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Chapter 1

SH-waves

1.1 Introduction

Earthen layered systems are assumed to consist of layers of elastic materials over-
lying a semi-infinite medium. Horizontally-polarized shear waves (SH-waves)
may be applied in order to estimate the interface depths of the structure and
the elastic properties of the component media. In this chapter, we consider the
response to be expected from a system composed of two layers each having a
constant thickness, and resting on an underlying medium which is semi-infinite
in extent.

1.2 A system consisting of two layers overlying
a semi-infinite medium

The system is defined in terms of cylindrical co-ordinates (r,8,z) having the
origin at the free surface and z measured positively downwards. The particle
displacements are ¢ and v in the r and # directions respectively. The stresses are
denoted by subscripts e.g. {pgg)m, m = 1,2,3. The suffix 1 denotes quantities
in the upper layer, 2 and 3 those in the lower layer and in the semi-infinite
medium respectively.

From Nakano [5], the following expressions for the peak values of the shear
stresses and displacements are obtained:!

{a} In the surface layer,

{(par)1 = “#1'82—1 (Aje™** — A1e™*) Clk,7,v,w) (1.2)

1The displacements u and v in the r and @ directions decay with increasing depth. The
decay is oscillatory or exponential. The decay constant s may therefore be either purely real
or purely imaginary. It is defined by

2 2 2 2
S e R VP N S
sn =123 e is, = —1i X -3 {1.1)
where n = 1,2, 3 is the layer index, corresponding with the surface layer, the underlying layer
or the semi-infinite medium.

Starting Expressions



1.2, A SYSTEM CONSISTING OF TW(Q LAYERS OVERLYING A

SEMI-INFINITE MEDIUM W.H. Cogill
(po:)1 =~ g (Are™" = 41e™7) €' (k,m,v,0) (1.3)

= % (Are™% + ALe7) Ok, 7, ;) (1.4)

v = % (Are™% + Ale®*) C'(k, 1, v,w) (1.5)

(b) In the second layer,

(Par)e = —pa 3 (Aee™" — Ae™) Clk,7,v,) (1.6)
(Pos)2 = —m%z (Ase=27 — A4e™?) C' (kT 0,w) (1.7)
Ug = % (Aze™" + ALe™®) Clk,r,v,w) (1.8)
vy = % (Age™ " + 44e%%) C' (k, 7, v, ) (1.9)

{c) In the semi-infinite medium, we take s3 to be positive in order that the
displacements may vanish as the value of z tends to infinity,

(par)s = —pay (Ase™) Ok, v,0) o (L10)
(Poz)s = “#3%?: (Ase™*) C'(k, 7, v,w) (1.11)
g = % (Ase™>5%) C(k, 7, v, ) (112)
vy = % {Aze™*%%) C'(ky T, v, w) {1.13)

In writing equations (1.10) to {1.13) one boundary condition, that of zero
displacement at infinite depth, has already been taken into account. The arbi-
trary constants Ay, A}, A, A5 and A; can be eliminated using the conditions at
the interfaces within the system. The boundary condition at the free surface,
namely that the shear stresses are zero in the r, 8 plane, is not required.

At the first interface, the stresses and displacements are continuous, i.e.
when z = f

U1 = Ua, it = v,
1.14
@zr)l = (pzr)21 (pﬂz)l = (pﬂz)2 ( )
At the second interface, the stresses and displacements are continuous, i.e. when
z=f+g

Ug = U3, Uy = U3, (1.15)

(pzr)2 = (pz'r)S: (p82)2 = (pﬂz)S

Owing to similarities between equations (1.2} to (1.5) and (1.6) to (1.9), the
conditions relating to displacement and shear stress lead to only one equation.

The use of the boundary conditions (1.14), with equations (1.2) to (1.5) and
(1.6) to (1.9), leads to the following equations:

10



W.H. Cogill 1.3. FORMS OF EQUATION (1.20)

Are™f 4 Al = Age 4 Ape/ (1.16)
and ulslAle_S‘f —A’le"“f = ,ugszAge_”f —A’ze”f (1.17)

The use of the boundary conditions (1.15) with equations (1.6) to (1.9) and
{1.10} to (1.13), leads to the following equations:

Ape2U+0) 4 ALemUite) = ggemss(ite) (1.18)

and MQSQAQE_SZU+9) - ArZESZ[f+g) = ;.L333A36 a(f+g) (1.19)

The constant As must be non-zero, to account for finite displacements in the
underlying medium. Therefore Ay, A}, 45, A and A3 can be eliminated from
equations (1.16) , (1.17), (1.18) and (1.19), and the following wave velocity
equation is obtained [7]:-

{uasacoshssyg +pasasinhssg) uasecoshs, f (1.20)
+ (pgsasinhsag + pasecoshsag)psisinhs f =0 )

Several forms of equation (1.20) are possible. These depend on whether the
displacements are considered to vary exponentially or in an oscillatory man-
ner with the depth. Equation (1.20) yields no solution if s1, s, and s3 are all
considered imaginary. Therefore oscillatory variation in all three media cannot
oceur.

1.3 Forms of Equation (1.20)

Four forms of equation (1.20) are considered.

{i) 51 lmaginary, Sa real (Case 1)
(ii) 51 real, 82 imaginary (Case 2)
(ill) s1,80 both imaginary (Casze 3) cases14
{iv) s1,82 both real (Case 4)

1.3.1 Casel

Write 5; = 251 . From equation {1.20} there is obtained

HaSa [t3S3 cosh sag -+ [a52 sinh Sag

. 1.21
181 p3ss sinh sz + pasz cosh sag (1.21)

tan s1f =

Put ﬁs 3 = tanh ¢, then tan & f = #2_-32 tanh (sag + ) .
252 181
On writing §1, s2 and s3 in full and re-arranging, there is obtained

27rf1} ¢ —1
A= (1.22)
251 fﬁz “62 2 9 [, ¢
{M1ﬁ2 - 6% ' ﬁ2 +¢)}

11




1.3. FORMS OF EQUATION (1.20) W.H. Cogill

1.3.2 Case 2

Write sq = {52 . From equation (1.20} there is obtained

35y — 5 3 Fq SIn 8
tanh s, f = po8a —pigs3 €OS Sag + a2y S 29 (1.23)
{151 pP3S3 Sin 39 + pasy cos 529
K383
Put e = tan 1, then tanh sy  f = —= 2 tan (520 — ) .
252 1

18
On writing s1, & and s3 in full and re-arranging, there is obtained

62

271'f 1- Ty
A= A (1.24)

L b [E =Bt 2mg [
tanh {#152 o tcm()\ 7, 1—1)

1.3.3 Case 3

Write s; = 151, 52 = 452 . From equation (1.20) there is obtained

§ 83 €08 §20 — M2 SiN §
tan 5 f = #2{2‘#3 3 : _29 ,uzﬁn _29_ (1.25)
H181 383 Sin §20 + [282 COS Sag

3

put 2353 _ = cot 9, then tan 5, f = H252 ot {329 -+ ¥) .
Ha232 51

On writing §;,§; and s3 in full and re-arranging, there is obtained

2

2rf ﬁc_ -1
A= ! (1.26)
pafh ﬁz 2mg
tan— cot -1+
{#152 51 ( ;3 Ba? 2
1.3.4 Case 4
From equation (1.20) there is obtained
tanh s, f = _ Mas2 pss3 cosh sag -+ pass sinh sag (1.27)

p181 p3S3 sinh sag + pase cosh sag

Put ﬁs 2 — coth 1, then tanh s f = —“222 coth (seg + ) .
282 1

1
On writing s1,s2 and s3 in full and re-arranging, there is obtained

21rf1/ <
A= - (1.28)
_1 ) 2B fﬁz 2 9 fy ¢
tanh 1{#152 5, _c2 1 52—“!})}

12




W.H. Cogill 1.4. MATRIX METHODS

1.4 Matrix Methods

Most systems which are of practical importance are more complex that those
considered in the first part of this chapter. The systems comprise several layers.
The layers may be interspersed in any order of stiffness. The deepest layer
of which the system is composed is usually regarded as extending to infinite
depth, and is represented by a semi-infinite medium. A method is required
of calculating the phase velocities of SH waves at the free surfaces of these
structures. It is expected that the phase velocities will vary with the frequency.
The phase velocities will be complex quantities if leaking modes are considered
(Su and Dorman, {10}).

The method proposed by Thomson[11] will be followed, and use will made of
the notation employed by Thrower[12]. The component materials are considered
as purely elastic, and leaking modes are not considered. The vector representing
the shear stress pg, and the displacement v in the m-th medium from the free
surface can be written

W = (poz,v) {1.29)

The peak value of the shear stress can be written (Nakano, [5])

Py = —%E(Ae‘” - A'e**).C' (k,r,v,w) (1.30)
= %(S ginh sz + 8" cosh s2).C"(k,r,v,w), (1.31)

where S = A"+ A and 8§ = A’ — A, and the peak value of the displacement can
be written

v = %{Ae‘” + A'e=).C" (k, 7y v, w) (1.32)
= %(S cosh sz + S§' sinh sz).C" (k,r,v,w). (1.33)

Here C' is some circular function, the exact form of which is not important
as it cancels when the boundary conditions are applied. As the trajectory
of the particle motion is horizontal and purely tangential to the direction of
propagation, only one shear stress and one displacement need be considered.
This suffices to determine the stresses and displacements throughout the system.

