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ABSTRACT

When a continuous system is mapped to an equivalent discrete system, one may use
various numerical methods such as the Euler method, the Runge-Kutta method, the
bilinear method, etc. In signal processing, the bilinear mapping method is widely used
for linear systems, because it provides a very simple conversion from a continuous
system to a discrete system without introducing aliasing problems. Thus, the bilinear
mapping method 18 very important in designing digital filters from analogue filters for
linear systems. In this report, the use of the bilinear mapping method for non-linear
systems is investigated by applying it to simple non-linear ordinary differential systems.
A brief review of the ‘dynamics of numerics’ is given and the bilinear mapping method
i1s compared to other numerical methods for both linear and non-linear systems. The
results show that the bilinear mapping method is very stable (even when the step size of

integration is very large) and indicates promise for non-linear digital filter design.
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1. INTRODUCTION

When a continuous system is mapped to an equivalent discrete system, one may use
various numerical methods such as the Euler method, the Runge-Kutta method, the
bilinear method, etc. Recently, ‘spurious’ solutions introduced by the time discretisation
of ordinary differential equations have been investigated. In order to describe an
equivalent difference equation for a non-linear differential equation one can apply a
variety of methods, and solutions from these methods may be completely different from
that of the original differential system depending on the numerical approximation (e.g.
step size). One question arising from this is just how small a step size is ‘reliable’. One
may use sophisticated and relatively reliable methods which use variable step sizes.
However, in general, these methods are time consuming and in some cases (when the
uniformly sampled values are needed) may not be easily incorporated with an algorithm
which requires the numerical integration as a subroutine. For example, calculation of
Lyapunov exponents (from a differential equation) requires the solution of multiple sets
of differential equations at the same time and requires that the values of each set of
differential equations are sampled at the same time. The numerical methods using
variable step sizes will produce values at different times for each set of differential
equations, and this rnakes it difficult to use such a method. Thus, in this report, we only
consider numerical methods with a uniform step size. In this case, different step sizes
are applied to different numerical methods according to the inherent accuracy of the
applied numerical method. Iserles et al [1 - 5] have studied the problem, and some of
their results are briefly discussed in the following section. Here, however, the problem is
considered from a slightly different point of view, i.e., a view of the signal processing
context. In signal processing, the bilinear mapping method is widely used for mapping
continuous linear systems to discrete systems, because it is a simple conversion which
avoids aliasing problems. Thus, the bilinear mapping method is very important in
designing digital filters from analogue filters for linear systems. In essence it is the
trapezoidal integration rule. The effects of bilinear mapping method for non-linear
systems has not been reported.. Thus, in this report, the bilinear mapping method is

extended to non-linear systems.



We consider the bilinear method for a simple linear system and compare it to the Euler
method and the Runge-Kutta method in section 3. The Euler method and the Runge-
Kutta method give erroneous results even for linear systems when the step size is large.
In section 4, the bilinear method is applied to a simple known non-linear system and
compared to the Runge-Kutta method. The numerical results show the fundamental
property of the bilinear method for linear systems carries over to non-linear systems. In
section 5, the use of the bilinear mapping method is discussed in terms of a signal

processing context and related to the solutions of non-linear differential equations.



2. SOME RESULTS OF THE ‘DYNAMICS OF NUMERICS’

This section 18 a very brief review of the results obtained by Iserles et al, and shows the
main problems of the Euler method and the Runge-Kutta method. The details of the
discussion are given in references [1 - 5]. Consider a dynamical system described by an
ordinary differential system (ODS) given by

%:mm V) = Yo, ¥(t) € R @1

where R® represents d-dimensional space and y, is the initial condition. When the
solution of the system (2.1) is unique and exists for all t € R, solutions define a ‘flow’

in the phase space. Consider a discrete map which approximates (2.1) by
Vo =Fy), ¥ ER 22)

where the “T” is the fixed step size. In order to understand the behaviour of equation
(2.2) consider the simplest case, namely that the solution of the continuous system (2.1)
which tends to a fixed point. If y* is an attractive fixed point of the flow, i.e., y(f) = y*
for all y, in an open neighbourhood of y*, and both f and F; are smoothly differentiable,

then, for sufficiently small ‘“T”, all the eigenvalues of the linearised system evaluated at

*
IF: () )) are within the complex unit disk and y* = Fr(y*). In other words, for

y* (

sufficiently small “T", the numerical solutions approach the true fixed point. Since the

oF; (y*)

3 are continuous in ‘T, when increasing ‘“T” the following results
Y

eigenvalues of

hold [1].

