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Summary

This report describes the general theoretical model for interior sound fields, which are created

by excitations of coupled systems due to a noise source.

The pressure 18 explicitly described in terms of the modal parameters and structural-acoustic
modal coupling coefficients, which have a large effect on the noise reduction values at the

resonant frequencies.

Numerical predictions are presented considering the governing equations for general
acoustic-structural coupled systems. These procedures were evaluated by using a computer
program, which has been developed during the course of this study in MATLAB. Simulations
show the effect of several configurations for a flexible partition (different geometric
arrangements in the wall) and for the rooms (size and absorbing walls), on the noise reduction

paraineter.

In addition, transmission loss for the models, obtained via modal analysis, are compared with

those obtained by conventional approaches.

il






Contents

1 Introduction

2 Theoretical Background of Sound Transmission Mechanism

3 Theoretical Model for the Fluid-Structural Coupled System

4 Numerical Results

5 Conclusions

6 References

7 Tables

8 Figures

9 Appendix

il

12

16

22

23

25

30

37






1 Introduction

The initial aim of this work is to improve the understanding of the noise transmission
phenomenon in buildings, at low frequencies, under conditions of an acoustic-structural
coupled room-plate-room model. This has been represented by sets of integro-differential
modal equations of motions. Furthermore, the low-frequency range has been defined as
the modal domain, for which the associated conservative system has a low modal density
[9]. The effects of low-frequency noise has been of a particular concern because many
kinds of structures has been inefficient in attenuating low-frequency noise, compared to

other frequency components.

The frequency range of human hearing is considered to be between 20 Hz and 20,000 Hz.
However, it has been shown that humans can not only perceive a sound below 20 Hz (if
one considers a signal that has a high sound pressure level) but also detect it through their

bodies [6].

For this report, a third octave band up to 250 Hz is considered.

Sound insulation requirements in buildings depend on the listener’s activities and also on
the background noise, which may be considered as part of the work environment. The
problem of sound transmission has become an important subject in noise control in
buildings. Usually, a noise is communicated to rooms via many different paths.
Moreover, noise sources may be elsewhere in the building and/or outside the building. In
airborne sound transmission the noise originates in the air. This work considers the
insulation provided by a single-leaf partition against airborne sound. The greater the

sound insulation provided by a partition, the higher its sound reduction index.

The problem of calculating the sound transmission between rooms has been investigated
over many vears {1,2,3,4,16,19]. The three main approaches have been the conventional

Wave Approach, Modal Analysis and Statistical Energy Analysis.



In the Wave Approach, infinitely extended panels are used as sound transmission models.
For the first group of these models, boundary effects are neglected and the walls are
assumed to be homogeneous and to have no leaks. The so-called mass law behaviour has
been successfully applied to many situations where frequencies are well below the
coincidence frequency. However, the assumptions provided are unsatisfactory in a large
number of real panels whose dimensions are less than or equal to the wavelength of the

incident sound wave. In addition, the geometry of the system 1s not taken into account.

On the other hand, The Modal Analysis allows the introduction of geometric parameters
of the system, in the rooms and common wall, to be incorporated in the models and
subsequent predictions. The frequency response of a finite-system normally has peaks
and dips, due to the resonance phenomenon involving modal behavior and fluid-structure
spatial coupling of plate and room modes. This method also permits one to calculate
radiation of small structures at low frequencies, within a reasonable operational running

time.

Finally, Statistical Energy Analysis considers the power flow balance between linear
coupled systems. Statistical energy Analysis (SEA) has been applied to solve some
problems of noise transmission in buildings, aircraft, cars, etc. The estimates of
subsystem energies arc obtained on the basis of known ‘a priori’ values for the loss

factors, coupling loss factors and the power inputs [9].

Effects of panel boundaries on the sound transmission, including a comparison with an
infinite panel, have been discussed in ref. [16]. A simple two-dimensional model was
used for evaluating the sound transmission characteristics of finite panels. The effects of
the panel size were verified in regions below, above and at the critical frequency.
Estimates of averaging the response over a particular frequency range have also been

presented.

There has also been further investigation, [1], with work closely related to this research.

The transmission of a reverberant sound field through a rectangular baffled partition, by



means of a mode expansion method, was analyzed. According to the formulae, valid for
non-resonant transmission, the problem was well predicted provided that the mass of the
partition was significant. In those conditions, it pointed out that the imaginary part of the
fluid wave impedance is significantly greater than its real part. Therefore it ensured that

the forced vibration, or mass law contribution, dominated the transmission factor.

A detailed review of interior sound field problems has also been presented by Dowell et
al [1] in order to investigate acoustic-structural coupled systems. In his work, a
theoretical model was developed for arbitrary wall motions by using Green’s Theorem.
From the point of view of applications, a simplified formulation was also presented for

sound level predictions in terms of acoustic and structural parameters.

Takahashi [17] has discussed the effects of the finite size of a panel on the sound
transmission, in comparison with the infinite panel theory. The analysis of the
transmission, through a baffled plate of finite width and infinite length, was conducted
rigorously. Sound transmission in the diffuse field was hence obtained via numerical

direct-integration.

More recently, Osipov et al [18] has evaluated some numerical examples in order to
verify the influence of the dimensions of rooms and partitions on (ransmission
phenomenon. The problem of low frequency sound insulation in buildings was identified
as a growing researching area. In his work, three distinct theoretical models (infinite plate
theory, modal analysis for a baffled partition and for a room-plate-room system) were

compared with experimental results.

In ref. [21], sound insulation has also been predicted by using modal analyses. However,
that model did not include the resonant behavior of the partition. The partition only
represented a connection between both rooms, instead of a resonant subsystem. Recently,
in ref. [22], Finite Element Method has also been used to predict the sound insulation

considering the effect of partition edge conditions at low frequencies. Furthermore, an



interesting approach, considering impedance-mobility representations, has been adopted

and applied to many sound and vibration problems {3].