In matrix notation

Wi = Qm.Bm (1.34)
where
B = [ 5‘?, } and (1.35)

(1.36)

Matrix Methods



1.4. MATRIX METHODS W.H. Cogill

where the suffix m denotes that the quantities are those whch apply to the m-th
medium below the free surface of the structure. Placing the origin of the co-
ordinates at the (m — 1)-th interface, the expression for the stress-displacement
vector Wy, ;m—1, within the m-th layer at the {(m — 1)-th interface is

) o B is 2(row) x 1 (column)
Wonm-1 = Cm-Bm, C is 2(row) x 2 (column) (1.37)
W is 2(row) x 1 (column)

where C,, is derived from @y, by putting z = 0. The stress-displacement vector
Win.m within the m-th layer at the m-th interface is

Winm = Dm-Bm, D is 2(row) x 2 (column) " {1.38)

where D,, is derived from @, by putting z = H,,, the thickness of the m—th
layer. Equation (1.37) can be written

B =CoWo o1, Crlis 2(row) x 2 {column} (1.39)

The vectors Wi, m—1 and W, m, representing the stresses and displacements
at the top and bottom of the m—th layer, are therefore related by

Wim = DmCWinm—1. DC™1 is 2(row) x 2 (column) (1.40)

It is assumed that there is no slip at the interface[12]; the stress-displacement
vectors on either side of the interface must be equal, or

Wm,mwl = Wm—l,m—l- (141)

Equation (1.40) can be written as

Wim = D €7t Wan1,m-1- (1.42)

Writing ! = E,, E is 2(row) x 2(column), the previous equation can be
applied to each interface in turn, starting with the lowest interface, the n-th.
This yields,

=F Wiy, F is 2(row) x 2 (column) (1.43)

If the semi-infinite medium is absent, the problem is that of a layered free
plate. The boundary conditions on each of the free surfaces require that pg, = 0.
Therefore?

fi2=0 (1.44)

This is the equation relating the phase velocity at the free surface, ¢ to the
wavelength A.

2In the case of a free plate, Wi g = (0,v), where the zero represents the shear stress and
the v represents some finite displacement. Similarly, Wa,n = (0,v). On writing the matrices
in full it will be seen that both these conditions can be satisfied on if fi2 is zero.

14



W.H. Cogill 1.5. CHECKS OF MATRIX METHODS.

If the semi-infinite medium, designated by the sequential number (n + 1), is
present, the problem is that of a layered half space. Pre-multiplying {1.43) by

Crty yields

Byt = Cot ~F Wy o =J Wi, is 2{row) x 2 (column); (1.45)

The condition in the semi-infinite medium is that there are no sources at infinite
depth. This implies that Sp+1 = — S5, ,. At the free surface, the shear stress is
zero but the displacement is non-zero. This condition can only be satisfied if

Jizt+ a2 =0 (1.46)

Equation (1.46) is the frequency equation of the system. It contains the
phase velocity and the wavelength implicitly as a function of the shear elastic
moduli and of the velocities of propagation of shear waves in the media com-
posing the system. The thicknesses of the layers of the component materials are
required, and are assumed to be constants.

1.5 Checks of matrix methods.

The results obtained lead to eguations relating the phase velocity at the free
surface to the frequency or to the wavelength. These equations can be checked
by comparing the results with known solutions. Solutions are available for some
specific types of structure.

In order to obtain the frequency equation of the system, it is necessary to
write in full the ¢, !, D and E matrices. The € matrix is obtained from the
@ matrix, by putting z = 0, and is

us
0 [akid
_ 2
C = {1.47)
: 0
2
It can be verified that
0 2
cl = 9 . (1.48)
— 0
s
The D matrix is derived from the Q matrix, putting z = H, and is
%3 sinh sH ,u?s cosh sH
D= ) . . (1.49)
3 cosh sH 3 sinh sH;

finally, £ = D C~!, and is given by

15



1.5. CHECKS OF MATRIX METHODS. W.H. Cogill

cosh sH ps sinh sH

D= 1 . {1.50)
- — sinh sH cosh sH
Hs

The matrices denoted by €, D and F were obtained for plane waves by
Haskell[2].

(i) Consider a two-layered free plate. The matrix F, defined in equation
{(1.43), is given by

cosh 809 p28s sinh sag cosh s1f  pi1s; sinh s, f

F=FF =

sinh s1f  cosh s f

(1.51)
The frequency equation of the system can be obtained as shown previously
(1.44), and is given by

sinh sag  cosh sag
H232 Hi81

f12 = p181 sinh 81 f cosh s2g + pass sinh sag cosh s f = 0. {1.52)

As shown by Kurzeme [3], equation (1.52) is identical with that obtained
by considering the constructive interference of waves in this system (Officer [6];
Tolstoy and Usdin [13]).

(ii) Consider next the case of a single layer of constant thickness overlying
a semi-infinite medium. If the layer is composed of a material having a lower
stiffness than that of the material composing the semi-infinite medium, the
system is the same as that treated by Love [4], for which the frequency equation
is known(Nakano, [5]). The elements ji2 and jz; are required, and can be
obtained as follows:

0 2 cosh s1f  pisy sinh s f
J=CF=CE=| , | (1.53)
0 sinh s1f coshsif
Laso 151
J = C7'F=C7'E (1.54)
0 2 cosh s1f 151 sinh s1f
= 5 ) {1.55)
sinh 81 f cosh 51 f
Hasa 181
sinh s1f 2cosh 51 f
H181
= {(1.56)
coshs1f 2 f151 sinh s1 f
H282 232

16



W.H. Cogill 1.5. CHECKS OF MATRIX METHODS.

The equation relating the wavelength and the phase velocity is
Jiz + jr2 =0 (1.57)

ie. FL2L sinh sif + coshsif ==0 (1.58)
1252

Equation (1.58) is not directly comparable with known solutions. If ¢ > 5;%,

2 w? w2 w2

.t .
— = = i8] =~ =5 — 5}
B2 B c?

also coshiy = cos(-y) and sinhiy = isiny where y is any quantity.
Equation (1.58) becomes

£

(1.59)

81 =

s

[+

mlis1) sinh (—is} f) + cosh (—isif) = 0
L2 Sz

ie. Mz‘sin (—s1f) + cos (s1f) = 0
252

r
therefore — 211 g, (s1f) + cos (s1f) = 0
Ha282

252
!
187

ortansif =

in agreement with known results [4] [1]. {iii) Finally, consider a system consisting
of two layers overlying & semi-infinite medium. The elements of £ can be found
from the expression used to derive (1.52) and are as follows:-

fi1 = cosh s1 f cosh sag + % sinkh s1 f sinh sag, (1.60)
151
fi2 = p151 sinh s1 f cosh sag + pasa cosh sy f sinh sa2g, (1.61)
fa = cosh s1 f sinh sag + sinh sy f cosh sag (1.62)
HaS2 H151
and fap = lel sinh s, f sinh ssg + pss2 cosh s, f cosh sag.  (1.63)
252

If F is pre-multiplied by €5, and retaining only the significant elements,
the following is obtained:

Jiz =2 (i;:: sinh s, f sinh 829 + pass cosh s1f cosh szg) (1.64)

2
Je2 = ,u_s (151 sinh 51 f cosh 29 + p2s2 cosh sy f sinh sag) . (1.65)
383
The equation relating the wavelength and the phase velocity is
Jiz + ja2 =0 (1.66)

If the expressions for ji1 and jao are substituted in (1.66), the frequency
equation can be written as follows:
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1.6. DISCUSSION OF EQUATIONS (1.22) TO (1.28) W.H. Cogill

2 (zlzl sinh s1 f sinh sag + pa2ss cosh s, f cosh szg) +
282

2 ;
;—S— (p181 sinh sy f cosh sag + poss cosh sy f sinh sag) = 0. (1.67)
353
This equation can be simplified as follows:

pzsy (p151 sinh sy f sinh spg + poss cosh sy f cosh sag) +
Uase (1181 sinh s1 f cosh sag + poss cosh sy f sinh sag) = 0. (1.68)

or,

(pass cosh s2g + pass sinh sag) pasz cosh sy f +
(ptas3 sinh seg + pass cosh sag) psy sinhs f = 0. (1.69)

This is identical with equation (1.20). It is the frequency equation of the
system, and can be satisfied by pairs of values of the phase velocity and the
frequency.

1.6 Discussion of equations (1.22) to (1.28)

The propagation of horizontally-polarized shear waves (Love waves) has been
comprehensively studied( [4], [8], [5]). The structure analysed by Love [4] con-
sists of a single solid layer of finite thickness overlying a semi-infinite medium.
An oscillatory torque is applied to the free surface of the structure, in order to
generate horizontally-polarized shear waves in the structure. The phase velocity
of the waves is measured at the free surface of the structure. The phase velocity
is not a constant, but varies with the wavelength of the oscillation. The response
of a two-layered system is similar but contains additional branches, represented
by equations (1.22) to (1.28). It is sometimes convenient to present experi-
mental data graphically. There are advantages in considering the relationships
between the phase velocity at the free surface and the angular frequency of the
waves propagated. Equations (1.22) to (1.28) may be expressed in the following
alternate form.

Case 1
2
211'f1f -
{1.70)
tan— 1{5;!2; 2 _,02 c;_ —2 1+49)
2 _ 2
Y e e s I
where

_ #3;62 3 -2
tanh ¢ = 253 T [ R {1.72)
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Case 2
2rf i
(1.73)
1 #2;5’1 Bs° ("2 / B2”
tanh— {“1‘82 e c2 ,3 2 "/))}
ﬂ _ #251 wyg P2
ﬁ V B ﬁ1 - c2 (.32 V 2 19) (1.74)
where
!1352 )83 —62
A V (1.75)
Case 3
21rf1 /
A= (1.76)
_ p2b wg 2
fan 1{#132\/ E—V __2 }
wf [ B® _ 2B wg ba”
fon B = T mbe (ﬁz Y 2 ) (L77)
where
L hsBe (BT - —62
w2 -p? (1.78)
Case 4
21rf;1/
A=— (1.79)
1 ) 2B /;5'2 "02 _9 /___
tanh {#152 5, T3 © ﬁ =2 1+1)
wf ﬂ12 _ ko ﬁz —c wy [B°
tanh 5 mﬂz ks oth (ﬁ2 & 1 +¢) (1.80)
where
#3b2 /ﬁs —c?
coth ¥ = 2 5T (1.81)

It is desirable to develop approximate relationships for equations (1.71) to
(1.80). These will be discussed in the sections which follow.
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1.7. APPROXIMATIONS TO EQUATIONS (1.71) TO (1.80)  W.H. Cogill

1.7 Approximations to equations (1.71) to (1.80)

The following is the result of a further study of equations {1.71) to (1.80). The
expressions do not yield the wavelength explicitly as a function of the wave
velocity. Iterative computation is necessary. Nevertheless there are certain
values of the independent variable (the phase velocity) at which explicit relations
are obtainable. Ths occurs particularly at the terminal velocities and under
limiting conditions of the frequencies. Results can then be calculated directly.
This is nseful for curve tracing, before devoting effort to detailed computations.

