system 1$
tested to vield an estimate of its linear characteristics, i.e., its frequency response
function [1]. This linearly assumed system’s frequency response function
(hereafter ‘estimate of system’) is to be used to reconstruct the true excitation in
the service environment by comparing the signals measured in the test of
laboratory with those from the field measurements [2], [3].

To understand the process of deriving the simulation signals, Figure 1.1 illustrates
the overall structure of input estimation from the field measurement.

The major concern in this research is to design the specimen response control
system as shown in Figure 1.1. This can be realised by a number of algorithms,
which can be classified as using an iterative learning algorithm. This control

system then provides an outer control loop among the servo actuator control loop.
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i Controfler -~ DAGC . Specimen Response
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Figure 1.1 Simulation controf systems



When the system under consideration is purely linear, the iterative learning
procedure is only affected by the accuracy of the estimated frequency response
function of the system. However, in practical situations, several types of
nonlinearity exist in any mechanical structures, which are usually poorly known.
Also these nonlinearities increase with wear and tear, and change from component
to component [4], [5], [6], [7]-

The aim of this research is concerned with input signal reconstruction using
various iterative learning algorithm under the condition of nonlinear system
characteristics. Our concerns are that the inverse can exist and stable in applying
to the reconstruction.

The underlying theoretical concerns are the adequacy of various models of the
nonlinear system, particularly by local linear models, with respect to the

convergence of these iterative learning algorithms.

2. Iterative learning algorithm for input estimation

This section mainly focuses on the reconstruction of input signal acting on the
linear system. The objective of this section is to provide the general procedure of
the iterative learning algorithm including the stability, iteration stop criterion and

one sample result of input signal reconstruction based on the frequency domain.

2.1 Input estimation for linear system

In order to understand how the iterative learning algorithm can be applied to
simnulator control signal generation, a brief review of linear system analysis and its
stability condition for the iterative input estimation will help. The information that
is needed to construct the true input signal, which is directly related to the control
signal, is the relationship between the inﬁut and output of a linear system. For a

simple example,



—* H@

Figure 2.1 Linear system with input-output

Where X is an input, ¥ is an output, and W is uncorrelated noise.
Based on the least square estimation, the system’s frequency response can be

estimated as

S.,(f)
H(f)=—2"" 2.1
(N=3 7 (2.1)

where

S (f)=E{X(fYX(f)]
S, () =E{X(NY(H)}

,which is independent of w if it is uncorrelated with x.

Suppose an unknown signal x,(2) is acting on any linear system 4(7) producing an

output signal y,(#) (desired output signal) as shown in the following figure;

Linear Time

Invariant (LLTI)
system
input signal : e Output signal
X, B Y4

Figure 2.2 Acquisition of desired signal



The problem addressed here is to estimate the unknown input signal from the
output and the estimate of the system is linear response. This input reconstruction
is achieved in an iterative manner that reducing the error between the desired
output and test output obtained from arbitrarily selected input signal excitation.

To be more specific, in the first stage, the system is driven by a test input x. to

give test output y,, then the system’s frequency response is calculated as,

A Sy ()
G(f)=—=2—— 2.2
() 5. () (2.2)

Using the frequency response obtained from equation (2.2), the first input x;, is

calculated in the frequency domain as

o
X, =%, 23)

where ¥, is the desired output signal in frequency domain and ¢ is a gain factor

(constant).

Hence, the above relationship may be expressed in general form at the i-th

iteration step

o
Xu=X, +"§Ez (24)

and the error in each frequency at every iteration step will be,
E(f)=Y,(H+G(f) X.(f) (2.5)

where G(f) is the true frequency response of the system.

Figure 2.3 depicts the schematic process of above procedure.



Stage 1 : On site test

:%(t) Unknown A 0]
—— ! (nonlinear) [———»
Unknown System Measured signal
test signal
Stage 2 : Lab. simulation
x(t) Unknown v, ()
et (nonlinear) ——»
Ra.ndom.ly System Measnred signal
generated signal

Stage 3 : Estimation of linearly assumed frequency response of system

. Sy,
G(fy=7"
Sy.x.
Stage 4 : Start adaptation loop
XO = 0 yd(t)
x () Unknown AALY &§=Y,—Y
'y »  (nonlinear) » - >
System
o
X = EYd >
L1 ¢X,=0, %=0, E=Y,-Y,=Y) |_
X, =X, +%E, i>0
tage 5 : Unknown test signal (real i 1) realisation
when E <t