(i) An cigenvalue may hit the unit disk at ‘1’ and this corresponds to a steady
bifurcation (or transcritical bifurcation: from a stable equilibrium point to a new
branch of stable equilibrium point and the original branch of equilibrium point
becomes unstable).

(ii) An eigenvalue may hit the unit disk at *-17 and this corresponds to a flip bifurcation

(or period-doubling bifurcation).



(iii) A pair of complex eigenvalues may cross the unit disk and this corresponds to a

Hopf bifurcation.

The graphical illustration of the above resulis are

Case (i) Case (i1) Case (i1i)

Eigenvalue (&) Eigenvalue (1) Eigenvalue (zt)

Hopf Bifurcation

Note that these results are for the asymptotic behaviour (steady state) of the system, so

we may see different transient behaviour of the system even when “T” is small.

Consider the logistic equation as an example.

d
%:y(l-y), y(0) = o € (0,1) 2.3)

The analytic solution is obtained easily and y(t) — 1 (a stable fixed point) as t — o, and

dy _ y(t+T)—y(®)
dt T ’

there is no chaotic solution. Using the Euler method, i.e., the

above equation is mapped by
Y1 = Yu + TYn(1 - Yn) (24)

oF; (1) ;
dy

fixed point of (2.3) at y* = 1 remains the same, but when ‘T = 2’ the eigenvalue hits the

Where y, = y(t;+nT). Since the eigenvalue of s ‘1 - T, as long as ‘T <2’, the

unit disk at ‘-1” and this yields period doubling, and for larger step sizes this results in

the Feigenbaum cascade. Thus, period doubling in this case is a numerical artefact.
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Next, equation (2.3) may be solved by the Runge-Kutta method (second order) which

results in
T T
Yo =Y, +T[yn +Va(l —yn)}[l-yn —Eyn(lﬂfﬂ)} (2.5)
. oFf. (1) . . 1. .., . , . .
The eigenvalue of ——— is ‘1-T +ET and when at ‘T = 2, it crosses the unit disk

oy
at ‘1’ and this yields a steady bifurcation and for increased step sizes this also follows

the period doubling route to chaos.

Iserles [1] suggested a “Good Method Guide™ to obtain the solutions exactly in step with
the original flow (2.1) for the steady state of the system, and suggested the following
definitions.

(i) A numerical method is R if when applied to an ODS, y, - y*. This means that y*
is a genuine fixed point of the original flow. So the Runge-Kutta method is not RM
because the Runge-Kutta method can yield a steady bifurcation which is a
numerical artifact.

(ii) A numerical method is R™ if it never produces a flip bifurcation.

(iii) A numerical method is R™ if it has a Hopf bifurcation when (and only when) the

[2} (A1

original ODS also does. Thus the Euler method is neither R™ nor R

For the “Good Method Guide”, a multistep method is suggested in the form
x K
20 =T BH(,) (2.6)
i=0 i=0

where oy, i are coefficients. When Bk is not zero, the method is implicit. One can
intuitively anticipate that the multistep methods are likely to model dynamics more
faithfully since increasing the order in equation (2.6) may result in increasing. the
accuracy, i.¢., an m-step method uses the ‘m’ previous points. Typically an implicit
method has a larger region of stability than the corresponding explicit method, and this
is mainly due to the feedback nature in an implicit method [12]. Iserles suggested the

following RU2H Runge-Kutta method which is the implicit midpoint rule. The value



V... is obtained by finding the midpoint between y,., and the previous value y,, and

implicitly depends on y,,, itself as defined in equation (2.7).