In summary, a vast amount of research concerning with the acoustic-structural coupling
has been published. The literature survey has shown that a large amount of work has been
performed in the analysis of sound insulation phenomenon. However, the combined
effect of parameters in noise control in buildings has not been fully explored yet. With a
point noise source placed in either of the rooms, the aim is to predict the noise reduction
of the system due to resonant coupling involving modal behaviour, spatial fluid-structural
coupling and non-resonant contributions. Moreover, some interesting results in terms of
transmission efficiency are examined when the weight of the partition is increased. The
transmission of sound through corridors is also predicted in this research. A study of the
influence of system dimensions on the insulation [18] is made by averaging over 1/3
octave bands. An analysis of the position or arrangement of a flexible panel in the
common wall, considering that all other parts of the common wall are rigid, is predicted.

Finally, a general discussion, based on the findings of the results obtained, is presented.



2 Theoretical Background of Sound Transmission Mechanism

The noise control engineer for buildings has often been faced with the problem of specifying
wall materials, type of partition mountings and suitable technique of construction to be used
in the insulation of rooms. The most common problem has been transmission of sound

through solid partitions such as walls, windows, floor, etc.

Mechanism of transmission may be characterised by a radiated sound field from a elastic
partition. The response of thin plates to localised excitation results in free bending waves.
Those waves interact with plate edges producing sound power radiation. In addition, another
contribution to the total radiated noise comes from the in phase vibration of the plate in the
vicinity of the excitation point. On the other hand, when a sound wave is incident upon a
partition, the response, which is frequency dependent, is also dependent on the radiation
impedance of the modes of the partition. Thus, the air on the other side of the plate is excited,

and a sound wave is then propagated into the receiving volume.

In general, the sound transmission theory for uniform and unbounded panels has widely been
used to approximate the sound transmission loss of a bounded panel in a baffle. Of course,
some assumptions, such as random-incidence field over the partition, as well as a limited
frequency range (in which the acoustical wavelength is smaller than the plate size), have been

considered.

A transmission efficiency parameter t defined as the ratio of transmitted to incident power, is

given by

T - W{mm‘ (2- 1)

winc

where: Weeans is the transmitted sound power;

Winc 1s the sound power incident on the source side of the test partition.

A classical index, known as Transmission Loss (TL), in some countries, or Sound Reduction

Index (SRI) has also been defined as

SRI=10logio (1/7) (dB) (2.2)



A finite-size panel (bounded rectangular plate in a baffle) is a more realistic model than the
infinite one described above. The transmission is characterized by boundary effects, which
lead to form standing-wave modes. Simple supported edges will be considered for a

rectangular plate of length L, and width L.

An infinite set of in vacuo modes, represented by a functional basis, which is assumed to be

the solution of the equation of motion for the flexible plate, is given by
¢,(z, ¥y =sin(k, z)sin(k, y) (2.3)

This basis function, used in the expansion for the panel deflection, must not only ensure a
vanishing normal displacement on the contour of the panel but also respect the panel

boundary conditions. It satisfies the boundary conditions and the equation of motion as long

2 2
2 2 rmw s
K=k = 2|+ 2= 2.4
h pr [LZ] {L\} ( )

2 B .
where (k)™ — in vacuo eigenvalues

as

L, — length of the panel;
L, — height of the panel;

r, s — panel mode;

Furthermore, the infinite set of modes, defined by Equation 2.3, represents a set of orthogonal

functions, which satisfy the relations

0if p#q;
' ds = .
E[m(ﬁ )69, {AP if p=gq. (2.5)

A, =Jm(r;_) (bi ds

A

where m(r,) = mass/unit area of the partition.



To determine the far-field sound intensity radiated and consequently the transmission, one has
to evaluate the sound field generated by a harmonic vibrating surface. The sound field,
generated by a harmonic vibrating surface S at position r in the fluid, is given by a particular
form of Kirchhoft-Helmholtz integral equation, which is termed Rayleigh Integral [4]. The

key function of this problem is to obtain the difference of pressure between both sides of the

panel.

The total surface pressure is hence the summation of the blocked pressure and the radiated
pressure. This blocked pressure is defined as the summation of the incident field and the
scattered field, produced if the plate were rigid (infinite mechanical impedance). The radiated
pressure is the field produced as a result of the elasticity of the plate. Therefore, only the

radiated field contributes to the total surface velocity of the plate.

At first, one has to solve the equation of motion of an elastic partition defined as

DV iz, y. )]~k Wiz, ya)}= F, (2.6)
and
w(z, y,0)=> w0, (2.7)
b
Fo=2[ F,¢,dS 2.8)

where Fy. - blocked pressure;
F, — incident field amplitude;
¢, — basis function;
D - bending stiffness;
V ! - square of the Laplace operator;
ky — wavenumber of the free-bending wave;

w(z, y, ®) — normal displacement of the plate surface;

In Equation 2.6 the time term e is suppressed, as well as the damping influence. After

solving this equation, the power radiated into a half-space, due to the plate vibration, can be

obtained by



1 .
[Tw=-] Re{ (2. y.0 Wz, y,O)} ds (2.9)

The real part of the radiation impedance (radiation resistance) may be also defined for the p

mode of the plate as

W
R, =H(—)2 (2.10)
1 .
where the spatial average mean square normal velocity is given by
2 i 2
<wp >:§£wp ds 2.11)

Finally, the full problem, considering the fluid loading in the equation of motion, can be

solved. Thus, one may obtain some results in terms of coupled in vacuo modes.

Let p(x,y.z,t) be regarded as small amplitude pertubation (acoustic pressure variation), from
its equilibrium value. The wave equation, which results from the linear acoustics equations, is
given by [6]

13p
car
=0 ontherigid walls of theroom; (2.12)

Vip -
P
1

P *w
on

=—p, % on the flexible partition

where w = The displacement of the flexible partition in the normal direction (positive

outward).