The existence of a solution to eguation (1.20) indicates that a structure
possessing a particular combination of parameters will respond to excitation
and yield the indicated relationship between wave-length and phase velocity.
The assumptions may, however, involve an over simplification of the physical
conditions which exist in the structure.

The prospects of generating a response in any particular branch are a matter
of speculation, therefore. Cases 2 and 3 are related to the case of a freely
suspended plate, and appear likely to receive confirmation from experiment. If
o and pg are made equal to zero, the expression obtained for Case 3 reduces to
the expression governing the propagation of horizontally polarized shear waves
in a simple plate(equation (1.58) ). Cases 2 and 3 involve trigonometric but not
hyperbolic functions. An infinite number of modes of response may therefore
be expected, corresponding with successive branches of the functions.

Road pavements are examples of systems composed of dissimilar materials.
The relative values of the parameters of the materials are often such that cases
2 and 3 are applicable.

The behaviour of these structures may possibly be represented by the ex-
pressions obtained for cases 2 and 3. The cases are considered together because
they apply to the same type of structure. Case 3 represents the behaviour if
the phase velocity at the free surface exceeds the velocity of shear waves in the
upper layer. Case 2 applies if this is not so, and in that case the phase velocity
cannot exceed the velocity of shear waves in the underlying medium.

If the underlying medium possesses a stiffness which is negligible in com-
parison with that of the lower layer, shear waves are multiply reflected from
the free surface and the underside of the lower layer. The system behaves as
a compound free plate, and the phase velocity at the free surface may become
infinite. The theory which applies has been considered by Stoneley [9]. This
case constitutes a special one in the present work. It is useful practically, as the
predicted large phase velocities are easy to detect, and are characteristic of a
particular kind of structure. No solution exists for phase velocities less than the
shear wave velocity in the lower layer. Usually, therefore, cases 2 and 3 apply
if the phase velocities at the free surface lie between the shear wave velocity in
the lower layer and that in the underlying medium.

It is found experimentally that the two surface layers of a pavement or
airport runway (media 1 and 2) tend to vibrate as a composite plate. If the
shear modulus of rigidity of the underlying medium (medium 3} is assumed to
be small compared with that in the lower layer (medium 2) we have, for Case 2
(equation {1.74) )
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Iim — 0,7, 2m,. .. etc;
B0
2

E

¥ =cot™! " lim —/2,37/2,..,¢ele
3
— =0

H2

The relationship between the frequency and the phase velocity for Case 2
(equation 1.74) becomes

wf E_ _ p2f c? — B wg ¢
tanh 5\ = 1= s\ 5P & tan (ﬁz \ / 57 1) (1.82)

Considering Case 3, equation (1.77) becomes

wf B* M2 — B2° 2n+1
tanE 1——é~2~w P ~ 5,7 ct( 1} -1- 3 7[‘) (1.83)

where n indicates the mode of the response. If — - (0,this may be written

wf. il N _ 2B -6’ o ﬁ2 )
tan B = b )31 ( (1.84)

for the first mode. The negative square root has been taken. The result is
similar to that expected from ray theory: the phase velocity at the free surface
becomes large when the total reflected path is equal to one wavelength.

Clearly, wf = 0 is a solution to (1.82) . However, if L;—f is small but not

1 1
zero we have(for ¢ = 0,w, ...) from (1.82)

wf &ﬂ_ . peBy [ =B fwg [&

B 1wf 131};1 _>#1ﬁ2 ﬁl BiZ ~c (52 Ba® ! (1.83)
-, =0
B B2
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1.8. APPROXIMATE EXPRESSIONS. CASES 2 AND 3. W.H. Cogill

in which the terms in tanh and tan have been replaced by the first terms of
their series expansions. If we make the substitution

2
z= @.@2.2 (1.86)
m Bt f
we obtain from (1.85), on cross-multiplying and re-arranging,
, _
2 1425
— lm - —— (1.87)
B

Example 1.7

Consider the structure represented by the following parameters

pr =25 pp=1 .
=5 p=1 f=g

Applying (1.87) it is found that z = 1, and ﬁi 5 0.721 as “;—f 0.
1 1

Considering further the vibration of the two layers as a composite plate
(pa << p2), it is necessary to investigate Case 3, represented by equation (1.83)
when the measured phase velocity at the free surface becomes large. As ¢ —+ o0,
equation (1.84) vields

tand pim o 2P 4,08 (1.88)

Bre=roo " mfs 8

Inserting the values of the parameters assumed for Example 1.7, equation
(1.84) is true when “'é—li = 0.402, 0.969, ..., etc..

If the velocities of shear waves in media 1 and 2 can be determined in a
two-layered composite free plate, equation (1.26) can be applied determine the
ratio of the layer thicknesses, f/g.

Finally, cot % in equation {1.78) can be rendered zero by another condition.

This is the condition ¢ = 33. For the value of < equal to %, therefore, points
1 1
occur on the curves computed by means of equation (1.77) using the same values
of pa, 2, B1, 52, /g, assuming ﬁ—% to be small. The curves obtained by putting
2

cot 1 = 0 are the envelopes, representing the lower limits of the frequency,
of the families of curves computed for various values of pz and S, keeping
Mo, ,(12”61, 162: and f/g fixed.

1.8 Approximate expressions. Cases 2 and 3.

Some extreme and limiting cases have been considered. Relationships have been
derived which may be of value in the approximate interpretation of experimental
results. Approximations will be obtained, which are valid over limited ranges
of the variables considered. Within these ranges, direct calculation is possible
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and sufficient, and numerical methods are not required. Adequate plots can be
obtained for approximate inverse solutions. This may be advantageous when
interpreting experimental results.

Two approximations will be developed. (a) Case 2 (represented by Equation
(1.24) ) as ¢ —+ B2, (b) Case 3 (represented by Equation (1.26) ) as ¢ — f1.

1.8.1 Case 2, ¢c— 3

Consider equation (1.24), which relates the phase velocity at the free surface to
the frequency of propagation of the waves. The structures are those designated
by Case 2. If ¢ = (2, the term in tanh must remain finite while the factor

’ﬁ% ﬁ?‘ﬁ—’* tends to zero.

Also, 1f = ;é 0,tan ¥ — co.

Therefore '¢v - g 3;, .-, 8tC.

The term in tan in equation (1.24) must therefore tend to infinity. Therefore

T T 3w 2n+1
- = =, — . 1.
V T Tyt T g ¢ (1.89)

Denote < Pa by A (ﬁi)’ and we have
1
5} C
Z2A =] = m2n..,(n+ Um {1.90)
B2 3}

% N 5 (%)1 [r, 27, ..., (n + 1)7] /1 2 (—ﬁ%) (1.91)

where n is the node number.

If the layers are considered to vibrate as a composite plate, and the under-
lying medium is neglected, it is assumed that ps/pe — 0. We have, in equation
(1.24), ¥ — 0,7, 2, ..., etc. and the result given in equation (1.91) becomes

#oL@) BE-r e G)  oe

Equations (1.91) and (1.92) are applied in the following example.

Example 1.8.1

The parameters used are as described in 1.8.5. Table 1.1 shows the results
obtained by means of the approximate expressions (1.91) and (1.92), compared
with those obtained by iteration using equations (1.74) and (1.24) respectively.

The results shown in Table 1.1 indicate that the accuracy obtainable by the
approximations (1.91) and (1.92) improves as ¢ approaches fz, and is slightly
better for mode zero than for mode one.
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1.8. APPROXIMATE EXPRESSIONS. CASES 2 AND 3. W.H. Cogill

Structure 1 (Composite plate) Structure 2 (Two layers plus
For values of the parameters, semi-inf.medium). For values
MODE | see Example 1.7 values of the parameters, see
Example 1.8.4
Lwf wf wf wf

ﬁ_}i= ﬁJiz BilS _ 2
1 3 0.21 1 3 0.23 1 7 0.21 1 5 0.23

1

Exact | App. Exact | App. Exact | App. Exact | App.
Eqn. Eqn. Eqn. Eqn. Eqgn. Eqn. Eqa. Eqn.
(1.74) | (1.92) | {(1.74) | (1.92) | (1.24) | (1.91) | (1.24) | (1.91)

0 1.021 .99 0.626 | 0.57 | 2.049 1.99 1.260 1.14
1 3.082 2.98 1.899 1.72 4110 | 3.97 | 2.532 2.29

Table 1.1: Case 2. A comparison of the values obtained for wf by means of the

1
approximations (1.92) and (1.91) with those obtained by means of equations
{1.74) and (1.77).

1.8.2 Case 3, ¢c— 4

The alternate form of the expression (1.77) is as follows.

S ot

In equation (1.93) as ¢ — £, we must have

wf 51
tanzA[1- - =0, (1.94)
and
cot(=24 /1~ ﬁi ) — (1.95)
B2
where
2
cotp = 18Pz [P = ¢ (1.96)

paBs \ 2 — Ba2

An approximation will be developed in which the trigonometrical functions
are replaced by the initial terms of each series. We have from equation (1.93),

Uf )31 M2ﬁ1

[31 6’2 #1 B2 (1'97)

where n is an integer representing the mode of the response. Two cases will
be considered. The first corresponds with the layers{media 1 and 2} vibrating
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as a composite plate (cot ¢y — 0). The second corresponds with a structure in
which the semi-infinite medium {medium 3) is rigid relative to the lower layer
{medium 2}, i.e uz >> po.

T .
In the first case, ¥ — —, and the approximate expression (1.97) becomes

3
ﬁz
a1 —mr— 1- ﬁl zj[ﬁi: 6162 ~0.  (1.98)

1
In the second case, cof ¥ — —, and we have

¥

fg _JBL 2 n+1 _H2J83
ﬁlb’zvl “ 7 " 1352

where n represents the mode of the response.
Equations (1.107), (1.98) and (1.99) apply to ranges of phase velocity which
are similar. However (1.98} and (1.99) are the better approximations.