1
Y =¥, +Tf(5(yn +¥Yau )J (27)

(1.2,H]

Another example of a multistep method which is R is the trapezoidal integration

rule which yields

Your = ¥u +%[f(yn>+f<yn+l )] (2.8)
or

Yoo = E¥a) =¥, F 1) (2.9)

This is recognised as the bilinear mapping method which is widely used for the digital
filter design for linear systems. We see that to compute y,. from y, involves the
functional evaluation £(y...) and in general the solution of a non-linear algebraic
equation. So one may use Newton's method to solve equation (2.9). In a special case
(linear systems), equation (2.9) can be solved as follows. Equation (2.1) can be

described in a matrix form if the function f(y) is linear, so
y=Ay (2.10)

where A is an n X n matrix. So equation (2.9) can be written as

T T
¥Yon —EAym =Y, +5Ayn (2.11)
and
T T
I-—A =[I+—A 2.12
|: 2 j|yn+1 [ 2 ]Yn ( )

where I is the identity matrix. By rearranging (2.12) it becomes
-1
Vou :[I——%A} [I+—§A}yn (2.13a)

Note that this equation is also valid for non-linear systems by allowing the matrix A to

vary with time. In this case, equation (2.13a) becomes



T T
yn+1=|:I_EAn+1:| [I+-2-An}yn (2.13b)

where A, is the n-th iterated time varying matrix. Equation (2.13b), in general, may not
be directly solved since Ayy; usually depends on yy.1. Thus, this requires numerical

methods for solving (2.13b) such as Newton’s method.

Details of the bilinear method will be given by examples in the next section. Also, in
this report, we shall investigate the use of this bilinear mapping method for non-linear

systems. We begin by briefly reviewing linear systems.



3. LINEAR SYSTEMS

3.1 Homogeneous System

Tn this section, the advantages of the bilinear method for mapping a continuous-time
system to a discrete-time system are demonstrated on a simple second order linear
system, and compared to the Euler method and the 4-th order Runge-Kutta method. We
begin with an unforced (homogeneous) system. Consider an ordinary differential
system.

¥+m,°x=0. 3.1
'The solution is

X =Acos(®,t +9). (3.2)
Equation (3.1) can be described in the form (2.1} as

; _ imozx (3.3)
Equation (3.3) will be mapped using three different methods - the Euler method, the 4-th
order Runge-Kutta method and the bilinear method. Both the Euler method and Runge-
Kutta method are explicit in the expression (2.6) and so are easy to solve. The bilinear
method is implicit, i.e., a value yn41 18 @ solution of (2.9). Generally, for a multi-
dimensional set of equations one may use Newton’s method to find a root at every
iteration and in general is very complex. However the bilinear mapping of equation (3.3)
in particular is easily converted to a simple set of difference equations because the

system is linear. So the solution can be obtained from equation (2.13a), i.e., equation

(3.3) can be written as

X, 2 Xq
" 1 1—(%(00) T
- r oy (3.4)
1+(—a)0) 1 1—'(—0)0)
Yn+] 2 2 yD

Alternatively, bilinear mapping of equation (3.3) can be obtained from the following [6].
Assume that we know y, in equation (2.9). So, the right-hand side of (2.9) can be easily

obtained. Thus, equation (3.3) can be written as



X X +—yn = Cl
T
xn+1 :Cl +"_yn+l (353-)
2
T T
yn+1 +Em0 Xn-t-l :yn _Ewo xn =C2
T
Yo =€2 —'2—0)02Xn+1 (3.5b)

By rearranging (3.5a) and (3.5b), we get the following equation

2
C,—®,;, ¢

o Yn+1 = [T )2
1+ =,
2

One can compute equation (3.6) and substitute the result in (3.5a) and then repeat this

(3.6)

procedure to get the trajectory. From equation (3.2) the exact sotution for this system is
known. We know also their digital and analogue frequencies (o and ,) are related by

2 a)T)
W, =—tan | —— 3.7
R 6

where @, is the digital angular frequency by the bilinear method and

@, is the analogue angular frequency (original differential system).

By setting ‘T = 0.1°, ‘initial conditions x, =1, yo = 0", and varying the value @, where
W, = 2nf,, the effect of discretisation is investigated. Details of error estimation
(accuracy) and stability analysis of a numerical method for the first order differential
equation (¥ = Ay ) can be found in references {11 - 13]. The resuits of the first order
systems can be used for higher order systems in the form of equation (2.10), since
equation (2.10) can be represented in the form of Z= Az (or z; =4;z;) if the system is
linear and the matrix ‘A’ is diagonalisable, where A is the diagonal eigenvalue matrix of
the matrix A in equation (3.10) [11]. In this report, we demonstrate the effect of step

size by example.