Figure 2.3 Iterative learing process for input signal reconstruction




2.2 Stability condition for linear system

In a practical implementation, the transfer function given in (2.2} is not perfect
since the system considered here could include some ambiguities due to either the
numerical errors in calculating the transfer function or unknown nonlinearities.
The condition for the stability of the iterative learning algorithm described by

equation (2.4) can readily be established. Using equation (2.5) for E(f) (at the i-

th iteration), we can write equation (2.4) as
X,.+1=X,.+a[£f-gX,.:| (2.6)
G G

where the frequency dependenc.e has been suppressed for brevity, G represents the

true frequency response of the system under consideration, G is the estimated
frequency response and Y; can be expressed by the relationship between the

optimal input estimate and the true transfer function of the system as,

Y,=G-X @7

opt

Substituting (2.7) into (2.6) and subtract a factor X, from both side of (2.6)

yields
[Xn-X, )= [1 - ag} [X,-X,, (2.8)
Thus, for n-th iteration,
[X,-X,.]= [1 - ag} [-X,, ] (2.9)

From the equation (2.9), the condition for stability is given by,

<1 (2.10)

}1_052
G

If the real and imaginary part of —g—g—; are written as R+ jI , then equation (2.10)

can also written as



1-aR - jell <1 (2.11)

or
(1-aRY +(al)’ <1 (2.12)

so that the condition of ¢ for stability is given by [8]

0<a<R—3§}; (2.13)

where
R=M -cos¢ and
I=M-sing
Assuming the estimation of the system’s response can be written as,
G=M-G-&" (2.14)

where M is a positive real number. This implies that the estimated system’s

transfer function only contains scale and phase ambiguities thus,

%=M~e“’ (2.15)

and so the stability condition given by (2.13) can be written as

2cos ¢' (2.16)

O<ao<

There are two important points to note about equation (2.16). First, the stability

condition can never be fulfilled if cos¢@ is negative, so the algorithm will be
unstable unless the phase error in the estimated system’s response is less than

+90°, i.e.
I§| <90°, for stability . (2.17)
Second, provided the phase condition on G( f)is satisfied, any magnitude error

can be compensated for by adjusting the magnitude of the convergence coefficient

.



aM <2cosd (2.18)

2.3 Examples
Input signal reconstruction for linear system is carried out to introduce the

performance of iterative learning algorithm.

Input signal

We selected the input displacement signal as a wideband random signal, generated
by passing white i.i.d signal (here we selected a Gaussian signal) through an MA
filter whose frequency response has pink noise characteristics. The time and

frequency shape is given below;

Time history
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Figure 2.4 Time history and spectral density of input signal



Linear dynamic system

The linear system selected here is assumed to take a second order under

damped oscillator whose transfer function is given by

1
H(z)= . .
(Z —0.9g7712 )(Z _ 0.96_””12)
Pole-zero map of system Impulse response of system
3.
1 a5k
0.5 z
5 o 15
5 : 3
s ° Ee -
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Figure 2.5 Characteristics of selected linear system



Input signal reconstruction (results)
Key parameters:
Sample length (V) : 8192 samples
Sampling frequency (f;) : 200 Hz
Gain factor (& ) : 0.5
Window : Hanning 256 segments
Averaging : 50 % overlapping

Number of iteration : 50
Stability check

System amplitude ratio (N=8192, hanning, 256seg., 50% ovip)

1.05}F “
i
Q
[+3]
2
<)
£ 1
0 20 40 60 80 100
Phase
2 1 1 1]
@ 1.5¢ N
e
o0
o]
o 1 A
0.5 ; L : y
0 20 40 60 80 100
Frequency

Figure 2.6 Magnitude and phase ratio of the true linear system and estimated
linear system

Regarding to the equation (2.17), the phase ratio between the true and estimated

frequency response is |¢| <90°, which assures us the algorithm is always stable.
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Iteration stop criterion
The input signal reconstruction does iterate until a certain criterion is met. This
criterion (threshold, #,) is given by a certain number which is compared to the
change of magnitude of error (£;) between two sequent iterations.

lEf—z - Ez I < z,
The convergence of error in each iteration is given in Figure 2.7. In this study, the

threshold is given by 0.01.