.f !—52.81 - 2 —~
wtiLV @ g,
B p1B2 4

(1.99)

1.8.3 Examples of Cases 2 and 3 as ¢ —

Equations (1.24) and (1.26) represent the behaviour of the structures designated
by cases 2 and 3. As ¢ —+ 1, these equations can be simplified. At the limiting

condition ¢ = F1, the dimensionless frequency 5_ can be written explicitly in
1

terms of the phase velocity ¢ at the free surface.

Case 2

The expression for Case 2 (equation 1.74) can be written in the form

Bim L pebBy /62 - Bo? / ﬁ2
T mbBe Y B —c2 (52 T.f’) (1.100)

where
Haﬁz ﬁ32 —c?
= ) 1.101
¢ .U:263 ’622 ( )
wg .322
e 5, tan(— 1 -c-2;- —- ) = 0,m, ..., nT.
7r+1,b nw -+ ¢

(1.102)

w-—J =
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where n is an integer representing the mode of the response. An expression for
W
-Bi is required. This is given by

1

wf v S T+ f o ndd S (1.103)
A a2 B9 g Bt B> /I
gE¢ Yt & S
Case 3

Inserting the expression obtained for Case 3 (equation 1.77), we have

| W
L = AT I

where
2 _ .2
cot i = i:—gz f;_ ﬁ;. (1.105)
If ¢ - fh, cot (“’g\/l g +1,b)
B2

(2n + D
7Y __w —2 (1.106)

)

\/ \/ Bs” X

where n is an integer representing the mode of the response. As before, we have
also

T 3r (2n + U)m
wf 3% 5 3 V5 —g %
g g

ﬁ_l — cz 3 c2 3= 62
. —y — — -1 ey — 1
\/522 \/52‘ B2*

Expressions (1.103) and (1.107) are both valid when ¢ = 81. At this point,
both approximations should yield the same value of the dimensionless frequency,
for a given set of parameters defining the structure. This is illustrated in Ex-
ample 1.8.4.

(1.107)

@ |-

1.8.4 Example 1.8.4

Consider the structure represented by the following parameters.

,U1=25, ,U:2=1, ”3=100 .
16125: B2=1, ﬁSle: f:g

¥ ¢ = By, the value of 9 in (1.103) is found to be 1.514 radians; in (1.107) the

value is (g —1.514) radians. Both expressions yield the same value of c;__f Table
1
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1.2 shows the points obtained for the first nine modes. This result indicates that
the curves representing the response of Case 2 touch those representing Case 3
at these points.

MODE | 0 |.1 2 3 4 5 6 7 8
;l 031 (095|159 223 | 287 352|415 | 480 | 543
1

Table 1.2: Cases 2 and 3. Values of w_f at which ¢ = 8, for the first nine modes

A

Equations (1.103) and (1.107) can also be used to determine the values of
Y if the layers (media 1 and 2) vibrate as a composite plate. Considering first

1
equation (1.103) when pz =0, ¢ = 0,7, ..., etc., we have

wf T 0T

= =0, =, .., — 1.108
B V24T V24 (1-108)
where n is an integer representing the mode of the response. In equation (1.107)
when g =0 ¢ = g, E’ﬂ', ..., etc., and the same values of ‘;— are obtained.
1

The values of ﬂ change rapidly over parts of the range for which expressions

1
(1.103) and (1.107) are intended. The use of these equations may facilitate the
interpretation of measurements.

1.8.5 Example 1.8.5

The accuracy obtained from expressions (1.103) and (1.107) can be shown by
considering typical results. Values obtained by means of the approximate ex-
pression {1.103) are compared with those obtained by using equation (1.24).
Two structures are considered. The first, a composite plate, is represented by
the parameters assumed in Example 1.7. The second is the complete strue-
ture consisting of two layers overlying a semi-infinite medium; the parameters
assumed in Example 1.8.4 are used.

The results of the computations are shown in Table 1.3. Case 2 only is
considered. The results for Case 3 can be obtained by means of equations
(1.107) and (1.26).

1.9 Approximation to Love system
Equation (1.58) yields the phase velocity implicitly as a function of the fre-

quency. The system considered is the Love system, a single layer having a
constant thickness overlying a semi-infinite medium. Equation (1.58) can be
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MODE Values of -“é«i when Bi =0.95
1 1
Structure 1 (Composite plate) | Structure 2 (Two layers plus
For values of the parameters, | semi-inf. medium). For values
_see Example 1.7 values of the parameters, see
Example 1.8.4

Exact Approximate Exact Approximate
Eqn. (1.24) | Eqn. (1.103) Eqn. (1.24) | Eqn. (1.103)

0 0.000 0.00 0.349 0.31

1 0.718 0.64 1.058 0.95

2 1.414 1.28 1.742 1.59

3 2.089 1.92 2.409 2.23

4 2.750 2.57 3.067 2.88

5 3.405 321 3.719 3.52

6 4.054 3.85 4.368 4.16

7 4.702 4.50 5.014 4.81

8 5.347 5.14 5.659 5.45

Table 1.3: Case 2. A comparison of the values obtained for ﬂ by means of the

1
approximation (1.103) with those obtained by means of equation ( 1.24).

approximated as follows, if the ratio of the Lame shear constants B2, 0. We

b
repeat the equation (1.58) for convenience.
tans) f = “2'5,2 (1.109)
18]

2 2 2 2

W W 2 w w
512 — ___2“ —_ _2; 5"1 = —5 am -—2; (1.110)

¢ B B ¢

Expanding the tangent term to the first power of its argument, we have

w? w? wf B pe Be 1"%22
an f g & B & mbp [3,? ) ( )
-

Assume that the ratio of the Lame shear constants #2 — 00, and we have

1431
2 2
NGRS
1 1 21
=57 .7;_w2_f2 (1.113)

This expression provides an approximation to a Love system. The reciprocal
of the square of the phase velocity of SH-waves is plotted against the reciprocal
square of the frequency. The intercept on the axis of squared velocities is the
reciprocal square of the velocity 51. The slope of the plotted points yields the
thickness of the surface layer f.
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Chapter 2

Computations

2.1 Introduction

Quantitative intepretation of experimental measurements is required. The struc-
tures which are considered are composed of two layers overlying a semi-infinite
medinm. Table 2.1 shows the possible permutations of the values of the shear
wave velocities 51,82 and 83 within the structure. Corresponding with each

permutation of shear wave velocities, one of the cases 1,2,3 or 4 is applicable.

Table 2.1 shows the case which is applicable to a given range of phase velocities
measured at the surface.

Programs have been written in Fortran in order to calculate the response
expected. Listings of the programs follow. Sample data are supplied with each
listing. The results are plotted in order to aid identification of the structures
from the results of measurements.

The results are plotted in Figures 2.6.1 to 2.6.3. These figures show the phase
velocity plotted against the frequency. Dimensionless units are used throughout.

The frequency is expressed in units of E;—f The phase velocity is expressed in
1

1units of ,B_CI
2.2 Casel

¢ Horizonial shear waves. 2 layer. case 1A. june 1967 wheSlp
¢ The velocity ratio must be greater than unity, and less than
¢ betal/betal, becouse F must be positive.

dimension velrat(7),freq(7)
3 format(il1,§9.0,710.0)
4 format(7{3.2)
51 format(/7hc/betal,3x716.3)
52 format(Shfrequency,1x7f6.3)
252  format(2{8.3)
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22, CASE1 CHAPTER 2. COMPUTATIONS

Structure * Indicates that no real solution of Equation (1.20) exists.

Relative phase velocities of horizontally-polarized shear waves
{SH waves)in the media composing the structure

B1>82 | B1>Bs | Ba>Bs | Ba>Br | a>PF1 | Ba> B2

> B3 > By > 5 > 3 > B2 >_[31

REAL
cC>Vvy

IMAG | s1,82,83 | 81,82,83 | 81,92,83 | 581,82,53 | 81,82,53 | 81,892,383
CASE * ¥ * > > >

| | & | A B2 1 B | B | Bs |
REAL | 51 | 81 89 1 8a | 53 | 83

V] > C > Vg

IMAG 83, 83 53, 83 53,51 83, 81 81, 82 81, 82
CASE * * * * 3 3

l B2 B3 Bs | A [ B ] B ]
REAL 81, 82 81, 83 52,83 81, 82 51,83 82, 83
IMAG 33 82 $1 83 89 51
CASE * 2 1 * 2 1

| B3 Bs | B/ ] B [ B [ B ]

REAL | 51,382,383 | 81,802,983 | 81,582,523 | 51,92,83 | 51,582,838 | 51,592,583

Vva > ¢

IMAG

CASE 4 4 4 4 4 4

Table 2.1: Table showing applicable cases. The structures are classified by
the relative velocities of shear waves in the component media. The cases are
determined by the velocity of SH waves at the free surface of the structure.