When the Buler method is applied to this system, it turns out that the method is very
unstable and results in amplitude modulated signal even when f, is very small, i.e., the
step size is relatively small compared to the period of oscillation of the system. This
amplitude modulated signal gives a set of frequency components and not a single spike

as shown in Figure 1.

(a) Time history (T = 0.1) (b) Frequency domain
4 500
3 -
400}
2 -
g ! 5300
= =
5° E
=i} E 200t
=3
100+
=3r
4 . ‘ . , o .
0 10 20 30 40 50 0 02 0.4 0.6 08 ]
time frequency

Figure 1. Solutions of the system (3.1) using the Euler method (fo = 0.1)

Next, Equation (3.3) is discretised by using the 4-th order Runge-Kutta method and the
bilinear method. When f; is small (f, = 0.5) the Runge-Kutta method gives an almost
exact solution as shown in Figure 2 while the bilinear method gives a slightly lower
frequency as expected, i.e., from equation (3.7) the analogue frequency (f, = 0.5) results
in digital frequency (fy = 0.496), and this is shown in Figure 3. This lowering frequency

is analogous to the period elongation described in [10].

(a) Time history (T =0.1) (b) Freguency domain
1 . ‘ 250
05 2607
e 2150F
= of E}
& 3
-0.5
50r
-1 L 0 2 L i L
0 E 10 15 20 () 02 04 06 0.8 1
tme frequency

Figure 2. Solutions of the system (3.1) using the Runge-Kutta method (f, =0.5)

10



{a) Time history (T =0.1} (b) Frequency domain

1 T T 250
200
057
v“g’ 9 1501
200 2
—0.5r
50¢
-1 . 0 : . - L
0 5 10 15 20 0 02 0.4 0.6 0.8 1
time frequency

Figure 3. Solutions of the system (3.1) using the bilinear method (fo = 0.5, fi=0.496)
where, fiis the digital frequency mapped by bilinear method.

When f; is increased the Runge-Kutta method gives a very erroneous result which finally
goes to a fixed point (note that the system being simulated has no damping). Since the
original solution is oscillating and the numerical method is multi-step, it is very difficult
to prove the reason of the erroneous result. On the other hand the bilinear method gives
a solution which one can expect, i.e., from equation (3.7) the results are always
anticipated. The results of the case ‘f; = 2’ are shown in Figure 4 (Runge-Kutta) and

Figure 5 (bilinear).

If the parameter f, is increased further, when ‘fy > 4.5°, the Runge-Kutta method
becomes unstable and also gives a spurious frequency component, and this is shown in
Figure 6 in the case of fy = 4.51". In this case, we can imagine that the Runge-Kutta
method with the above step size is completely outside the stability region (numerical
errors are unbounded (Figure 6a)). Also, it gives erroneous frequency components

(Figure 6b).
However, the bilinear method gives the solution as expected from equation (3.7) even

when £, is beyond the folding frequency (since T = 0.1, the folding frequency is 3), and

the case of ‘f, = 6’ is shown in Figure 7.
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(a) Time history (T =0.1) (b) Frequency domain

1 T T T T T 25

0.3

amplituds
=

0 5 10 i5 20 25 30
time

frequency

Figure 4. Solutions of the system (3.1) using the Runge-Kutta method (fo = 2)

(a) Time history (T = 0.1) (b) Frequency domain
1 . T y 250
200F
03
§ 1507
= 0 =
2 2
g S 1001
-5
s0r
_1 . 3 ' 0 . . : .
0 5 10 15 20 25 30 5 I 3 3 4 3
tme frequency

Figure 5. Solutions of the system (3.1) using the bilinear method (fy =2, fu=1.79)

(a) Time history (T =0.1) (b) Frequency domain
30 . ,
800t
20r 7001
1o} _ 6007
. | £s00
A Facor
g g
) -10F k 300+
a0t
-20 100
_ . ‘ . ‘ 0 : :
3% 3 10 13 20 25 ¢ 1 5 3 4 5
time Tequency

Figure 6. Solutions of the system (3.1) using the Runge-Kutta method (fo=451)
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(a) Time history (T = 0.1) (b} Frequency domain