The steady-state solution is obtained through the Fourier Transform of the time domain wave

equation. Hence, it yields the Helmholtz Equation

V2 o+ k2 p=0 (2.13)

If p is expressed as an expansion of eigenfrequencies for the room, corresponding to the
resonances of a rigid boundary space, a Green’s Function can be obtained satisfying the same

condition [4]

oGrIn) _ re S,
a]’l
VeG(rir,) + K*G(rlr)y ==8(r—r,) (2.14)

where S, is the surface area of the rigid walls;

—&(r—r)) 1s the three-dimensional Dirac Delta function representation of a point

SOUrce.

The spatial form for the three-dimensional eigenfunctions vy, corresponding to the natural

frequency @, of the rigid-walled space, may be defined as

n.T. z
¥ = cos| 25 | cos| - Y cos| 2% (2.15)
" L. LJ‘ L,

This set of modes satisfy the relation

0if m#n;
fww,ds=4 "~
’ A if m=n. : (2.16)

A :wa(x,y,z) dv
v



Since v, is an eigenfunction of the room, it has a correspondent eigenvalue k, which must

satisfy
VY + kM, =0 (2.17)
Therefore, using the previous relationships, equation (2.14) can be written as

N A (K, =—8(r—r,) (2.18)

Multiplying each side of equation (2.18) by wn{x.y,z) and integrating over the volume of the

room one has [4]

A= ¥, (x5, Yo, 75)

= 2.19
A (ky —k*) @19

A review of velocity-potential concepts is also important if one uses an alternative
formulation. For an inviscid-flow (viscous effects are neglected), low-speed flows are

irrotational [15]. It means that

V=0 thenV=Vd
L A (2.20)
==

u=—, U =", L{z

T

where V fluid velocity;
(ux, Uy, 1) fluid velocity components;

® - scalar function termed velocity potential.

Therefore, the velocity potential function allows one to obtain all other acoustic parameters

through the relation

to



oD
p= —Pua— (2.21)
7

Beranek [2] has suggested a simple formulation, in which the sum of the radiation efficiency
(in dB) of the sound-forced finite plate plus 3 dB, is subtracted from the value obtained by
normal incidence mass-law. In this approximation, the radiation efficiency used was

originally defined in ref. [16].

The transmission loss for a baffled panel has alse been studied by Leppington [11]. His
predictions have been considered an improvement on previous theories. A random field was
considered as an infinite sum of uncorrelated plane-waves impinging on the finite-panel
surface. In contrast, an assumption, that has been usually adopted, was to consider the random
field as a diffuse field, neglecting the presence of the boundaries. Moreover, the transmission

problem was described in terms of two distinct mechanisms.

The first one is dominant at the region of the spectrum above the critical frequency, where
free bending waves interact to cause resonance. In this frequency range, the partition is a good
radiator. In fact, its radiation efficiency is always greater than or equal to the unity. The

fundamental mode is an exception because it is strongly excited at a frequency equal to zero.

For the second mechanism, free bending waves are not generated, and in this frequency range

{(below the critical frequency), the partition behaviours as a poor radiator.

In summary, one can consider the transmission phenomenon as a summation of the non-
resonant transmission or forced transmission, and the resonant transmission. In numerous
cases, the resonant transmission for frequencies below the critical frequency of the partition

has been ignored [10,11].

11



3 Theoretical Model for the Fluid-Structural Coupled System

In the present analysis, the room-panel-room system is selected as the fundamental model,
which may represent a real situation in a building. The physical mechanisms involved in the
control of sound transmission in buildings can be hence evaluated. As mentioned previously,
the analytical modal model adopted [4] is based on a set of integro-differential equation
formulation of the interaction between a flexible plate and enclosed fluids. The acoustic and
the structural fields are expressed in terms of their uncoupled modes by means of differential
equations for each mode. Therefore, the structural motion has been expressed as a summation
over the response in the in- vacuo natural modes driven by a fluid loading. The acoustic-field
of the rigid-walled rectangular rooms has been determined by the summation of the acoustic
modes over the fluid volume. In fact, these acoustic modes were excited by a generalized

volume velocity (whose value was set equal to unit) inside the source room.

The interaction analysis has been conducted as two fluid volumes bounded by a thin plate
were excited as a point monopole source was placed in one of them. In addition, solid
surfaces, which bounded volumes of air V; and V, were considered. The response of the
coupled system to a forcing harmonic function has been given in terms of the uncoupled

modes of both rooms and the uncoupled panel modes by Fahy [4]:

qb"u] +ﬁn| (D + 0)12 dj 1 :(CZS/AMI )Zp ﬁjﬂ 'Cnl,u _CQin '/Anl

nl ]

w;p + ﬁp * H/;p + w; 'M}‘u == (pn S /A,'J )anqixi 'Cnlp T (pu S / Ap )2”2 @.’12 'Cn2p (31)

@;12 +ﬁ112'®;12+ w;'dbnl) == (CZS /AJIZ)EPWP ‘Cu’lp

where indices ni, 0, and p refer to source room, receiver room and panel modes respectively;

The spatial structural-acoustic coupling coefficient Cpy is defined by

{
gJ'Syr;p.qbnds (3.2)



where simply-supported edges are assumed for the partition
Q = generalized volume velocity,
@ = modal velocity potential amplitude,

B = generalized modal-damping coefficient.

The determination of the coupled modal frequencies and their eigenfunctions have been
evaluated numerically by using a dynamics matrix formulation for the eigenvalue problem.
The analysis was applied to the free vibration problem of the coupled room-panel-room
system in order to determine the eigenvalues and eigenvector, and also to the forced-vibration

problem.

Hence, an average absorption coefficient was firstly considered in terms of the corresponding
modal loss factor. Then, spatial averaged mean square pressures, whose amplitudes have
been obtained directly from the linear plate equation and velocity potential equations for the

rooms, are also calculated.