Convergence of error (o=0.5 ,iter=15/50)

T T T ™

200t ' P
180 :

160 MSEmax=0'01 ]

2 4 6 8 10 12 14 16 18
iteraticns

Figure 2.7 Magnitude of error in each iteration

Reconstruction result

Time history (o=+0.5 ,iter=16/50)

—— Real input signal '
3 - Estimated input signal +
2
1 1 i H [
[17]
3 fo) It i l ; ik 1
= 5 !
n L I H
g F .’ - 3
-1 E i 1R R
-
—3F

1000 2000 3000 4000 5000 6000 7000
Time [x 0.005 sec]

Figure 2.8 Input signal reconstruction
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3. Input estimation for nonlinear system

Actuator and sensor nonlinearities are among the key factors limiting the
performance of input signal reconstruction. In this section, we applied the iterative
learning algorithm to the systems which have nonlinearities in their nature. These
system contain not only the static nonlinearities but also dynamic behaviour which

can be represented by the ‘Hammerstein process’ shown as,

Nonlinear Dynamic

input ' / Output
/|

h 4

Figure 3.1 Nonlinear dynamic model

Two different nonlinearities are introduced. One of which simply adopt the cubic
memoryless nonlinear effect followed by the linear dynamic oscillation used in the

previous example. Another is the system with simplest form of hysteresis.

3.1 Stability of the iterative learning algorithm considering the

nonlinearity of a system

This section considers the stability of iterative learning algorithm when the system
is non-linear. By representing the degree of non-linearity by a single parameter,
the region of stability relating the degree of non-linearity and gain factor can be
investigated. |

The following figure illustrates the relationship between the signals for an iterative
learning algorithm in which x denotes the input signal, y is the output of a certain
non-linear system, d is the desired signal (field measured output of the non-linear
system), and e represents the error signal between the desired and output signals.

As a general non-linear expression, we assume the non-linear behaviour of the

12



unknown system depends on the cubed term of input signal by which the degree of
non-linearity can be expressed by a constant multiplier (denoted by &) of the

cubed term.

——>  y=x+0% e=d-y

Unknown {ncnlinear) system

Figure 3.2 Signals and non-linear system used in the iterative learning procedure

Using the relationship of Figure 3.2, the adaptation equation takes the form of

() = x,(n) + e (n), ie.G=1 3.1
in which the error is written as,

e,(n) =d(n)—x,(n)—8x (n) (3.2)

Hence,

X, (1) = x,(n) — & x,(m) + 6] () - d () (3.3)
Let x,, + Jxapf =d , and substituting x,, from both side of (3.3) becomes
(xi-t-l (n) - xopt ) = (‘xz (n) - xopr ) —_a(xi (n) + §x:3 (n) - ‘xop: - é‘xopIS ) (3'4)

Normailsing the input signal and convergence gain factor X,(n) =x,(n)-x,, and

3.v o 3
&n)=«a f:xi (7) +0, (1) = Xy = 0%y to make equation (3.4) as
xi (n’) - xopz
Zy () = (1-&,(m)) % (n) (3.5)

13



Note that the normalised adaptation can  be  written  as

3 _ 3
éi’z-(n) =gl1+8 M .
x,(n)—x,,
From this, if x,(n) =0, then

Gy =a1+ 5%, | (3.6)

then x (n) = (x,, +4) =x,,’ +3Ax,,’, so that

aI'ld lf .xj (R) = xop, + A s A << x gpf opt ?

opt *

the normalised convergence coefficient becomes
~ 2
G (n) = 1+30%,," | 37)

From this, the algorithm becomes unstable when

a[1+ 35x 2] >1 (3.8)

opt

This equation is exact if x and d are slow-varying dc levels and is true on average

if x and d are randomly varying and the mean square value of x_, is used in

equation (3.8). Thus, the upper limit of the gain factor for stable convergence

becomes

1

o< —— (3.9)
1+ 35x0p,2

As an example, if we choose & to be 1.0 and xapf is taken to be the variance of

the signal and assumed to be unity, then the algorithm retains stable for & <0.25
but when o is taken as 0.5 and 0 =1.0, then the algorithm is driven into the
instable condition. A series of simulations has been performed to support this
theory, which are reported in Appendix A.

We also notice from Appendix A that the coherence is degraded for a fixed value

of & (5 =1), as the variance of the input signal, o‘xz, increases.

i4



Changes of coherence (8= 1)

600

1.0 ¢

wriance of input signal [ai] Frequency fHz]

Figure 3.3 Change of coherence varying the variance of input with fixed &
(6=1)

It is thus intuitive that by monitoring the coherence function we can monitor the
degree of non-linearity in the system experienced by the iterative learning
algorithm [2].

In the next Section the form of the coherence function is derived for a general

memoryless nonlinearity.