1 - T T 250

amplitude
f=1
= n
modulus

1
=
i

-1 1 : o \ . . _J LS
0 5 10 15 20 0 1 2 3 4 5
fime frequency

Figure 7. Solutions of the system (3.1) using the bilinear method (f, = 6, fj=3.45)

3.2 The Effect of Forcing

In the previous section, we only considered a homogeneous system. In this section, we
include a forcing term, and demonstrate how the forcing term affects the bilinear

mapping method. We now include a harmonic forcing term in equation (3.1), e.g.,
X(0) + o, x(t) = (t), where f(t) = Acosat (3.8)

The right hand side of equation (3.8) is an input to the system. This input-output
relationship can be described by the Laplace transformation which becomes ‘X(s) =
H(s)F(s)’ for zero initial conditions. H(s) is the transfer function of the system. The
continuous system function H(s) can be transformed to the discrete-time system function

H(z) by using the bilinear transform, i.e.,

-1
H(z) = H(s), where s= 2(1 — Z_l J (3.9
T\1+z

The difference equation corresponding to H(z) can be obtained by applying the
trapezoidal integration rule (2.7) to the differential equation corresponding to H(s), and

if the input-output relationship of the system is described pictorially, then

f(nT) [ 2 ( 1— ! ]1 x(nT)

i)

Notice that the system is bilinearly mapped, but the input is not.

1+z
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From the above illustration (input-output relationship), it is obvious that if the input is
aliased by discretising coarsely, then the output is also aliased. Thus, in the case of
equation (3.8), the sampling frequency (1/T) should be selected more than twice the

highest input frequency in order to avoid aliasing.

One should also be aware that the frequency relationship equation (3.7) is only for the
imaginary axis in the ‘s-Plane’. In other words, when the system possesses a large
damping and the step size is very large, one may not be able to find the exact analogue
frequency where the maximum amplitude occurs from the corresponding (maximum
amplitude) digital frequency by using equation (3.7). Because poles in the s-Plane which
are located other than on the imaginary axis do not follow equation (3.7) when they are
mapped onto the z-plane, there may be an amplitude distortion when the step size and
damping are very large, as shown in the Appendix. However in general, for small
damping we may still use equation (3.7) since the frequency difference between a
damped system and an undamped system is very small and a very large step size is
unrealistic in practice. More details on this matter and the mapping from the ‘s-plane’ to

the ‘z-plane’ by the bilinear method is shown in the Appendix.
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4. NONLINEAR SYSTEMS

The previous section has summarised and given some numerical results for linear
systems, and the usefulness of the bilinear mapping method has been emphasised. In this
section, a non-linear term is included together with a study of whether the bilinear
mapping method has similar properties for a non-linear system. So, the use of the
bilinear method for a non-linear system is investigated by applying the trapezoidal rule
to a simple known non-linear system and compared to the Runge-Kutta method.

Consider a non-linear differential system without a forcing term
X+’ x+ex’ =0 4.1
Equation (4.1) can be expressed in the form (2.1) as

X=y

4.2
¥ = -0’ x—€X’ )

Equation (4.2) can be mapped by using the Runge-Kutta method and the bilinear
method in the same way as described in the section 3. The resuits obtained by these two
methods are shown by setting the initial conditions (X, =1, yo=0), £ = 100 and f, = 2,
where @y, = 27f,. The Runge-Kutta method is very sensitive to the step size “T°. Thus
when the step size is relatively large compared to the inherent system’s oscillation, this
method gives an erroneous result as shown in Figure 8(b). Note that the original system
does not have damping. Thus, the step size is set to be sufficiently small for the Runge-
Kutta method (Figure 8(a)) to get close to the original system (i.e., it is assumed that the
result of the Runge-Kutta method with step size ‘T = 0.01” represents the true system
(4.1), because it is observed that the solution obtained from the Runge-Kutta method
with variable step size is almost the same as the Figure 8(a), although it is not shown

here).
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(a) Time history (T = 0.01) (b) Time history (T = 0.1)

1 5 T Y v L

0.5 1 0.3

amplitude
=

amplitude
(=]