The transmission parameters obtained from modal room-panel-room model, finite-panel
predictions [1,11] and a classical approach are compared graphically as a function of

frequency.

The ‘loading’, applied to the source room, is represented by the generalized source strength

as [3]

QII = qr)‘}’u ('x! y! Z) dV (3.3)

v
where ¢, = source volume velocity per unit volume.

In equation 3.1, the effect of the absorbing material has been approximated by equivalent
damping factors f3,.

Neglecting the cross-modal coupling terms, introduced by the absorption on the boundary of
the volume, and assuming that a single room mode is dominant, the approximation for the

generalized modal damping may be given by [1]

I3



[P )1 vy,
B, _(A ]j\ 2 dA 3.4)

n a

The real specific acoustic impedance z, for the wall surfaces, lined by a soft blanked, on the

assumption of neglecting its imaginary part and the reflected sound waves in the layer , may

be approximated by [18]

_8p,c
(94

Z, (3.5)

where ¢ is the diffuse absorption coefficient for an internal surface A of the room.

The pressure field, which acts on the partition surface, may be expressed in the acoustic and
structural basis. At any particular point on the plate, the pressure values obtained from either
the acoustic or structural basis function expansion are equal. Therefore, the generalized force
exerted on the p™ plate mode by the n™ acoustic mode of the receiving room is expressed as

(18]

nlp
FMR = A ', P2 (36)

where
P2 = the receiving room modal pressure.
Cpap = geometrical coupling coefficients between the panel modes and the receiving room

modes.

The spatial-averaged mean normal intensity transmitted by the panel is defined as [12]

<lp> = élRe{FnR v Jds (3.7)

where v" = complex conjugate of the particle velocity at panel boundary;

F® =r.m.s. pressure over the partition in the receiving-room.

14



As the particle velocity is equal to the normal velocity of the panel on its surface, the

previous equation was hence evaluated as

P

1 ) EY
<Ip> :—S—ZRe{ﬂR.w }AP (3.8)
Therefore, according to equation 3.6 the transmitted intensity can be expressed as

<I,> :%EZRe{CMP. Puz-W, } (3.9)

yoon

The mean sound intensity incident on the partition has been approximated by the potential
energy in the source room due to the modal density. Finally, one can evaluate the SRI (Sound

Reduction Index) and the NR (Noise Reduction) as

(el)
SRI = 101l0g,,| ot (3.10)
lOr)C<IR >
and
<|pn][->
NR = 10log | V——+ (3.11)

The theoretical routines were developed according to the chart below:

Geometry and material properties
[
Room-Panel-Room Modal Analysis
|
Evaluate uncoupled eigenvalues
]
Evaluate geometrical coupling

Evaluate coupled eigenvalues Evaluate forced excitation

5



4 Numerical Results

4.1 — General description of models

The models adopted have been composed by three subsystems: a source room, a common
wall and a receiving room. The source room was defined as an acoustic volume excited by a
broadband acoustic point source placed in a specific position, and the receiving room defined
as the acoustic volume connected to the source volume through a common rigid wall with a
flexible elastic portion. The results obtained from numerical examples have provided
important information about the sensitivity of the Sound Reduction Index to some parameters
not normally considered in design of buildings. The details of the models are shown in Figure

3.

The system properties are described as follows. For a partition made of plasterboard material,
a value of v = 0.2 and E = 2.12E9 (N/m*) were adopted for Poisson’s ratio coefficient and
Young’s Modulus respectively. Also, density value of ps = 806 (kg/m”) and thickness of
0.025 (m) were assumed for the material. The thickness chosen corresponds to about 1/7 the
wavelength of the highest frequency of interest (350 Hz). Therefore, the assumption of only

pure bending waves propagating in the panel remains valid.

When varying the other parameters, the receiving and source room surfaces were considered
covered by a soft material with a constant modal frequency-averaged damping of 3%.
Nevertheless, as mentioned previously, an important approximation considered here is that
the mode functions have been defined to be used as the mode shapes of a volume bounded by

rigid walls.

Moreover, the acoustic source strength applied to the source room was unit volume velocity
(1 m3/s). It was placed at the position 1 (corner of the room) for all simulations other than that

one for analyzing the influence of source position on SRI obviously.

It may be verified that the location of the resonance peaks and dips, for the harmonic forced
response, coincided with the eigenvalues obtained from the coupled analysis. For the panel
dimensions 2x5 m’ and 2x2 m?, a total of 133 and 52 modes were considered respectively.
For the room dimensions 2x2x5 m® and 2x2x2 m® 130 and 53 modes were obtained

respectively (uniform pressure mode not included).

16



The results show that strongly excited structural modes generate low values for the SRI,
which were determined by the structural-acoustic modal coupling coefficients as well as the
damping factors. It is also noted (see tables 2 and 3) that the absorbing material and the
internal loss factor of the plate had a little effect on shifting the eigenfrequencies, whereas the
geometrical coupling coefficients played a leading role.

Another important point is that for the model 1, resonance frequencies of the panel (I1x1 m®)
were greater than the resonance frequencies of the rooms. In that situation, the room modes
contributed an equivalent stiffness. Also, it is noted (see table 4) that the lowest structural

mode was most affected by the rooms.

For the system used in this study, all modes in the frequency range up to 350Hz have been
included. Although some simplification due to the ‘poor’ spatial structural-acoustic coupling
of the higher order modes, has been suggested by some authors [19], this option was not
considered here. Spatial averaged mean square pressures were obtained directly from the
linear Euler’s equation. In addition, the transmission loss parameters obtained from the modal

and classical approaches [6,11] were compared graphically as a function of frequency.