3.2 Analytical form of coherence function

Y=h 2Ok,
Non-linear
Linear, G >+ >

Figure 3.4 A simple paralle] non-linear system

The input output relationship can be expressed as
y(m) =y m+y,(n) (3.10)

15



where y,(n) = fimfﬁ(’i')x(ﬁ -7)

T=—co

and =3 > 3 2 B (T, Ty TR~ T)X(R = T,) (1 —T,)

=2 Ty =—ea Ty~

For simple example, however, we have sclected the nonlinear system which is

represented as
v, =6, {xm} + 6, {xm)} +e(x())", k>3 (3.11)

as such the nonlinear equation given in (3.11) limits the higher order nonlinearity
up to 3™ order and the contributions beyond which are considered to be trivial.

The coherence between the input and output is defined to be

_Isof
Yy T5s (3.12)
where
S, =E{X"Y}
=E{X'(% +1)} (3.13)
=E{X'T}+E{X"Y,}
and

lI

(G +5) (% +1,)}

E
E{K L)+ (R E(E g ]+ E{L T} o

i

Since we have assumed that the general non-linear system can be expressed by the
relationship given in equation (3.11), the cross spectral density can be expressed
using the relationship by the Bussgang process as (for details see Appendix B) [9],
[10]

S, =S, +36,0.5, (3.15)

The equation (3.12) becomes

16



¥, =3
¥ 8.8,
2
) [Sos + S| (3.16)
SR (Sym + SJ']J"?. + S)'zJ’l + S)‘z)‘z )
2
_Is.]
SJIS)‘:)‘:

in which the equality holds when &, =0. The inequality relationship given in
(3.16) implies that the coherence of the nonlinear system is always less than that
of the linear system.

For further detailed non-linear system identification, there can be various ways
such as the Higher Order Spectra (e.g. Volterra series expansion) [11], [12], [13]
that can deal with the stability of the iterative learning algorithm. In this study,
however, the degree of non-linearity is monitored by simple parameter as the cost
of iterative learning procedure escalates by implementing further complicated non-

linear system identification.

17



3.3 Further modification of iterative learning process

Apart from the ordinary iterative learning process considered so far, we have
introduced a modified iterative learning (IL) process, which takes into account the
error signal and system characteristics at each iteration step, to overcome
problems encountered in simulating the control of nonlinear systems. This

modified IL process has three components.

3.3.1 Estimation using adaptive gain factor application

In the ordinary IL process, the selection of gain factor becomes crucial as the
magnitude effects on the stability of the IL process. However, the gain factor is
only selected empirically, which may cause unexpected problems in the algorithm
if the system is nonlinear as described above. To avoid this, one could let the gain
factor change its values in accordance of the coherence function in each
frequency. The relationship given equation (3.16) implies that the gain factor can
be selected following the change of coherence function in each iteration of the
algorithm. To be more specific, we modify the gain factor to tackle the stability of

the algorithm in view of the coherence as
Gy =0 Vo> G =1 (3.17)

By considering the status of input and output signal in each iteration (using the
coherence function), this equation then suppresses the instability caused by the
improperly selected gain factor automatically.

The relationship between the magnitude of gain factor and the stability of the IL

process for nonlinear system is tested and summarised in Appendix A.

3.3.2 Instantaneous frequency response function

Instead of using the identified frequency response of system (denoted G) under

test expressed in equation (2.4), the input signal reconstruction is given

Xin =X:'+"gi(yd_yf) (3.18)

i

18



where the estimate of the frequency response function is estimated from the
current input and output signals -depending on the status of the phase response of

the system in each iteration- using coherence function in each iteration such that

L

G, ==& (3.19)
SI.:I.‘
2
i IS-‘}'.V:' l .
where y,, =———— denotes the coherence function.
%% Py

For a nonlinear system, the global estimation of frequency response is not always
valid as the estimation is based on the linear assumption. Thus, it is recommended
to employ the modified frequency response estimation for the input signal
reconstruction, which is called ‘instantaneous frequency response’ estimator.

This frequency response application is used to ensure the rapid convergence of
error function and stability in its convergence. Firstly, the merit of this estimation

can be said that since the gain factor is varying with the status of the input and

output signals in each iteration, }/fy provides an additional gain factor to reduce
the error between (Y, —Y,) . Secondly, the instantaneous linearity can be achieved

when we select the local gradient for nonlinear case.

3.3.3 Application of regularisation for inversion of frequency response

function

Regularisation is used to ensure numerical stability in the inverse of the frequency

response function, i.e.