0.5

I
=4
tn

15 1 2 3 4 s Iy 5 10 15 20 25 30

time time

Figure 8. Solutions of the system (4.1) using the Runge-Kutta method (fy = 2)

The bilinear method is investigated by varying the step size to see the effect of
discretisation. With step size ‘T = 0.01" solutions from the Runge-Kutta method and the
bilinear method are almost the same (see Figures 9 and 10). The frequency (Hz)
components from the Runge-Kutta method are fa, = 2.4, fo; = 7.2 and fis = 12, where fx,
is the fundamental frequency and the others are third and fifth harmonics (only odd
harmonics are present in this case, i.e., fes = 3X fp1 and fos = 5% fz1), and, the frequency
components by the bilinear method are fy, = 2.4, fr = 7.2 and fis = 12, where f is the
fundamental frequency and the others are third and fifth harmonics. These results are

shown in Figure 9 and Figure 10 respectively.

(a) Time history (T = 0.01) (b) Frequency domain (log scale)
1 . ; . . e
2
asH 10" ¢
3
1] L
2 am
£ 0 Z
[=% =
g =
) é 10()
=}
-0 B
10
i | . . . -2 , , .
o 1 2 3 4 3 g 5 10 15 20
time frequency

Figure 9. Solutions of the system (4.1) using the Runge-Kutta method (fr; = 2.4, fra = 7.2 and fgs = 12)
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(a) Time history (T = 0.01) (b} Frequency domain (log scale)

{ ; y y ' 10’

0.5 ] 1o

amplitude
=)
modulus(log scale)

!
o
h

-1 ) . : 1 . . :
Q 1 2 3 4 3 0y 5 10 15 20
time frequency

Figure 10. Solutions of the system (4.1} using the bilinear method (fg, = 2.4, fa = 7.2, fas = 12 and T=0.01)

In the case of “T = 0.05’, the results of the bilincar method are shown in Figure 11, and
the frequency components are fy; = 2.3, fi3 = 6.9 and fis = 8.5 (aliased version of f;; =
11.5). From the above two cases (T=0.01 and T=0.05), one can see that the fundamental
frequency (fx, = 2.4) is shifted to f; by equation (3.7), and, unlike the linear system, it is
seen that aliasing does occur in the bilinear method for non-linear systems. This is
caused by the fact that the harmonic components do not follow equation (3.7). The
harmonic components in the digital frequency domain (obtained using the bilinear
method) are harmonics of the fundamental frequency in the digital frequency domain
(which is computed from equation (3.7)), i.e., fis = 3X fu and fis = 5X fy,. Thus, the fifth
harmonic fis is 11.5 Hz which is greater than the folding frequency 10 Hz and so appears
at 8.5 Hz as an alias. This aliasing effect is more readily shown when the step size is
increased further, and the results of the cases ‘T=0.1 and T=0.25’ are shown in Figures
12 and 13, and is summarised in Table 1 by comparing original frequencies (fx;) to the

results from the bilinear method (f3).

The following non-rigorous argument helps to explain the frequency components that
arise. Equation (4.1) is often solved approximately using perturbation methods when € is

small [7], i.e., the solution of (4.1) can be expressed as a power series
X(t) = Xo(£) + X, (1) + &*x,(t) + « ++ 4.3)

and we perturb the frequency ® by letting
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o = -eb -&’by- - (4.4)

where b, are the corrective terms for the frequency and are dependent on the amplitude

of the motion. This yields the hierarchy of equations

Ry + 0%, =0 (4.52)
X, +®2x, =bx, —~ X, (4.5b)
X, + 07X, = b,x, +b,x, = 3x,X; 4.5¢)

This shows that the fundamental frequency component shifts from e and the
evaluations of the b; (reference [7]) allow the modified fundamental frequency ® to be
computed. Further the solution to (4.5a) acts as an input to (4.5b); the non-linear cubic
term indicates the harmonic at 3. Assuming that applying the trapezoidal integration

rule to (4.1) is equivalent to applying it to the set of equations (4.5), then (4.5a) will -
. .. oy s ) 2 (Wl . .
result in a digital oscillation occurring at ®, =¥mn = (i.e., as equation (3.7)).