The results are organized as follows. Influence of panel positions (Figure 2) on SRI is
discussed in section 4.2. Three and five different positions have been considered for the
model 1 and for the model 2 respectively. Moreover, the simulation is compared with the
Leppington’s prediction [11] and with the field-incidence mass law theory [6]. In section 4.3,
effects of the noise source placed in strategic points (Figure 1} in the source room are also
compared. In the section 4.4, the depth of the source room (in both models) is increased by a
factor of 2.5. The absorption surfaces were kept with the same area. Therefore, the cut-off
frequencies of the room were only altered by the geometrical changes. In real buildings, the
flat floor is normally divided into rooms, with the same height. Finally, in section 5, the
influence of increase of absorption on two walls, the common wall surface and its opposite

one, and of internal damping in the flexible partition are discussed.

4.2 - Influence of Panel Position on the SRI parameter

For the model 1, differences up to 30 dB at frequencies below 50 Hz have been observed
between SRI curves for different panel positions. As the panel was moved into the center, its
fundamental coupled frequency (table 4) was slightly changed and approximated to the first

resonance frequencies of both rooms (table 1). Thus, a distinct dip in the SRI curve was

17



verified (Figure 9, 10). The phenomenon may be called ‘coincidence’. In this situation, as the
impedances of both rooms tended to an infinite value, the panel velocity amplitude tended to
zero. In addition, at room resonance, the SRI is not dependent on the panel impedance, but on
the panel position. In that case, the ‘direct’ geometrical coupling between rooms, thorough
the ‘opening’ (panel of zero mass and zero stiffness) has been dominant. Above 100 Hz, the
variation has remained at about 15 dB. On the other hand, at panel resonance, SRI was not

dependent on the room impedance, but upon the geometrical coupling factors (Figure 4).

For the model 2, slight variations of SRI for different panel positions have been observed at
frequencies below 75 Hz. This phenomenon may be explained by the fact that at low
frequencies, the spatial distribution of the room modes varied slightly in z direction.
Therefore, a smooth displacement of the panel along this axis did not have considerable

influence on the notse insulation.

Between 75 Hz and 100 Hz, a variation of about 15 dB occurred at position 5. This may be
justified by the fact that the position 5 is rather close to the nodes of the anti-symmetric room

modes.

Finally, above 150 Hz, the panel at the centre of the common wall exhibited the best
condition in terms of insulation. In that frequency range, the wavelength of the waves
assumed values less than the heights of the rooms. The geometry of the ‘corridor’ in that
situation had no influence on the interaction between modes. In other words, the system

behaved like two similar rooms. Therefore, at the center, a better condition was found,

However, the SRI for the panel at position 2 was about 5 dB higher than the one at position 4.
This may have occurred due to the ratio value between the source and receiving room
dimension in the z direction. If the dimension ratio of the rooms in that direction were at least
an integer value, the panel performance would tend to be quite similar at either position2 or at

position 4.

In summary, the transmission behaviour has become complex and dependent on both the
panel position and the panel size. Considering the panel located at the center of the common-
wall, only few structural modes were excited. However, as the panel location was set at the

corner of the wall, most of its even and odd modes were excited. This occurred because of the

18



response of a large number of in vacuo panel modes to oblique fields excited by the point

source.

Another important point is that the fundamental structural mode was excited below the
fundamental acoustic mode considering the whole wall. Thus, mass law controlled
transmission was therefore dominant. However, for the small panel in the common wall, the
first panel resonance frequency was located above the first acoustic resonance frequency, and

a non-resonant stiffness behaviour was assumed (see Tables in section 7).

In Figure 9, SRI obtained from the Modal Analysis has been compared to that obtained by
ref. [11] and infinite theory. The Predicted values, based on Leppington’s analysis, were
rather close to the one predicted by the mass law theory. This may be explained by the fact
that the resonant terms of equation were negligible compared to the non-resonant contribution
due to the low acoustic efficiency of the correspondent modes. It can also be seen that the
SRI is inversely proportional to the panel size in the non-resonant transmission region. One
observes that below the critical frequency, the effect of the panel size is significant when the

whole wall is considered. Therefore, the curve for SRI tended to the mass-law curve.

4.3 - Influence of Source Position on the SRI parameter

In this analysis, the whole common wall is used in each model as the elastic structural
partition. A point source has been placed at the positions shown in Figure 1. Values of SRI
obtained for three different source positions are shown in Figure 6. The smoothest curve of
SRI corresponds to the source focated in the corner of the room, as it has been expected. With
the source situated at the center of the room, only symmetric modes in the room were excited.
The variation of source position produced differences up to 20 dB at the low-frequency range

considered.

Most of the room modes were not excited at position 2 and the SRI curve has assumed high
values. Tt is noted that at frequency band of 63 Hz, SRT was almost not affected by the source
position. Below this frequency, in the middle of the room, sound insulation has achieved high
values compared to the lower similar values obtained for the source placed at position I
(corner) and 2. For a shallow source room shallow, similar modes were excited in both
positions whereas in model 2 the SRI values differ due to the coupling with the cubic

receiving room (Figure 6). However, a pronounced discrepancy among curves is verified
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above 63 Hz. As noted in Figure 6, the three curves tend to coincide when the frequency have

increased. This reveals that the reverberant sound field was quickly becoming diffuse.

In addition, the performance of the panel insulation has also been affected by the power input
into the source room. It is also evident that the source position did not alter the coupling

factors between the modes of the subsystems [21]

4.4 - Influence of Source Room Dimensions on the SRI parameter

The depth of the source room (x direction) was modified from 2 m to 5 m in both models.
The results show that for the model 1 the SRI value varies of by about 10 dB and for the
model 2 it varies of by about 20 dB. The SRI curve becomes smoother when the room depth
of the source room is altered. However, for the small panel located at position I (at the
corner), both models exhibit a significant variation when the depth dimension is altered. This
can be explained by the fact that similar rooms are strongly coupled at the interface (common
wall) due to their identical acoustic mode shapes. Alternatively, for a system composed by
rooms of different volumes {model 2), a higher sound insulation is obtained. These situations
might also be described in terms of acoustic impedance mismatching of the rooms. Thus, for

a small panel, a high variation can be seen (Figure 7) at frequencies below 100 Hz.