S,+8
S

G= (3.20)

xx

in which the small constant £ is introduced to ensure the numerical instability of

G when it is inverted.
Simulations on the inversion of frequency response function on input signal

reconstruction have been performed with;

19



Sample length (V) : 8192 samples with input signal pink noise (O'I2 =1.0)
Sampling frequency (f;) : 200 Hz

Window : Hanning 256 segments

Averaging : 50 % overlapping

Number of iterations : 10

System : 8™ order Butterworth filter (Cut-off 50 Hz) (memoryless)

Input signal System Output signal

gt sigral {53 Cufout sigral tv,)

1000 200 000 s000 5000 S00G OO BOOO ; 1000 2000 3000 400 X0 8000 TIO0 BO00
Tim indec =] o5 ] 035 1 Time foclex
Raal part

Figure 3.5 Input signal, low pass filter system (memoryless} and output signal

Raal system {(N=8182, hanning, 256seg., 50% ovip} PSD ot input-output

_ lr;put sigpal
160 -+ Output signal J

Magnitude
o
=] in -
J

Magnituda [dB]

IDeagree

8 ¢

=
5§ &

20

] 50 100 w0 2w /O 30 o & 00

40 80
Frequency Frequensy (f,= 200 Hz}

Figure 3.6 Magnitude and phase of the system (left) and spectral density of input
and out signal

As shown in Figure 3.6, the system is a kind of low pass filter (left of the figure)
which results the output of the system loses its spectral characteristics in high
frequency region. In this case, when we invert the frequency response function, the

numerical instability occurs.

20



To compare the performance of the ordinary and modified method in IL process,

the term ¥error” used in this study is represented by MSE, which is defined as

MSE=Y(7,-%,)

(3.2

where y, is the measured signal in time domain and y, is the i-th output signal

respectively.

These are demonstrated in the following figures.

x 10

Ordinary

Time history (c=0.5 ,tar=10/10)

Magnitude

i

: 1

71 aoz ¥ 3

— Raal input signal _
~§ Edimated inpit stgnal |

1000

x10°

000 3000 4000 5000 6000
Tima [x 9.005 sec]

7000

14

12

10

MSE

Convergence of error =05 iter=10/10)

5
iterations

Regularisation

Tima history {=0.5 ,iter=7/10)

Magnituda

— Regl input signat
-+ Estimated input signai 4

1000

2000 3000 4000 500¢ OO0 000
Time [x 0.005 sec)

Convergence of arror e=0.5 ,iter=7/10)

w
=osf

MSE_, =0.017

4
itgrations

Figure 3.7 Results of input signal reconstruction from three different methods, left
: restored signal from ordinary frequency response function inversion, right : from
inversion of pre-whitened frequency response function

The left figure of Figure 3.7 clearly demonstrates the numerical instability of the

IL. process which use only the inversion of the estimated frequency response

function as
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x. =x+%.E (3.22)
G |

,. (3.23)

Ga+oT)

The amount of constant addition is suggested by the Percentage of Pre-Whitening

(PPW) and is given (r,(0) is the auto correlation of the output signal)

0'2

PPW = %100 (3.24)

r,(0)

and normally, takes 0.5~ 5% [14].
The results of input signal reconstruction for ordinary iterative learning algorithm

and modified algorithm discussed so far is given in section 3.4.

3.4 Results and comparison

Key parameters;

Sample length () : 8192 samples with input signal pink noise (O‘I2 =1.0)
Sampling frequency (f;) : 200 Hz

Window : Hanning 256 segments

Averaging : 50 % overlapping

Fixed gain factor (¢, ) : 0.5

Number of iterations : 10

System : cubic nonlinear (simulation 1) and hyperbolic nonlinear (simulation 2)

with dynamics (Hammerstein process)
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Simulation 1 : cubic non-linear system

Input signal Nonlinear (y = x+x°) Output signal
I aignial e
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S4 ’./_
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i x"
5 o .
z
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-1 -5 a 05 1 Twras inced
Real pert

Figure 3.8 Input signal, cubic non-linear system (dynamic) and output signal
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Figure 3.9 Results of input signal reconstruction from two different methods,

upper row :

restored signal and real input signal (left), errors in each iteration

(right) from standard iterative learning algorithm (upper) and from modified gain
factor iterative learning algorithm (lower).