Equation (4.5b) is interpreted as a linear system driven by an input ‘bx, - X, which
results in a digital frequency of ®; plus a harmonic at 3@,. The right hand sides of (4.5)
are like forcing terms as described in section 3 and are subject to aliasing leading to the
results obtained in Figures 11 - 13. For example, ‘f;s = 8.5Hz’ in Figure 11 is the aliased
version of 11.5Hz, and similarly f3; and fi; in Figures 12 and 13 are the aliased versions
as shown in Table 1. If the harmonic forcing term is included in equation (4.1), it can be

wriften as
% +0,°x = —ex* +£(t), where f(t)= Acosaot 4.6)

Thus, it can be interpreted that the whole right-hand side of equation (4.6) is an input

whose effect is much the same as that described above (aliasing problem).
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(a) Time history (T = 0.05) {(b) Frequency domain (fog scale)
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Figure 11. Solutions of the system (4.1} using the bilinear method (fg = 2.3, fas = 6.9, fus = 8.5 and

T=0.05)
{a) Time history (T = 0.1} {(b) Frequency domain (log scale)
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Figure 12. Solutions of the system (4.1) using the bilinear method (fy, = 2.06, fi3 = 3.82, fys = 0.3 and

T=0.1)
(a) Time history (T = 0.25) (b) Frequency domain (log scale)
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Figure 13. Solutions of the system (4.1) using the bilinear method (fy = 1.38, fi = 0.14, Jfas =1.1 and
T=0.25)
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Original bilinear method bilinear method bilinear method bilinear method
frequency (T=0.01) (T=0.05) (T=0.1) (T=0.25)
fri=24 fu=24 2.3 2.06 1.38
fra=7.2 fiz=72 6.9 3.82° (6.18) 0.14" (4.14)
foas= 12 fas=12 8.5 (11.5) 0.3" (10.3) 1.1°(6.9)

Table 1. Summary of the frequency components of the system (4.1).

* are the aliased version of ().

Consider the case that a small damping term is included in equation (4.1) so that
%+ 20wk + o, x +ex’ =0 4.7
and this equation can be described in the form (2.1), L.e.

X=y

4.8
y = —-2L0,y —wo*x —ex’ *8)

where { = 0.02 and the other parameters are the same as in the case of the undamped
system. By changing step sizes, the results of the bilinear mapping method are shown in
Figures 15 to 18, and the results are compared to the original system (Figure 14). I is
assumed that the result of the Runge-Kutta method with step size (T=0.01) represents
the true system (4.7). The results are very similar to the undamped case, ie., the
fundamental frequency follows equation (3.7) while the other harmonics do not and
eventually alias when the step size is very large. The results are summarised for this
system in Table 2 as for the undamped system by comparing original frequencies (fx;) to

the results from the bilincar method (f5).
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(a) Time history (T =0.01) (b) Frequency domain (log scale)
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Figure 14. Solutions of the system (4.7) using the Runge-Kutta method (fg; = 2.2, fas = 6.6 and T=0.01)

(a) Time history (T =0.01) (b) Frequency domain (log scale)
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Figure 15. Sclutions of the system (4.7) using the bilinear method (fy, = 2.2, fin = 6.6 and T=0.01)

(a) Time history (T = 0.05) {(b) Frequency domain (log scale)
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Figure 16. Solutions of the system (4.7) using the bilinear method (fo =2.1, Jfin = 6.3 and T=0.03)
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(a) Time history (T =0.1) (b) Frequency domain (log scale)
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Figure 17. Solutions of the system (4.7) using the bilinear method (fn = 1.9, fi = 4.3 and T=0.1)

(a) Time history (T = 0.25) {b) Frequency domain (log scale)

1 102
05t
IR
3 glo
g
= 0 i 2
= F{ =
& E
i 3.0
210
~05 E
o 5 015 20 25 30 35 40 107" ; . ;
(ime ; 0 0.5 1 1.5 2

frequency

Figure 18. Solutions of the system (4.7) using the bilinear method {(fy; = 1.3, fis = 0.1 and T=0.25)

Original bilinear method bilinear method bilinear method bilinear method
frequency (T=0.01) (T=0.05) (T=0.1) (T=0.25)
fa=2.2 fu=22 2.1 1.9 1.3
fra=6.6 fir = 6.6 6.3 43" (5.7) 0.17(3.9)

Table 2. Summary of the frequency components of the system (4.7).