53
61
62

63

format(7hwave no,3x106.3)
format(//4hcase, i3)
format(4hmode2x3hf /gdx3hmul,5x3hmu2,5x3hmu3,3x5hbetal 3x5hbeta2

+ ,3x5hbeta3)

format(£3.0,{7.2,£6.0,5f8.0)

C READ BRANCH MODE,VALUES OF PARAMETERS

11

119

12

WRITE(*,*) ° ENTER BRANCH,MODE,FOVERG,VALUES OF PARAMETERS ’
open(l.file="a:\casel.dat’ status='0ld’ form='formatted’)
open(5,file="a:\graphl.dat’ status=’unknown’ form=’formatted’) 20
READ(L,*)IBRNCH,XMODE ,FOVERG, XMU1,XMU2,XMU3,BETA1,BETA2,BETA3
write(* *) ibrnch ‘
write(*,62)

write(*,63)xmode,foverg,xmul xmu2,xmu3,betal, beta2, betad

do 12 in=1,7

velrat{in)=0

freq{in)=0

WRITE(**) * ENTER SEVEN VALUES OF VELRAT °

READ(1,*)VELRAT

i=1 30
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CHAPTER 2. COMPUTATIONS 2.2, CASE 1

a=xmode*3.14159+1.
20 cobtal=velrat(i)
if(cobtal) 21,201,21
e z=2 pi*g/lambda

21  b=(xmu2¥betal/(xmul*beta2))*sqrt({(beta2/betal)**2—cobtal*cobtal)/

+{cobtal*cobtal —1.))
if(beta3) 212,212,211
211 d=(betal/betal)**2—cobtal*cobtal
f=sqrt(1.—cobtal*cobtal®((betal /beta2)**2})
e=(beta2/betal)**2—cobtal*cobtal
tnhpsi={xmu3*beta /(xmu2*betad))*sqrt{d/e)
psi=0.5*log((1.+tnhpsi)/{1.—tnhpsi))

goto 213
¢ establish a triel value of tan ¢, then interate until the values converge
212 psi=0

213 tanhl=exp(a)
tanh2=exp{—a)
xit2=b*(tanhl—tanh2)/(tanhl+tanh2)
22 x=(a—psi)/{

€ write(*,*) ' 2 pi g flambda =, %

€ pause
c=x*(sqrt(cobtal*cobtal—1.))*foverg
xitl=sin{c)/cos(c} ! trial value of tan c

c test for convergence

if (xit1—xit2—0.001)101,199,102
101 if(xit2—xit1—0.001)199,199,102
102 xit2=(xit1+xit2)/2
arg=xit2/b
a=0.5%log{(1.+arg)/(1.—arg))
goto 22
199  freg(i)=cobtal*x*foverg
i=i+1
if (i—8)20,200,200
200  write(*,51) velrat
write(*52) freq
write(5,252) (~freq(i),velrat(i},i=1,7)
goto 119 ! read further velocity data
201 stop
end

Sample data for Casel.for is shown in Table 2.2.

33

40

50

60

70



23 CASE2 CHAPTER 2. COMPUTATIONS

1 0 1 1 16 4 1 4 2
197 135 1.3 125 12 115 1.1
1.09 107 106 105 104 103 101
o0 00 060 00 00 00 00

Table 2.2: Sample data for CASEL.FOR

2.3 Case 2
C HORIZONTAL SHEAR WAVES 2 LAYER CASE 2 JUN 67 WHC31B
C O MUST BE LESS THAN BETA1 AND GREATER THAN BETA2

DIMENSION VELRAT(7),FREQ(7)
3 FORMAT(I1,F9.0,7F10.0)

4 FORMAT(7F3.3)

51  FORMAT(2X/7THC/BETA1,3X7F6.3)
52  FORMAT(1X9HFREQUENCY,1X7F6.3)
252  FORMAT{2F8.3)

53  FORMAT(IXTHWAVE NO,3X10F6.3)

61 FORMAT(//4HCASE I3) 10
62 FORMAT(1X4HMODE2X3HF/G4X3HMU1,5X3HMU2,5X3HMU3,3X5HBETA1L,3X5HBETA2
+3X5HBETA3)

63 FORMAT(F3.0,F7.2,F6.0,5F8.0)
C READ BRANCH,MODE,VALUES OF PARAMETERS
WRITE(*,*) > ENTER BRANCH,MODE,FOVERG,VALUES OF PARAMETERS '’
open(l,file="a:\case2.dat’ status=’old’ form="formatted’}
open(5,file="a:\graph2.dat’ status=’unknown’ form=’formatted’)
11 READ(1,%)IBRNCH,XMODE,FOVERG,XMU1,XMU2,XMU3,BETA1,BETA2,BETA3
WRITE(* *)IBRNCH
WRITE(*,62) 20
WRITE(*,63) XMODE,FOVERG,XMU1,XMU2,XMU3,BETA1,BETA2,BETA3
119 DO 12 IN=1,7
VELRAT(IN)=0
12 FREQ(IN)=0
WRITE(*,*) * ENTER SEVEN VALUES OF VELRAT °’
READ(1,*)VELRAT
A=XMODE*3.14159+.7

I=1
20  COBTA1=VELRAT(I)

IF(COBTA1)200,201,21 20
e z= two pi g / lambda

21 B=(XMU2*BETA1/(XMU1*BETA2))*SQRT((COBTA1*COBTA1—(BETA2/BETA1)**2)/
+ (1L.—COBTAI*COBTAL))
IF(BETA3) 212,212,211
211 D=(BETA3/BETA1)**2—COBTA1*COBTA1
E=COBTA1*COBTA1—(BETA2/BETA1)¥*2
PSI=ATAN((XMU3S*BETA2/(XMU2*BETA3))*SQRT(D/E))

GOTO 213
c establish e trial value of of tan c, then iterate until the values converge
212 PSI=0 40
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213 XIT2=0
22 X=(A+PSI)/SQRT(COBTA1*COBTA1*((BETA1/BETA2)**2)—1.)
C=X*(SQRT(1.—-COBTA1*COBTA1))*FOVERG
TANHI=EXE(C)
TANH2=EXP(-C)
XIT1=(TANH1-TANH2)/{TANH1+TANH2) ! TRIAL VALUE OF TAN C
c TEST FOR CONVERGENCE
IF(XIT1-XIT2-0.001)101,199,102
101  IF(XIT2-XIT1-0.001) 199,199,102
102 XIT2=XIT1 50
A=ATAN(XIT2/B)+XMODE*3.14159
C THE PREVIOUS STATEMENT MAY NEED MODIFYING FOR MODES OTHER THAN ZERQ ANL
GOTO 22
199 FREQ(D)=COBTAI*X*FOVERG
I=I+12
IF(1-8}20,200,200
200 WRITE(*51)VELRAT
WRITE({*52)FREQ
WRITE(5,252) (FREQ(I),VELRAT(I},I==1,7)
GOTO 119 60
201  STOP
END
Sample data for Case2.for iis shown in Table 2.3.

2 0 1 25 i 0 5 1 ¢
0.72111 0.67 062 055 05 04 03
0.0 06 00 00 00 00 00

Table 2.3: Sample data for CASE2.FOR

2.4 Case 3
C HORIZONTAL SHEAR WAVES 2 LAYER CASE § JUN 67 WHC31C
¢ C/BETA!l <VELRAT> MUST BE GREATER THAN UNITY

DIMENSION VELRAT(7),FREQ(7)
3 FORMAT(I1,F9.0,7F10.0)
4 FORMAT(7F3.2)
51  FORMAT(2X/7THC/BETA1,3X7F6.3)
52  FORMAT(1X9HFREQUENCY,1X7F6.3)
251 FORMAT(2F8.3)
53  FORMAT(IX7THWAVE NO,3X10F6.3)

61  FORMAT(//4HCASE,I3) 10
62 FORMAT(1X4HMODE2X3HF/G4X3HMU1,5X3HMU2,5X3HMU3,3X5HBETAL,3X5HBETA2,
+3X5HBETA3)

63 ~ FORMAT(F3.0,F7.2,F6.0,5F8.0)
C READ BRANCH,MODE,VALUES OF PARAMETERS
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11

119

12

20

c
21

WRITE(*,*) * ENTER BRANCH,MODE, FOVERG, VALUES OF PARAMETERS ’
open(l,file="a:\case3.dat’ status=’o0ld’ form=’formatted’)

open(5 file="a:\graph3.dat’ status=’urknown’ form=’formatted’ )
READ(1,*)IBRNCH,XMODE,FOVERG,XMUI,XMU2,XMU3,BETA1,BETA?,BETAS
WRITE(*,*)IBRNCH

WRITE(*,62) 20
WRITE(*,63) XMODE,FOVERG,XMU1,XMU2,XMU3,BETA1,BETA2,BETA3
DO 12 IN=17

VELRAT(IN)=0

FREQ(IN}=0

WRITE(*,*) ’ ENTER SEVEN VALUES OF VELRAT °

READ(1,*)VELRAT

A=XMODE*3.14159+1.

I=1

COBTA1=VELRAT(I)

IF(COBTA1)200,201,21 30

= two pi g / lambda
B=(XMU2*BETA1/(XMU1*BETA2)}*SQRT((COBTA1*COBTA1- (BETAZ/BETA1)**2)/

+ (COBTA1*COBTA1-1.))

211

IF(BETA3) 212,212,211
D=(BETA3/BETA1)**2—COBTA1*COBTA1
E=COBTA1*COBTA1—(BETA2/BETA1)**2
PSI=1.5708— ATAN((XMU3*BETA2/(XMU2*BETA3))*SQRT(D/E))

GOTO 213

¢ establish a trial value of of tan ¢, then iterate until the values converge

212
213
22

101

102

199

200

201

PSI=1.5708 40
XIT2=0
X=(A—PSI)/SQRT(COBTA1*COBTA1*((BETA1/BETA2)**2)—1)
C=X*(SQRT(COBTA1*COBTAl—l.))*FOVERG
XIT1=SIN(C)/COS(C) ! TRIAL VALUE OF TAN C

TEST FOR CONVERGENCE

IF(XIT1-XI1T2-0.0001)101,199,102

IF{XIT2-XIT1-0.0001) 199,199,102

XIT2=XIT1

A=XMODE*3.1415941.570763— ATAN(XIT2/B)

GOTO 22 50
FREQ(I)=COBTA1*X*FOVERG

I=I+1

IF(I-8)20,200,200

WRITE(*,51)VELRAT

WRITE(*,52)FREQ

WRITE(5,251) (FREQ(I),VELRAT(I),I=1,7)

GOTO 119

stop

END

Sample data for Case3.for is shown in Table 2.4.
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3 0 1 25 1 100 5 1 10
1.99995 197 19 18 175 172 170
1.7 16 15 14 13 12 11
0.0 00 00 00 00 00 0.0

Table 2.4: Sample data for CASE3.FOR

2.5 Case 4

¢ horizontael shear waves. 2 layer. case 4 jun 1967 whe31d

¢ ¢ must be less than betal, and less than beta2
DIMENSION VELRAT(7),FREQ(7),ANG(7),XOUT(7)