Table 3.1 Summary of simulation results

MSE
Methods for IL . i (betw.e e Rt?marks' on the
Model OcesS Stability | input signal input signal
p and restored reconstruction
signal)
Cubic Conv:tlli]t;(;nal X - Unsuccessful
Nonlinear M dlﬁ“ d (new)
System oditicd thew 0 0.32 Successful
method
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Simulation 2 : Hyperbolic non-linear system

Input signal Non-linear system Output signal
(y = —tanh(—x-(0.09 — x*))*

Incat signal fx)

lmmmmmmmm -
Timaiewsesc E TS

dynamic system
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=85

-1 05 ) 0.5 1
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Figure 3.10 Input signal, hyperbolic non-linear system (dynamic) and output
signal

25



Time history (ee=0.5 ,iter=10/10}

Maghitude

~ Real input sional

1000 2000

00 4500 5000 €000 ?Dbﬂ
Tirne [x 0.005 sec]

Time history (adaptive o, ter=1010}

Magnitude

— Feal input signal
-+ Estimatad input signal

1000 2000

3000 4000 5000 EOIOO 7000
Tirna {x 0.005 sec]

Convergenca of error {a=0.5 ,iter=10/10)

2001 ]
MSE_ =222720
1501
w
@
=
100r
S0k
0 .
0 1 2 3 4 5 6 7 8 g 10
iterations.

Convergence of emor {adaptive « ier=10/:0)

MSE__ <0521 |

MSE

3
iterations

Figure 3.11 Results of input signal reconstruction from two different methods,
upper row : restored signal and real input signal (left), errors in each iteration
(right) from standard iterative learning algorithm (upper) and from modified gain
factor iterative learning algorithm (lower).

Table 3.2 Summary of simulation results

MSE
(between
i . Remarks on the
Model | MethodsforIl | g, | inputsignal | = o0 cional
process and .
reconstruction
restored
signal)
Conventional - 2936.39 Unsuccessful
. method
Hyperbolic _ i
Nonlinear ) ' Success
S Modified (new) . " (amplitude of the
ystem E 0 0.09 . i
method: restored signal is
: slightly limited)
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4. Input estimation for dynamic system with nonlinearity

This section deals with a practical problem of input signal reconstruction by taking
a simplified car model with piece-wise nonlinear damper system. The input signal
to be restored is the pink noise signal used in previous sections. A brief
description of the nonlinear system and the comparison of the input signal

construction by the ordinary IL process and modified process are described.

4.1 Input, system, output and analysis of dynamic system

For a practical application of 1/4 car model, nonlinear dynamic system
configuration and input estimation processes are given as following;

Key parameters;

M=50kg, c=200N/m/sec, k=1800N/m (f,=0.955 Hz, { =0.333)

Nonlinear damping coefficients ; ¢;=300, c;=100 (see right graph of Figure 4.1)
Sample length (N) : 8192, Sampling frequency (f;) : 200 Hz

Window : Hanning 256 segments, Averaging : 50 % overlapping

Fixed gain factor (&, ) : 0.5

Number of iterations : 10

Fa F=¢(3-%)

I
(3-%

F=c,-(3=%)

/': his)

Figure 4.1 Car suspension system (non-linear damper)

The dynamic behaviour of this system becomes
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My =—k(y—x)—c(y—%)
wheny—-x20, c=¢ 4.1)

wheny-x<0, c=c,

In the simulation based on the above equation (4.1), the 4™ order Runge-Kutta
method has been used to solve the ordinary differential equation. The nonlinear
damping coefficient takes either ¢; or ¢, depending on the sign of the relative
velocity between the input (road profile) and that of the car body. In this manner,
the damping term takes the partial linear behaviour depending on the relative
velocity between the input and output.

To solve the ordinary differential equation with random input excitation, an
interpolation process has been used to excite the system with correct time

sequence.

A sample program counting the partial linear and random excitation is introduced

below;

function dudt=car_sub_2(t,u}
globaldtmeck T N;
load roadinput x
Xp=x; X=X(:);
xv=[0; diff(x)];
if t~=0
dp=N*/T;
di=floor{dp); du=ceil(dp);
if dl==0
dl=du;
end
Fd=xp(du)+(xp(du)-xp(dl))*(dp-di);
Fv=xv(du)+(xv(du)-xv(di})*{dp-dl);
else
Fd=xp(1}; Fv=xv(1);
end
varc=u(1)-Fv;
if varc>0
cc=1.5%c;
else
¢cc=0.5%c;
end
dudt=[-1/m*cc*(varc)+1/m*k*(Fd-u(2)); u(1)];
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Figure 4.2 depicts signals which represent simple ‘vehicle with nonlinear damper

systermn’ running over spatially homogeneous rough ground.