In the following results, it might be verified that a change in the fundamental resonance
frequency of the source room, by altering its depth, is crucial. Two types of acoustic modes,
panel-controlled mode and room-controlled mode might be especially influenced by the

interaction between them at low frequencies.

4.5 - Influence of internal loss factor and absorption on the SRI parameter

The SRI peak levels, shown in Figure 8, have been determined by the geometric modal
coupling as well as by the damping factors at the resonant frequencies of the coupled system.
As the modal overlap of the rooms was rather low, the cross-modal damping terms (equation
3.4) were neglected. In spite of that, the cross-modal terms of the radiation efficiency matrix
dominate the resonant contribution, providing that the air is considered a ‘light” fluid. [1 il. In
fact, mechanical damping is usually quite larger than the radiation damping. In addition, the
effect of the panel internal loss factor has been more pronounced for the small panel than for
the whole wall. In Figure 8, it is shown that its effect is negligible for the both models as the

whole wall is considered.
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According to Figure 5, the effect of the absorbing material at shifting the uncoupled structural
natural frequencies has been negligible. On the other hand, the effect of increasing the
absorption in the receiving room has significantly affected the SRI. For instance, when the
reverberation time is decreased, the modal overlap factor is increased and vice-versa.
Therefore, there is a higher probability of better coupling between modes with distinct
eigenfrequencies. In both models, an increase in absorption led not only to better coupling but
also to lower sound insulation. Material properties considered here were extracted from ref.
[6] and [18]. The absorption coefficients for the volume surface were chosen as an averaged

value of 0.05 (live rooms) over the whole frequency range.

4.6 — Coupling coefficients

Considering that the structural-acoustic coupling characteristics of the model room-plate-
room are quite complex, all modes have been considered rather than selecting only those
which have large contributions. In such case, this procedure might be justified by the results
shown in Fig. 4 for the model 2. Even though there were many ‘weakly coupling

coefficients’, their summation might be significant to the total coupling.

The geometrical coupling values have been obtained according to equation 3.2. However,
when an acoustic mode has coincided with a structural one, the geometrical coupling
coefficients has been set to zero. Furthermore, these coefficients were normalized by their
maximum absolute value in order to compare both models. According to the results, the
relationship between the uncoupled structural and acoustic mode shape functions has shown
large values at the lower order modes. This was evident at the lower acoustic and structural
modes and when the room natural frequencies approximated to the panel natural frequencies.
In addition, systems have shown negligible coupling effect if the lowest natural frequency of
the uncoupled structural mode is substantially higher than that of the uncoupled acoustic

mode.

4.7 — Ratio of Energy radiated into rooms.

In Figure 11, the ratio of the energy radiated into the source room to the energy radiated into
the receiving room is shown. According to the results, it should be emphasized that the ratio
variation for the model 1 is less pronounced than that for the model 2. It has confirmed the

importance of the difference beiween the acoustic impedances of the coupled rooms on the

SRI



5 Conclusions

Comparison among the numerical modal analysis and the theoretical predictions has been
performed. A narrow bandwidth (1 Hz) and a maximum frequency (350 Hz) were used
for the models. Above this frequency limit, the computational storage requirements for
variables as well as the operational running time became a large and complex problem to
be determined by a personal computer. At the expensive of some complexity, the
program might be extended to large problems by developing additional routines.
Moreover, all possible natural frequencies and their respectively modes have been

included in this analysis.

Then, it has been verified that Leppington’s prediction is the one which approaches the

values obtained via infinite theory when the non-resonant transmission is characterized.

These results may help the understanding of the model, as a group of subsystems directly
related to physical elements such as rooms and flexible partitions. Also, they can provide
an initial discussion for the investigation of a SEA model, which can be useful on

practical building acoustics.

Although this problem, coupling between the panel and the acoustic ficlds, has been
solved in previous work by several authors, the main originality of this initial research is
to offer guidance on the comprehension of important parameters in a real case of

architectural acoustic design. Nevertheless, this is yet to be validated experimentally.

In summary, all parameters, which have affected the modal composition of the sound
field in the subsystems, were fundamental in the determination of the Sound Reduction
Index. The results may also be used to predict measurement in-situ at low frequencies,

where the classical definition of SRI in ISO140 for diffuse sound fields can not be

reliable.
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7 Tables

Resonance frequencies of the first 20 uncoupled room modes — Model 1 and Model 2
Total number of modes of Room model 1 = 130 (0 - 350 Hz)
Total number of modes of Room model 2 = 53 (0 — 350 Hz)

Room Model 1 Uncoupled Room Model 2 Uncoupled
Mode (l,m,n) resonance frequency Mode (1,m,n) resonance frequency

(2x2x3) m’ (Hz) (2x2x2) m° (Hz)
o 0 1 34.00 0 0 1 85.00
0o ¢ 2 68.00 0 1 0 85.00
0O 1 0O 85.00 1 0 0 85.00
I 0 0 85.00 0 1 1 120.21
o 1 1 91.55 1 0 1 120.21
1 0 1 91.55 I 1 0 120.21
0 0 3 102.00 I 11 147.22
o0 1 2 108.85 6 0 2 170.00
1 0 2 108.85 0 2 0 170.00
1 1 0 120.21 2 00 [70.00
T 1 1 124.92 0 1 2 190.07
0 1 3 132.77 0 2 1 190.07
1 0 3 132,777 1 0 2 190.07
0 0 4 136.00 1 20 190.07
1 1 2 138.11 2 01 190.07
1 1 3 157.65 2 1 0 190.07
0 1t 4 160.38 11 2 208.21
1 0 4 160.38 1 2 1 208.21
0 0 5 170.00 2 1 1 208.21
2 0 170.00 0 2 2 240.42