3 FORMAT(I1,F9.0,7F10.0)

4 FORMAT(7F3.3)

51 FORMAT{1X/’c/betal’,3x7F6.3)

52 FORMATY{1X9Hfrequency,1x7F6.3)

252  FORMAT(2F8.3)

53 FORMAT{1X7Hwave no,3x10F6.3)

54 FORMAT(1X3Harg,7x10F6.3) 10

61 FORMATY{//4hcase,i3)

62 FORMAT (4hmode3x3hF/G4X3Hmul,5X3Hmu2,5X3Hmu3,3X5Hbetal, 3X5Hbetal,3X

+5Hbeta3)

63 FORMATY(f3.0,{7.2,16.0,5f8.0)

¢ read branch,mode,values of parameters
WRITE(*,*} * ENTER BRANCH,MODE, VALUES OF PARAMETERS °’
open(l,file="a:\case4.dat’ status=’o01d’ form=’formatted’)
open(5,file="a:\graph4.dat’ status=’unknown’ form=’formatted’)

11 READ(1,")IBRNCH,XMODE,FOVERG,XMU1,XMU2,XMU3,BETA1,BETA2,BETA3
WRITE(**) IBRNCH 20
WRITE(*,62)
WRITE(*,63)XMODE,FOVERG,XMU1,XMU2,XMU3,BETA1,BETA2,BETA3

119 DO 12 I=1,7
VELRAT(I)==0.0
XOUT{I)=0
ANG(I)=0

12 FREQ(I)=0
WRITE(*,*) * ENTER SEVEN VALUES OF VELRAT °
READ(1,*) VELRAT
A=XMODE*3.14159+1. 30
1=1

20 COBTA1=VELRAT(I)

IF{COBTA1)201,201,21
€ z= two pi g / lambda
21 B=(XMU2*BETA1/(XMU1*BETAZ2))*SQRT((1.—COBTA1*COBTA1)/((BETA2/BETAI)
+ **2—COBTA1*COBTAL))
IF{BETA3) 212,212,211

211 D=(BETA3/BETA1)**2-COBTAI*COBTAl
E=(BETA2/BETA1)**2-COBTA1*COBTA1
CTHPSI=(XMU3*BETA2/(XMU2*BETA3))*SQRT(D/E) 40
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PSi=0.5*LOG((CTHPSI+1.)/(CTHPSI-1.))
GOTO 213
¢ establish a trial value of of tanh ¢, then iterate until the values converge
212 PSI=0
213  COTH1=EXP(A)
COTH2=EXP(—-A)
XIT2=B*(COTHi1+COTH2)/{COTH1-COTH2)
22 X=(A+PS8I)/SQRT(1.-COBTA1*COBTA1*((BETA1/BETA2)**2))
c here pst is taken negative, otherwise no solution is possible.
¢ it can be justified by taking the negative square root of d/e 50
C=X*(SQRT(1.—COBTA1*COBTA1)}*FOVERG
TANH1=EXP(C)
TANH2=EXP(-C)
XIT1=(TANH1-TANH2)/(TANH1+TANH2)
ANG(I)=A
WRITE(*,*) 'ANG = "JANG
c test for convergence
IF(ABS(XIT1-XIT2) .LT. 0.001) GOTO 199
101 IF(XIT2--XIT1) 102,102,102

102 XIT2=(XIT1+XIT2)/2 80
c WRITE(**) ARG = ARG
c PAUSE
ARG=XIT2/B
A=05*LOG((ARG+1.)/(ARG—1.))
GOTO 22
199  FREQ(i)=COBTAI*X*FOVERG
XOUT(D)=X
I=I+1
IF(1-8)20,200,200
200 WRITE(*,51) VELRAT 70

WRITE(*,52) FREQ
WRITE(* 54) ANG
WRITE(*53) XOUT
WRITE(5,252) (FREQ(I),VELRAT(I), I = 1,7)
GOTO 119

201  STOP
END

Sample data for Cased.for is shown in Table 2.5.

4 0 1 1 4 9 1 2 3
001 003 0.04 0.05 0.07 0.08 0.09
01 02 03 04 05 06 0.5
075 0.8 085 087 09 092 098
60 00 00 00 00 060 00

Table 2.5: Sample data for CASE4.FOR
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2.6 Plotted results

The results obtained from the Fortran programs listed are shown in figures
(2.6.1) to {2.6.3). The structures are represented by the values of shear moduli
i1 to pa; p refers to the property of the surface layer, uy refers to the property
of the lower layer, and pa refers to the property of the underlying semi-infinite
medium. Thus the label 1 25 100 denotes py = 1,42 = 25,3 = 100. The
thicknesses of the layers are unity for both layers.

2.6.1 Casel

Figure (2.6.1) shows the results obtained from a structure corresponding with
Case 1. The results expected from two hypothetical structures are shown. The
structures are designated by 1 25 4 and by 1 16 4. The first denotes a structure
in which y; = 1, #» = 25 and ps = 4. The second denotes a structure in which
1 = 1,4 = 16 and pu3 = 4. The thicknesses of the layers are unity for both
layers.
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Figure 2.1: The results of calculations performed for some hypothetical struc-
tures. The phase velocity is shown plotted against the frequency, for structures
of the type represented by Case 1.

2.6.2 Cases 2 and 3

Figure (2.6.2) shows the results obtained from a structure corresponding with
Cases 2 and 3. The results expected from two hypothetical structures are shown.
The structures are designated by 25 1 0 and by 25 1 100. The first denotes a
structure in which g1 = 25, uo = 1 and p3 = 0. The second denotes a structure
in which g3 = 25,2 = 1 and p3 = 100. The first structure corresponds with
that of a compound free plate. The thicknesses of the layers are unity for both
layers.

2.6.3 Case 4

Figure (2.6.3) shows the results obtained from a structure corresponding with
Case 4. The results expected from two hypothetical structures are shown. The
structures are designated by 1 4 25 and by 1 4 9. The first denotes a structure
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Figure 2.2: The results of calculations performed for some hypothetical struc-
tures. The phase velocity is shown plotted against the frequency, for structures
of the type represented by Case 2 and Case 3.

in which g3 = 1, o = 4 and uz = 25. The second denotes a structure in which

p1 = 1,2 = 4 and p3 = 9. The thicknesses of the layers are unity for both
layers.
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Figure 2.3: The results of calculations performed for some hypothetical struc-

tures. The phase velocity is shown plotted against the frequency, for structures
of the type represented by Case 4.
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Chapter 3

Experiments

This chapter includes some experimental resuits and their possible interpreta-
tions.

3.1 Case 1 - Model study

A piece of caneite, a synthetic material having texture similar to that of plastic
foam, was placed on a laboratory bench. The thickness of the caneite was
.11m. The velocity of SH waves was measured on the surface of the caneite.
The results are shown in Figure (3.1). Numerical results of the measurements
are given in the appendix.
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Figure 3.1: Case 1. SH waves on sample of caneite, 0.11m in thickness, resting
on a laboratory bench.

The programme CASE1.FOR was used to attempt to match the experimen-
tal results to a hypothetical structure. The output obtained from the programme
CASE1.FOR is shown plotted in Figure (3.1). This figure shows the dimension-

less phase velocity ¢/31 plotted against the dimensionless frequency w_f The

data file used to match the experimental results was as shown in Table 13.1.
After scaling the output of the programme CASE1.FOR, it is found that

the theoretical structure consists of a surface layer 0.04m in thickness overlying

a layer 0.045m in thickness. The total thickness of the two layers is 0.085m.
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3.2. CASE 2. LABORATORY FLOOR CHAPTER 3. EXPERIMENTS

1091164142

1.97 1851.751.551.41.25 1.1
1.09 1.08 1.07 1.06 1.05 1.04 1.03
0.00.00.00.00.00.00.0

Table 3.1: Sample of caneite. Datafile for CASEL.FOR

The velocity of propagation of SH waves in the surface layer is 150m/sec. The
velocity of propagation of SH waves in the underlying layer is 300 m/s.

3.2 Case 2. Laboratory floor
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Figure 3.2: The results of measurements performed on a laboratory floor. The
square of the reciprocal of the phase velocity is shown plotted against the square
of the reciprocal of the angular frequency. The structure is of the type repre-
sented by Case 2.

Measurements were made on the floor of the Vehicle Laboratory, The Uni-
versity of New South Wales, Randwick, Australia. The results are shown in
Figure (3.2). The estimated straight line represents the envelope of the points,
corresponding with the lowest value of the argument of the tangent in equa-
tion (3.4). This is the condition under which Equation (3.4} is the most nearly
true. The structure consists of bituminous concrete (.21 metres in thickness,
overlying damp sand 0.47 metres in thickness, overlying soft sand.

Numerical results of the measurements are given in the appendix.

From the approximate Equation (1.89) we have

2
wy B w w3m  2n+1
Go -2 T T . 3.1
BVl @ 27T (3-1)

The intercepts in Figure (3.2) are read as 1/¢® = 3.75e — 7 and 1/w® =
9.2e — 9. The equation of the estimated trend is

(%)2 - (161@)2 —40.76 (5)2 (3.2)

42




CHAPTER 3. EXPERIMENTS 3.3. SAND OVER SANDSTONE

The thickness of the surface layer is f = 0.49 metres, calculated as 1/f* =
40.76/72. The velocity of shear waves in the surface material is 8> = 1632 m/s.

3.3 Sand over sandstone

Measurements of the velocity of SH waves were made at the surface of a struc-
ture composed of sand overlying Sydnev sandstone. The results are shown in
Figure (3.3). In this figure, the phase velocity of SH waves at the surface of
the structure is plotted against the wavelength. The results shown indicate that
the velocity tends to limiting values at short and at long wavelengths. At short
wavelengths, the velocity tends to the velocity of shear waves in the surface
medium, the sand. At long wavelengths, the limit is the velocity of shear waves
in the underlying medium, the sandstone. The continuous line shows the results
calculated using LOVE.FOR using 8, = 31 m/s, 8» = 335 m/s, and thickness
of layer = 0.27m .

Numerical results of the measurements are given in the appendix.
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Figure 3.3: Results of measurements of SH waves at the surface of a structure
composed of sand overlying sandstone. The measured thickness of the sand was
0.29 metres . The structure is of the type represented by Case 2.