* are the aliased version of ().
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5. DISCUSSION

From the results of sections 3 and 4, it is shown that the use of the bilinear
mapping method for non-linear systems is very useful. Since the fundamental frequency
of the non-linear system obeys equation (3.7), one can understand the original
differential system from the results of bilinear mapping method. Accordingly it may be -
possible to apply this to non-linear digital filter design with care, i.e., aliasing can occur
in non-linear systems, and also the results of the bilinear method will give a good guide
for the determination of the step sizes for other numerical methods, because the bilinear
method is very stable even when the step size is quite large. For unknown systems one
can first apply the bilinear method in order to get ‘f,,” (fundamental frequency) and then
convert this value to the analogue frequency by using equation (3.7). Then one can
easily determine the step sizes for other sophisticated numerical methods since the
inherent oscillation of the system may be understood from the results. One must be
aware of the possibility that application of the bilinear method to a non-linear system
does not ensure the accuracy of the true trajectories of the original system, i.e., the
original frequency of the continuous system always becomes lower when the bilinear

method is applied.
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APPENDIX. BILINEAR MAPPING FROM S-PLANE TO Z-PLANE

When a complex plane (s-plane) is mapped to another complex plane (z-plane) using the
bilinear method, the following relationship holds, i.e., three given distinct points si, 82,
s3 can always be mapped onto three prescribed distinct points z;, zz, zz by bilinear

fransformation.

Z—2Z, Z,—Z; S—S, S, 5,

(AT

Z—Z; Z,—Z; S—S; §,-8

The transformation from the left half plane in the s-plane to the unit disk in the z-plane
can be found by setting s; = 0, s, = —2/T, 83 = o0, 2, = 1, z; = 0 and z; = -1, and this

results in

(A2)

Rearranging this expression, it is the same as equation (3.8), i.e.,

_ _ -1
S=£(Z 1]231 z_1 (A3)
Tlz+1 T\1+2z

The Figure A-1 shows the details of the bilinear mapping from s-plane to z-plane. In a

single degree of freedom (SDOF) linear vibration system, there is the following

relationship,
0, =0 1= e, (A 4)
o; +(w,)’ =o; (A5)

where ), is the damped angular natural frequency, @, is the undamped angular natural
frequency and { is the damping ratio. Thus, equation (A 5) can be described in the s-
plane as shown in Figure A-2. @, becomes the radius R in both Figures A-1 and Figure
A-2.
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Figure A-2. s-plane representation of the relationship between @, and oy

From Figures A-1 and A-2, it is obvious that the damped natural frequency is the same
as the undamped natural frequency in the z-plane when @, is equal to 2/T. Since the
radius ‘R=2/T” in the s-plane is mapped to the imaginary axis vertically in the z-plane,
the damped natural frequency evaluated in the z-plane is the same regardless of the
damping ratio, where the arc of radius R is the location of pole in the s-plane. This is
shown in Figure A-3 both in the time and frequency domains. Note that the resonant

frequency (maximum amplitude) is slightly lower than the damped natural frequency,
i.e., the resonant frequency (M, in the s-plane is ‘@, = W, +/1- 2§2 > which is a little

smaller than the @, especially when the damping ratio is very large as shown in Figure
A-3(b) in the case of ‘{ = 0.4°. Finally, if @, is greater than 2/T, the bilinear method
gives a damped natural frequency which is larger than the undamped natural frequency.
This may be interpreted as an amplitude distortion in the frequency domain, i.e.,
although the frequency components in the imaginary axis in the s-plane mapped onto the
z-Plane by the relationship(3.7) the location of poles in z-Plane may alter the amplitude

in the frequency domain when the step size and the damping are very large.
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Figure A-3(a). Time history of a damped SDOF free vibration system using the bilinear method in the

case of ‘@, = 2/T", where T is 0.1 and the damping ratios are ‘C = 0.05, 0.1, 0.2, 0.3,
and 0.4°.

modulus (log scale)

frequency

Figure A-3(b). Frequency characteristics of a damped SDOF free vibratton system using the bilinear
method in the case of ‘e, = 2/T°, where T is 0.1 and the damping ratios are ‘{ = 0.05,
0.1,0.2,0.3, and 0.4",
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