Input signal

ImpuUt slgnal (x>

(== 3

Q.

o-1 it i | ] I 4 s L i ] Ll ‘;
% r .:'F=2 ! 'l -.! | ; , ‘- ,l N T ‘ ;'-?‘= LR
!

|
-0l
—Dz2

-3

SO00 CEl=T=] Ef==1=3 80co

1000 [=I=T=T=) [=l=t=1=] ==
Time indax

Output from non-linear damper

Cutput slgnatl (v

1000 =2000 OO 4000 5000 S000 k=1=1=1 B000
Time Index

Figure 4.2 Input signal, output signals from non-linear damper car model

Simulation steps;

Step 1 : Any arbitrarily selected random white noise (x,) is selected to excite the

nonlinear car model given in (4.1) to obtain the output of the system (y.)

Step 2 : The linearly assumed frequency response function of the system (G)is

estimated from the input and output.

Step 3 : The coherence function is estimated to use a modified gain factor for the
iteration as such &, , =@, -yﬁz, a, =1.

Step 4 : The spectral differences between the output of the system and the desired
output (yz) assuch E =Y, Y .

Step 5 : Estimation of frequency response function G is done for modified IL,

process.

Step 6 : A new input signal is then calculated as such X, ; = X, +%Ef (where o

becomes &, or ¢, depending on the method selected).

Step 7 : Check the E; with the threshold value.
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Step 8 : If the error E, is not satisfactory, use the new input to excite the system

and repeat from the step 3.

4.2 Results of input signal reconstruction -nonlinear damper car

x10° Time history [a=0.5 ter=10/10) %10 Canvergence of emor (0=0.5 ,iter=10/10)
— Real input signat 4f N j T
2 - Estimated input sighal
15 ! 35
TR ’ MSE_-aszis4byoonete
max

L]

o
2
.‘g w
=
i il 1.5\'
i
1t
0.5F
-2
. . . " . u o PR 6 7 & 9 10
1000 2000 3000 4000 5000 G000 FOO0 ° ! z 8 4 namfiom
Time [x 0.005 sac]
Tiene history {adaptive e, iter=10/10)} Convargence of errar (adaptive « itar=10/10)
-~ Feal nput signal osh

3 [ - Estifmated input signal

MSE,,,0.026 |

Magnilude

-4 n L 1 e
1000 2000 3000 4000 5000 6000 FO00
Time {x 0.005 sac}

Figure 4.3 Results of input signal reconstruction from two different methods,
restored and real input signal (left), errors in each iteration (right) from standard
iterative learning algorithm (upper) and from modified gain factor iterative
learning algorithm (lower).

As can be seen in Figure 4.3, for the nonlinear case, the input signal reconstruction
by two different IL process clearly demonstrate the important role of unknown
system’s FRF estimation and gain factor selection.

The changes of the system, coherence and error in the inner loop have been plotted

in Appendix C.
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5. Discussions and future development
The input signal reconstruction using the iterative learning algorithm has been
investigated for linear and nonlinear systems. Some of conclusions and further

development parts are listed below.

5.1 Discussions
e For linear case, the iterative learning algorithm yields satisfactory and
robust results.
s For the simplified car model, using the instantaneous frequency response
function, adaptive gain factor and the prewhitening for the inversion stability,
the input signal reconstruction has been achieved more effectively, which

leaves the following aspects to be further investigated.

5.2 Future development
¢ A full scale on-site experiment is requires to determine the validity of this

process for the real system.

e There is a more general question as to whether an inverse for these nonlinear
systems exist and whether it is unique.

¢ A nonlinear system identification could provide a more accurate input signal
reconstruction, which may be achieved using higher order spectra, for

example.
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Appendix A Effect of the gain factor on input signal

reconstruction

Key parameters;

Sample length (V) : 8192 samples with input signal pink noise (o =1)
Sampling frequency (f;) : 200 Hz

Gain factor () : 0.05,0.25,0.5

Window : Hanning 256 segments

Averaging : 50 % overlapping

Number of iterations : 50

Non-linear system : y = x+J8x’ with § =0~ 1.0 (memoryless)

nput ignal (x,) Dutptaignal ir)

W ob ® o= B R
&

Displaomant
.o
Dulput [y]
\
Olsplaceman

b & L b

s
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putx]

Figure A.1 Input signal, non-linear system and output signal (measured signal)
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Figure A.2 Input signal reconstruction process for nonlinear system
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Figure A.3 Change of standard deviation and normalised gain factors with the
degree of non-linearity in each iteration for global frequency response estimation

From the results of Figure A.3, we can observe that the stability of the iterative

learning algorithm strongly depends on the selection of the gain factor . This

means the gain factor should be appropriately selected to ensure the stability

especially for non-linear system.