The calculated line shown in Figure ( 3.3} was obtained with the aid of the
following Fortran programme LOVE.FOR and the data file LOVE.DAT.
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3.4. APPROXIMATION TO SAND OVER YABAISTERVE EXPERIMENTS

3.3.1 programme LOVE.FOR

c Surface velocity of Love waves.
dimension xIngth(40),vel(40),freq(40)
open(l file="a:\love.dat’ status=’old’ form=’formatted’)
open(5,file="a:\loveout.dat’ status="unknown’ form=’formatted’)

1 write(*,*) ’enter iva,ivb,h,x,c’
read(1,*) iva,ivbhx,c
m=1
15 va = iva
vb=ivb
xa=va | initial value of <xa> 10
write(*,*) *va = ',va,’vb =7,vb

write(*,*) ’Depth upper layer =’,h
write(* *) 'Ratio of shear moduli = ’x

10 xa=xa+c ! ¢ is the increment in the phase velocity
vx=xa
if (vx — ivb) 11,131,100

11 z=(x*va/vb)*sqrt{(vb*vb—vx*vx)/(vx*vx—va*va))

wavln=({6.28*h/va)*sqrt(vx*vx—va*va))/atan(z)

xlngth(m)=wavin ‘

vel{m) = vx 20
freq(m)=vx/wavln

write(5,*)wavln,vx,vx/wavin

Xa=vx
50 continue
goto 10
100 stop
end

The data file is labelled LOVE.DAT; the results shown in Figure (3.3) were
obtained with the following data file LOVE.DAT as input
31 335 0.27 150 10

3.4 Approximation to sand over sandstone

We seek an approximate solution which yields an estimate of the properties of
the system. Rewriting equation (1.102) we have

wg _ P T+ nrT + 4 (3.3)

B2 1 )6’22, 1 )822,“.’ 1 Ba?
T e T T e

where n is an integer representing the mode of the response.
In equation {1.100), for Case 2, as pp — 0, ¢ = g— We obtain the following

approximation(see Equation (1.113))

w2 1

Iwzfﬂ

(3.4)

1.

1
62 ﬁl 2
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Figure 3.4: Resulis of measurements of SH waves at the surface of a structure
composed of sand overlying sandstone. The measured thickness of the sand was
0.29 metres. The square of the reciprocal of the phase velocity is shown plotted
against the square of the reciprocal of the angular frequency. The structure is
of the type represented by Case 2.

We apply this approximation to the results shown in Figure (3.3). In Figure
(3.4), the square of the reciprocal of the phase velocity is shown plotted against
the square of the reciprocal of the angular frequency.

The plot of 1/¢? vs. 1/w? in Figure (3.4) leads to

1/¢2 = 0.00017 — 1.7 /cw?
fA=n2/4(1/1.79); f = 1.17m 1/5* = 0.00017
B1 = 77 metres/sec.

The results shown in Figure (3.4) represent the measurements shown in
Figure (3.3) at small values of 1/¢? and small values of w?. This was done
in order to validate the approximation of the iangent of an argument by its
argument. This result was not successful in estimating the thickness of the
superficial layer.

The Equation (1.58) can be approximated for small values of the Lamé
constant po in the underlying medium. If we set pg = 0, the result is [2]

Ryl R

An alternative form of the approximate Equation (3.4) can be derived from
Equation (1.26). The result is as follows.

(2n)2 (1)2 ~olopg B2 (3.6)
AT mf '

45




3.5. CONCRETE SLAB RESTING ON SANCHAPTER 3. EXPERIMENTS

Jones [3] derived and applied an analogous formula to the results of mea-
surements of the velocity of Love waves.

3.5 Concrete slab resting on sand

It appears that the results of the measurements of the velocities of SH waves
can be used to determine the interface depth of a simple layered structure. The
results shown in Figure (3.5) were obtained on the surface of a concrete slab,
0.17 metres in thickness, resting on Botany Bay sand. The continuous line shows
the expected result for a slab, 0.17m in thickness in which the velocity of shear
waves f3; = 950m/s. The approximate interpretation appears to be the more
successful the greater the contrast in the shear moduli.
Numerical results of the measurements are given in the appendix.
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Figure 3.5: Results of measurements of SH waves at the surface of a structure
composed a concrete slab resting on sand [4]. The structure is of the type
represented by Case 2. The experimental points are shown. The continuous
line is an approximation to the results of the measurements using Equation
(3.5).

3.6 Case 3. Strip of pasteboard.

Measurements of SH waves were perfomed at the surface of a structure composed
of a strip of pasteboard, 0.01m in thickness. The results of the measurements are
shown in Figure 3.6. This figure shows the phase velocity of SH waves plotted
against the frequency. The continuous line is an approximation to the results of
the measurements using Equation 3.5, using as the velocity 81 = 950m/s, and
the thickness f = 0.011m.

Numerical results of the measurements are given in the appendix.

The points shown at frequencies less than 5khz may correspond with results
to be expected for Case 3.
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Figure 3.6: Results of measurements of SH waves at the surface of a structure
composed of a strip of pasteboard, 0.0Im in thickness. The structure is of the
type represented by Cases 2 and 3. The experimental points are show.

The form of the response includes that expected for Case 2. High velocities
were observed at frequencies of 9khz and 18khz. These are assumed to corre-

spond with values of %)f- of 0.402 and 0.969 for modes 1 and 2 respectively, see
1
Equation (1.84). If 8; = 1000m/s, the thickness of the layer is given by 2*f and
is approximately 0.012m.
The points shown at frequencies between 14khz and 17khz cannot be ex-
plained by the theory in its present form.

3.7 Case 4. Model study

A slab of caneite was placed on laboratory bench. The phase velocity of SH
waves was measured at the surface of the slab. The results of the measurements
are shown in Figure 3.7. This figure shows the phase velocity of SH waves
plotted against the frequency. The slab of caneite was 0.025m in thickness, and
the thickness of the underlying timber laboratory bench was 0.031m. Numerical
results of the measurements are given in the appendix.

The programme CASE4.FOR was used in an attempt to determine the hy-
pothetical structure which matches the experimental results. The output of
the programme is shown plotted in Figure 3.7. This figure shows the phase
velocity of SH waves plotted against the frequency. Both the quantities are in

. . . I c
dimensionless units. The phase velocity is expressed as E—, and the frequency
1

. W
is expressed as ﬁ—f

1
Using the results shown in Figure 3.7 the thickness of the slab was estimated

. wf . 1.2x1800
as follows. The maximum value of —— is 1.2. Thus f = 000 0.055m.

1
The total thickness of the structure is 0.055-+0.055=0.11 m. This is in error by
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Figure 3.7: Case 1. SH waves on sample of caneite, 0.025m in thickness, resting
on a laboratory bench.

a factor of approximately 2.

The data file used to match the experimental results was as shown in Table
3.2

40114251289

0.0t 0.03 0.04 0.05 0.07 0.08 0.09
0.1020304050607

0.75 0.8 0.85 0.87 0.9 0.92 0.98
111213141516 1.7
0.00.00.00.00.00.00.0

Table 3.2: Model study. Datafile for CASE4.FOR

The first-order approximation to the results given in Equation (1.80) is given
by!

1 1 1
3.8 Case 4. City street structure.

William Henry Street,

Sydney Measurements of the phase velocity of SH waves were performed on a roadway
structure [5]. The structure consisted of 0.06m of asphaltic concrete, resting on
(.08m of bituminous macadam overlying clay. The results are shown in Figure
(3.8). This figure shows the phase velocity plotted against the frequency of the

2
1The reasoning is as follows. wi, B

—_— —1~-~1ie.
5 c?

(3.7)




CHAPTER 3. EXPERIMENTS 3.9. ROADWAY STRUCTURE. CASE 4

wave. It also shows the square of the reciprocal of the phase velocity plotted
against the reciprocal of the square of the angular frequency. Numerical results
of the measurements are given in the appendix.
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Figure 3.8: Case 4. SH waves on a roadway slab, consisting of 0.06m asphaltic
concrete, overlying {.08m bituminous macadam, overlying clay. William Henry
Street, Sydney, Australia.

A first-order approximation is most nearly true at high values of the recip-
rocal of the square of the angular frequency. The approximate trend shown is
expressed as

50.4
1/¢* = 1/1690% + — (3.9)

This approximation by Equation (3.8) yields a thickness of 0.13m, compared
with a measured total thickness of 0.14m. The velocity of propagation of shear
waves in the surface layer is 1690m/s.

3.9 Roadway structure. Case 4
Main Road 167

Measurements of the phase velocity of SH waves were performed on a roadway
structure [6]. The structure consisted of 0.14m of asphaltic concrete, overlying
0.225m of compacted fine crushed rock, overlying sandy clay. The results are
shown in Figure 3.9. This figure shows the phase velocity plotted against the
frequency of the wave. It also shows the square of the reciprocal of the phase
velocity plotted against the reciprocal of the square of the angular frequency.

Numerical results of the measurements are given in the appendix.

The approximate trend shown is expressed as

26

2

1/¢® = 1/2890% + (3.10)

The approximation by Equation 3.8 yields a thickness of (.20m, compared
with a measured total thickness of 0.36m. The velocity of propagation of shear
waves in the surface layer is 2890m/s.
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Copeland Street, Sydney
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3.10. PAVEMENT COMPOQOSED OF ASPHALTIC CONCRETE, FINE
CRUSHED ROCK AND SANDY CLAY CHAPTER 3. EXPERIMENTS
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Figure 3.9: Case 4. SH waves on a roadway slab, consisting of 0.14m asphaltic
concrete, overlying 0.225m of compacted fine crushed rock, overlying sandy clay.
Main Road 167.

3.10 Pavement composed of asphaltic concrete,
fine crushed rock and sandy clay

Measurements of the phase velocity of SH waves were performed on a roadway
structure {7]. The structure consisted of 0.085m of asphaltic concrete, overlying
(.59m of compacted fine crushed rock, overlying sandy clay. The results are
shown in Figure 3.10. This figsure shows the phase velocity plotted against the
frequency of the wave. It also shows the square of the reciprocal of the phase
velocity plotted against the reciprocal of the square of the angular frequency.