Table 1: Summary of the resonance frequencies of the first twenty room modes
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Panel modes
Dimension: (1x1) m”
Number of modes = 11

First 20 panel modes
Dimension:(2x2) m”
Number of modes = 52

First 20 panel modes
Dimension: {(2x5) m?
Number of modes = 133

(0 —350 Hz) {0 —-350 Hz) (0 —350 Hz)
Mode In vacuo Mode In vacuo Mode In vacuo
(p.q) natural .9 natural (r.q) natural

frequency frequency frequency
(Hz) (Hz) (Hz)
I 1 37.53 11 9.38 I 1 5.44
1 2 93.82 I 2 23.45 1 2 7.69
1 3 93.82 1 3 23.45 21 11.44
1 4 150.12 1 4 37.53 2 2 16.70
21 187.64 21 46.91 13 19.51
2 2 187.64 2 2 46.91 31 21.77
15 243.94 15 60.98 23 23.46
23 243.94 23 60.98 3 2 25.52
2 4 318.99 2 4 79.75 1 4 30.77
I 6 318.99 1 6 79.75 4 1 31.71
25 337.76 25 84.43 33 37.53
- - 17 93.82 2 4 41.47
- - 31 93.82 4 2 42.97
- - 32 117.28 3 4 45.22
- - 26 117.28 43 45.79
- - 33 121.97 15 43.98
- - 1 8 121.97 51 52.73
- - 3 4 136.04 25 54.23
- - 2 7 136.04 512 55.54
- - 35 150.12 4 4 60.98

Table 2: Summary of the in vacuo natural frequencies of the flexible panels used in he

models.
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First 20 resonance frequencies of the First 20 resonance frequencies of the model

model 1- Panel dimension: (2 X 5) m* 2 Panel dimension: (2 x 2) m® Number of

Number of modes of the panel = 133; modes of the panel = 52

Coupled Coupled frequency Coupled Coupled frequency*

frequency (damping included) frequency (damping included)
(Hz) (Hz) (Hz) (Hz)
5.28 -0.0257+5.27771 9.03 -0.0445 + 9.0321i
7.19 -0.0354 + 7.1896i 22.95 -0.1138 +22.9507i
11.12 -0.0544 +11.12161 22.97 -0.1135 +22.9692;
16.26 -0.0811 +16.26321 34.36 -0.4694 +34.3575i
19.07 -0.0939 +19.0680i 37.06 -0.1839 +37.05684i
21.33 -0.1053 +21.33401 46.48 -0.2347 +46.4848;
23.09 -0.1141 +23.09341 46.49 -0.2310 +46.4949i
25.11 -0.1241 +25.10141 60.46 -0.3020 +60.46061
30.37 -0.1504 +30.3677i 60.49 -0.3017 +60.49591
31.03 -0.1718 +31.02991 68.13 -0.4723 +68.12501
34.00 -0.4735 +33.99671 78.84 -0.4049 +78.8429i
35.78 -0.4430 +35.7750i 79.05 -0.4055 +79.04621
37.12 -0.1842 +37.12451 83.89 -0.4364 +83.88761
41.08 -0.2041 +41.0751 85.00 -0.6040 +84.9992i
42.47 -0.2109 +42.4686i 85.00 -0.6039 +85.0001i
45.07 -0.2345 +45.06591 85.60 -0.6675 +85.65501
45.40 -0.2257 +45.4064i 85.86 -0.6390 +85.8607i
48.45 -0.2411 +48.44901 86.28 -0.6305 +86.2738i
52.00 -0.2622 +52.42911 91.73 -0.6327 +91.72691
53.83 -0.2683 +53.8342i 92.02 -0.6421 +92.0174i

Table 3: Summary of the first 20 resonance frequencies of model 1 and 2

* . Imaginary part of the values
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Resonance frequencies of the model 1 - Panel dimension: (1 x 1) m”
Fei Facr Fe Fac2 Fes Foes
(Hz) (Hz) (Hz) (Hz) (Hz) (Hz)
32.84 -0.3872 33.50 -0.4279 34.00 -0.4734
+32.8373i +33.4952i +33.9954i
34.00 -0.4735 34.00 -0.4735 34.00 -0.4735
+33.99671 +33.99671 +33.9967i
38.04 -0.2686 37.62 -0.2297 37.09 -0.1848
+38.03971 +37.62081 +37.0917i
68.00 -0.4735 68.00 -0.4735 68.00 -0.4735
+67.99841 +67.99841 +67.9984i
68.13 -0.4736 68.00 -0.4733 68.21 -0.4738
+68.1272i +68.00221 +68.2118i
84.97 -0.5740 84.93 -0.5731 84.91 -0.5726
+84.9633i +84.92591 +84.90571
85.00 -0.5749 85.00 -0.5749 85.00 -0.5749
+84.99811 +84.99811 +84.9981i
85.00 -0.5749 85.00 -0.5749 85.00 -0.5749
+84.99811 +84.99811 +84.99811
85.20 -0.5752 85.17 -0.5752 85.16 -0.5752
+85.1994i +85.16581 +85.1563i
91.25 -0.6136 91.34 -0.6239 9141 -0.6301
+91.2495i1 +91.33601 +91.4121
91.55 -0.6426 91.55 -0.6426 91.55 -0.6426
+91.54551 +91.54551 +91.5450i

Table 4: Summary of the resonance frequencies of the panel (1x1) m?” at positions 1, 2

and 3- Resonance frequencies: F. - coupled freq. (without damping); Fg. - coupled modes

* - Tmaginary part of the values

with damping;
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Resonance frequencies of the model 2 - Panel dimension: (I x 1) m” -