From numerous simulations, we observed that the stability of this algorithm

depends on the magnitude of the input signal (e.g. as the amplitude of input signal

becomes bigger than unity, the non-linearity effect increases) as well as the

constant multiplier (&) term of the non-linear part for a fixed gain factor .



The theoretical gain factor given in equation (3.17) which reflects the variation of
the coherence function with the degree of nonlinearity and the simulational gain

factor selected from equation (3.18) are compared in the following figure.

Gain factor vs. nonlinearity {unit variance iid. input)

— Theory

—_

- - Simulation
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o
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o
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:
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0 0.2 0.4 086 0.8 1
Degree of nonlingarity [8]

Figure A.4 Change of the minimum allowable gain factor (¢) with the degree of
non-linearity (&)
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Appendix B Bussgang process and coherence for nonlinear

system

For zero-mean ii.d. Gaussian process, the cross-correlation between the input to a
memoryless non-linear system and its output have the same shape as the

autocorrelation of the inputs.

E{x(nyy(n+7)} =c-E{x(n)x(n+7)}
_E{x(m)y(n)} (B.1)
C e ———
E {x(n)x(n)}

where y(n) is the output of an arbitrary momeryless non-linear system and we express

this in general form
y(m) = 6,{x(m}" + 8, {xm)} +e(x(m))", k>3 (B.2)

The cross spectral density is expressed as

5,0 = [Efxmym+ e dr .
Using (B.1),
= -i2nfr . E{x(n)y(n)}
S, (f)= [ E{x(mx(n+2)}e " dr Eono0)
B4)
=S () E{x(n)y(n)}
= E{x(n)x(n)}

The cross correlation term in (B.4) can be rewritten using (B.2),
E{x(n)y(m)} = 8, E{x(m)x(m)x(n)} + SE{x(mx(m)x(mx(m)}  (BS)
For zero-mean, i.i.d. Gaussian signal x(n),
E{x(n)y(m}=36,(c2)’ (B.6)

Thus, (B.4) becomes

S, (f)=36,62-S(f) B.7)
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Simulation of the relationship in (B.7)} with two different nonlinear systems

Key parameters;

Sample length (V) : 8192 samples with input signal pink and white noise (&2 =2)
Sampling frequency (f;) : 600 Hz

Window : Hanning 256 segments

Averaging : 75 % overlapping

Non-linear system : y=4,%° and y=§8,x> +8,x° with &, =4, =1.0 (memoryless)

PSD of iid pink noise input and oulputs of nanlinear systam (u;‘=2.00, -51=1, 82=1)

PSD of Gaussian input and outputs of nonlinezr systemn {o:=2.00. §.=1,5=1)
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Figure B.1 PSD of Input signal, non-linear system and output signal

B-2



Appendix C IL process for non-linear model

C.1 Simulation for nonlinear model

Key parameters;

Sample length (N) : 8192 samples with input signal pink noise (¢ =1)
Sampling frequency (f;) : 200 Hz

Fixed gain factor (e ) : 0.5

Window : Hanning 256 segments

Averaging : 50 % overlapping

Number of iterations : 10

Simulation 1: Changes of frequency response and coherence function for cubic non-

linear system (y = x+Jdx*with & =1.0) with dynamics (conventional method)
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Changes of frequency response and coherence function for

(y=x+0x with § =1.0) with dynamics (new method)
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Simulation 2: Changes of frequency response and coherence function for hyperbolic

non-linear system (y = —tanh(—x- (0.09 - x*))*) with dynamics (conventional method)
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Changes of frequency response and coherence function for hyperbolic non-linear

system (y =—tanh(—x-(0.09 — x*))*) with dynamics (new method)
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Table C.1 Summary of simulation results

Convergence of emor (adaptive o ,iter=10/10}
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C.2 Nonlinear car model

Key parameters;

Sample length (V) : 8192 samples with input signal pink noise (&> =1)
Sampling frequency (f;) : 200 Hz

Fixed gain factor (er) : 0.5

Window : Hanning 256 segments

Averaging : 50 % overlapping

Number of iterations ; 10

Changes of frequency response and coherence function for 1/4 car model with non-

linear damper (conventional method)
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Changes of frequency response and coherence function for 1/4 car model with non-

linear damper (new method)
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