Numerical results of the measurements are given in the appendix.

The effective double thickness of the surface layer is determined from the
first of the two figures. SH waves are reflected from an interface purely as SH
waves. If the surface velocity is high, the corresponding wavelength is equal to
twice the thickness of the surface layer. In this case the observed high velocity

occurs at 5600 Hz. The thickness is half of E%OO??I—/; = 0.25m. The deduced

thickness of the surface layer is 0.12m, compared with the measured value of
8.5crm.

The plot of the reciprocal squares of the angular frequency and of the phase
velocity appears not to yield useful information.

3.11 Conclusions

Some experimental results have been presented, with possible interpretations.
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Figure 3.10: Case 4. SH waves on a roadway slab, consisting of 8.5cm asphaltic
concrete, overlying 59cm of compacted fine crushed rock, overlying sandy clay.
Copeland Street, Sydney, Australia.
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Chapter 4

Appendix

4.1 Numerical results of the measurements.

This appendix contains the numerical results used to plot the figures shown in
the body of the text. The results are presented in pairs of columns. The first

column in each pair,

each pair shows the phase velocity ¢ in metres per second.

w . ;
— shows the frequency in herz. The second column in

JTE T Tl
2 ¢ 2n ¢ 2 27

90 280 100 | 270 || 115 | 265 | 150 | 220
180 1 180 || 170 70

Table 4.1: Case 1 data. Model study Caneite 0.11m in thickness. Data plotted
in Figure {3.1). CASE1.XLS

w w w w

| “ || Cfam | ) m | ¢
4797 | 2159 |[ 3544 | 2660 || 2763 | 2050 || 2151 | 2650
4488 | 1940 || 3407 | 1880 || 2660 | 2250 || 2083 | 2820
4227 | 2270 i 3289 | 2060 || 2566 | 1970 || 2019 | 3120
4049 © 2730 || 3177 | 2130 || 2476 | 2470 || 1971 | 3740
3969 | 2860 (| 3071 | 2600 || 2401 | 2600 || 1887 | 2270
3814 | 3170 || 2967 | 2430 || 2294 | 1370 || 1752 | 3130
3677 | 2920 || 2863 | 2210 || 2224 | 2400

Table 4.2: Case 2 data.

Measurements on laboratory floor.

Figure (3.2). VEHLAB.XLS
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4.1. NUMERICAL RESULTS OF THE MEASURFHAFNTFR 4. APPENDIX

- C —_— C -_— C - C

185 | 333 || 23.5 | 146 | 25.5 | 233 70 | 123
19 330 24 188 26 | 285 80 | 110
20 301 24 120 26 | 218 || 106 | 78
21 86 24 | 351 || 26.5 | 194 || 130 | 130

215 | 76 24.2 | 266 30 170 || 150 320
22 310 || 24.5 | 164 40 220
22 362 25 229 50 82
23 | 320 || 255 | 98 60 138

Table 4.3: Case 2 data. Measurements on sand, 0.29m in thickness, resiing on
sandstone. Data plotted in Figure (3.3). 48MEDUSA.XLS

C C C C

100 | 1000 [] 500 | 2650 || 540 | 1950 || 700 | 1650
400 | 3100 || 500 | 1900 [} 550 | 1850 || 740 | 950

425 3950 || 500 | 1700 || 550 | 1000 i| 785 | 1550
430 | 3800 || 510 | 2000 || 560 | 1100 || 800 | 1600
430 | 2900 || 510 | 1780 || 580 } 3600 || 815 | 1150
480 { 2300 || 515 | 1550 || 580 | 2800 || 850 | 1350
480 1 1800 || 530 | 2100 || 600 | 3750 || 880 | 1000
490 | 1650 || 535 | 1930 || 680 | 1200 || 900 | 1500

Table 4.4: Concrete slab 0.17m in thickness resting on sand. Data plotted in
Figure (3.5). data from Cogill [1] Thesis Fig. 8.6. FIG8.6.XLS

E : c c c
2 27 2 2

C

2500 | 250 |[ 6500 | 870 [} 8950 } 1900 || 17000 | 1580
2500 | 1050 || 6700 | 920 || 9100 | 1550 || 18500 | 2450
3500 | 770 | 6900 } 1000 || 10000 | 1300 || 18800 | 2150
4850 | 450 || 7000 | 1200 || 11500 | 1200 || 21500 | 1350
4600 | 710 || 7800 | 750 || 13000 | 1000
4800 | 1150 || 8800 | 1400 || 14000 | 1100
5000 | 650 || 8900 | 2450 {| 16500 | 1350

Table 4.5: Strip of pasteboard, 0.01m in thickness. Data plotted in Figure (3.6).
data from Cogill [1] Thesis Fig. 8.8. CASE3.XLS
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CHAPTER 4. APPENDMERICAL RESULTS OF THE MEASUREMENTS.

2000 | 300 | 4600 | 1200

w w w . w .
2x ¢ 2 ¢ 2% 2T
1000 70‘ 3000 | 680 |[i 5000 1250 (| 5450 | 1650

Table 4.6: Strip of caneite, 0.025m in thickness, resting on a laboratory bench.
Data plotted in Figure (3.7). data from Cogill [1] Thesis Fig. 8.9. CASE4.XLS

w w

plotted in Figure

w

2T ¢ 2 ¢ 2 ¢ 2w ¢
2000 | 1300 (| 3800 | 1500 || 5600 | 1496 || 7400 | 1200
2200 | 1275 || 4000 | 1525 || 5800 | 1490 || 7600 | 1300
2400 | 1250 | 4200 | 1475 || 6000 | 1430 || 7700 | 1320
2500 | 1250 || 4250 ; 1475 || 6100 | 1450 |} 8000 | 1350
2600 | 1350 || 4600 | 1525 || 6300 | 1430 || 8200 | 1400
2000 § 1375 || 4800 | 1550 || 6600 | 1350 | 8400 | 1450
3000 | 1425 || 5000 | 1500 || 6700 | 1320 | 8500 | 1500
3200 | 1425 || 5200 | 1490 || 6800 | 1300 || 8600 | 1520
3400 | 1450 || 5400 | 1460 | 7000 ; 1250
3600 | 1500 (I 5300 | 1470 } 7200 | 1250

Table 4.7: William Henry Street, Sydney, Australia. Data
(3.8) Kurzeme [5] Fig. 17 data from MARCIS17.XLS

w w w w

| “lwm | S| || C
1100 | 1200 || 2600 | 1400 || 4010 | 1600 || 5600 | 1600
1150 §{ 1300 || 2700 | 1450 || 4200 | 1650 || 5700 | 1400
1200 | 1350 || 2300 | 1510 || 4300 | 1600 || 5900 | 1490
1230 | 1700 (| 2900 | 1490 || 4400 | 1600 |} 6100 | 1100
1350 | 1600 (| 3000 | 1350 || 4500 | 1680 || 6200 | 1300
1750 | 1800 (| 3010 | 1450 [ 4600 | 1600 i 6300 | 1350
1800 | 1700 [ 3200 | 1600 §f 4700 { 1400 i 6400 { 1250
1900 | 1650 | 3300 | 1650 | 4800 | 1650 || 6600 | 1400
1950 | 1550 {| 3400 | 1650 || 4900 | 1500 {| 6700 | 1350
1850 | 1450 ¥ 3500 | 1600 || 5010 | 1650 || 6900 | 1420
1850 | 850 | 3700 | 1500 || 5030 | 1650 || 7000 | 1250
2100 | 1100 || 3600 | 1900 || 5040 | 1700 | 7100 | 1200
2250 | 1400 || 3700 | 2650 || 5200 | 1650 {| 7200 | 1150
2300 | 1450 || 3800 { 1350 || 5400 | 1490 {| 7300 | 1350
2500 | 1600 || 3900 | 1400 (| 5500 | 1700 || 7400 { 1400

Table 4.8: Main Road 167, Australia. Data plotted in Figure (3.9)

[6] Fig. 18 data from MARCIS18.XLS

. Kurzeme
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4.2. VARIABLE LAME CONSTANT u CHAPTER 4. APPENDIX

© C
2 27

w
-— C

2% 2 ¢

C

1200 | 1650 | 2200 | 1400 || 3300 | 1350 || 5200 | 1900
1650 | 1250 || 2300 { 1380 || 3400 | 1320 }| 5400 | 1650
1700 | 1400 || 2400 | 1350 || 3500 | 1410 || 5500 | 2700
1750 | 1300 || 2500 | 1270 || 3600 | 1250 || 5600 | 1650
1780 | 1450 || 2600 | 1370 || 3700 { 1400 (| 5700 ; 1700
1800 | 1420 || 2700 | 1390 || 3800 § 1450 || 5800 | 2150
1900 | 1700 || 2800 | 1400 [| 3900 | 1400 [} 5900 | 2100
1950 | 1800 || 2900 | 1420 [| 4200 | 1380 || 6400 { 1450
1970 | 1450 || 3000 | 1430 § 4400 | 1420 || 6800 { 1250
2000 | 1400 || 3100 | 1380 | 4600 | 1400 (| 7100 | 1450
2100 | 1450 || 3200 | 1410 |} 4800 | 1450 || 7400 | 1440

Table 4.9: Copeland Street, Sydney, Australia. Data plotted in Figure (3.10}).
Kurzeme [7] Fig. 19 data from MARCIS19.XLS

4.2 Variable Lamé constant u

Situations may arise in which the Lamé constant p varies with the depth.
Consider a system composed of a semi-infinite medium alone. We assume

two-dimensional Cartesian co-ordinates, with z positive upwards. The Lamé

constant p is assumed to vary with the depth in the manner g = pp — bz =

i —b(z+g).
32

Fo_ g2y 8 -

patz—pv v+6z 5z Put Jpv =V (4.1)
1 o @v_19v 19¢v 1oV, 13
JEPaE T Jpos® T p o BP0z @4

This equation can be solved in terms of hypergeometric functions.

v (4.2)
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