Fe Foei Fea Faea® Py Facs Feq Faes Fes Fycs
(Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz)
3333 -0.4133 | 3343 | -04239 13354 | -04323 |3362| -04378 [33.71| -04432
+33.32651 +33.4343i +33.5359i +33.62341 +33.71171
37491 -0.2429 |37.71| -0.2344 3776 -0.2271 |37.52| -02205 |37.15] -0.2133
+37.4898i +37.7078i +37.7591i +37.5208i +37.14421
68.06 | -0.4736 |{68.03| -04735 |68.00| -04734 |67.99 -04734 |68.00| -0.4734
+68.0622i +68.02911 +68.0004i +67.9893i +67.9998i
84.93 | -0.6678 | 84.87| -0.6517 |84.84| -0.6458 |84.87| -0.6519 |84.93| -0.6679
+84.9360i +84.88611 +84.8514i +84.88651 +84.93641
8496 | -0.6720 | 8491 | -0.6703 |848%| -0.6721 {8491 | -0.6703 |84.96! -0.6721
+84.96311 +84.9088i +84.88431 +84.90901 +84.9634i
85.00 | -0.5822 |84.91! -0.5968 |85.00| -0.6000 |85.00| -0.5968 {8500 -0.5821
+84.98331 +84.9819i +84.9849i +84.9819i +84.98341
85.00 | -0.6002 |8500| -0.6025 |85.00| -0.6028 |85.00| -0.6025 |85.00| -0.6002
+84.99981 +85.0035i1 +85.0055i +85.00351 +84.99971
85.44 1 -0.6522 | 85.00; -0.6497 |[85.27| -0.6489 |8532| -0.6497 {85.44| -0.6521
+85.43121 +85.3074i +85.26421 +85.3082i +85.43721
91.39 | -0.6255 | 8532 | -0.6243 |91.33; -0.6257 |9140| -0.6300 |9147| -0.6325
+91.3886i +91.3242i +91.3289i +91.4008i1 +91.47171
91.69 | -0.6397 9133 -0.6409 |91.62| -0.6404 |91.59} -0.6390 |91.55| -0.6372
+91.68921 +91.6494i1 +91.6165i +91.5836i1 +91.5436i
93.18 | -0.4680 |91.65} -04721 {93.62| -04737 |93.76| -0.4741 |93.34| -0.4711
+93.18301 +93.51171 +93.61641 +93.5635i1 +93.33451

Table 5: Summary of the resonance frequencies of the model 2. Panel (1x1) m? at

positions 1, 2, 3, 4, and 5 - Resonance frequencies: F; — coupled modes without damping;

Fge — coupled modes with damping;

* . Imaginary part of the values
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8 Figures

Receiving
room

Figure 1: Two rooms separated by a common wall with a centered flexible panel.
Coordinates of the point sources :Py = (2,0,0) — at the corner ;P = (1,0,0)
P; =(1,1,2.5) — In the middle of the room

W,

W3

W,

W] W5

Figure 2: Different positions for the flexible panel in the wall.
Coordinates (Z,Y) of the panel position : Model I:W = (0,0); W, = (1,0.25); W3 =(2,0.5)
Model 2: W, = (0,0); W, = (0.25,0.25); W3 = (0.5,0.5); W, =(0.75,0.75); W3 = (1,0);
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MODEL 1

20m SR
W
RR
4
50m
5.0m
MODEL 2 < >
2.0m
SR
cw
RR
2.0m
<+

2.0m

Figure 3: Room plan shapes; RR (Receiving room); SR (Source room); CW (Common wall)
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Coupling Coeflicients - Source room/Panel

o o o o
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Coupling Coefficients
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Figure 4 a — Normalised geometric coupling coefficients to maximum of unity — Model 1

Coupling Coefficients - Source room/Panel

130

Coupling Coefficierts

32 Acoustic modes

Structural modes

Figure 4 b — Normalised geometric coupling coefficients to maximum of unity — Model 2
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Model 1 — SRl for different volumes of the source roam (whole wall}
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Figure 7 — The influence of source room dimensions on the SRI curve for Models 1 and 2.
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Figure 8 — The influence of panel internal loss factor on the SRI curve for Models 1 and 2.
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Figure 10 — The influence of Panel Position on the SRI curve. (one-third frequency band)
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Figure 11 — Ratio of energy radiated into the source room to the energy radiated into the

receiving room; (Narrowband frequencies)
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9 Appendix
List of symbols

¢, - ambient (equilibrium) speed of sound;

p(z,y,0) - Pressure over the panel surface;

k, - trace wavelength of the panel at the z direction;

k, - trace wavelength of the panel at the y direction;

ky - trace wavelength of free-bending waves propagating in a infinite panel,
Epr - trace wavelength of the panel in vacuo;

w - normal displacement of the panel surface;

Cuip - geometrical coupling between the source room and the panel;

Cy2p - geometrical coupling between the receiving room and the panel;

F."* - generalized force exerted on the p™ plate mode by the n™ acoustic mode of the
receiving room;

G(r l r,) - Green’s Function - solution to eciuation (2.14);

P.® - receiving room modal pressure;

Q. - generalized volume velocity; see equation (3.3);

7., - real specific acoustic impedance; see equation (3.5);

o - constant diffuse absorption coefficient;

Bps Bns - Modal damping parameter of the panel and of the acoustic space respectively;
®p , &g - function basis for the eigenfunctions of a simply-supported plate;

N - Internal loss factor;

Po - density of air {(equilibrium);

T - transmission efficiency - see equation (2.1);

® - forced angular frequency;

Y, - function basis for the mode shapes of an acoustic volume boundary by rigid walls;
II{(w) - Power radiated into a half-space due to the plate vibration in the frequency domain;
V - Laplace’s operator;

D2 - Potential velocity function corresponding to the source and receiving rooms;
Ap - Generalized modal mass for the panel;

A, - Generalized modal mass for the the acoustic volume;
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