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Abstract

A set of equations is derived for converting acoustic measurements taken in a free-jet flight
simulation facility, such as the UK Noise Test Facility at Pyestock or the French CEPr at
Saclay, to equivalent far-field fight conditions. The equations are based on the high-
frequency geometrical acoustics approximation, whose application in the present context was
justified in detail by Morfey and Tester in 1977 and by Amiet in 1978. However, the present
work departs from these earlier studies by allowing the source to be positioned off the jet
centreline, anywhere within the flight stream. The flight stream jet is modelled as an
axisymmetric parallel shear flow, with a shear layer thickness which is small compared with
the jet diameter. The model permits the microphone to be located anywhere outside the flow,
arbitrarily close to the open jet. By using the results of this report, shear-layer refraction
corrections can be calculated for any combination of measurement point (outside the flow)
and source point (inside the flow).
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Introduction

1. Background

The presence of installation effects, specifically the reflection or scattering of exhaust noise
from the airframe structure, is now well established as an important factor which influences
the community noise levels of all types of aircraft. The effects are twofold.

Firstly, the noise levels observed on the ground are often higher than would otherwise be the
case. To put the point another way, the static-to-flight noise reductions predicted from flight
sitnulation tests on an isolated exhaust system are often not realized on the installed engine.

Secondly, because installation effects are currently not well understood, their presence
introduces some uncertainty into flyover noise predictions.

There is a serious difficulty in isolating installation effects from full-scale tests alone. The
reason is that noise measurements at full scale are normally limited to two conditions:

»  static, with a bare engine on a test stand, and
«  in flight, with a fully installed engine in an aircraft.

In this situation it is impessible to decide how much of the difference in noise is due to flight
effects, and how much to installation effects.

However by testing at model scale, in a flight simulation facility such as that at DERA
(Pyestock), the essential four-way comparison of static and in-flight noise from both
uninstalled and installed exhaust systems becomes feasible. The open-jet type of facility, in
which measurements are taken outside the flight simulation stream, requires that the data be
adjusted for amplitude, frequency and angle of observation in order to obtain sound pressure
levels that are equivalent to flyover measurements made near the ground in the far field.
In what follows, we refer to these data adjustments as “shear-layer corrections.” Their
calculation for off-axis sources is the subject of this report. -

2. Calculation of shear-layer corrections

The standard geometrical acoustics (GA) shear layer correction procedure, for sources
located on the open-jet centreline, is presented in Ref. [1]; it is valid in the limit as the sound
wavelength tends to zero. Numerical calculations detailed in Refs. [1] and [2] explore the
errors involved in applying the GA approximation, for cylindrical and plane shear layers
respectively. In these calculations, the ratio of open-jet shear layer thickness () to sound
wavelength (1) takes a range of values typical of flight test simulations. The transmitted-
pressure amplitude obtained numerically differs slightly from the GA value, on account of
reflections from the shear layer; the latter become more significant as the ratio & A decreases.
However, even in the extreme case &/4 — 0, the difference between the GA and exact
solutions is typically less than 0.25 dB,T except for sound emitted in the forward arc close to

the critical angle.

T Calculated in Ref. [2] for M = 0.5 and a plane shear layer.
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The shear layer corrections developed in Refs. [1] and [2] are restricted to sources on the axis
of the open jet. When an installed-engine model is placed in the jet, however, the sound from
a centreline engine exhaust may be scattered by surfaces relatively far from the jet axis. The
question then arises of whether or not significantly different shear layer corrections are
needed for these off-axis sources.

3. Scope of the investigation

In order to explore the question identified above, the standard GA correction algorithm for
on-axis sources and cylindrical shear layers [1] has been extended. Sources may now be
placed at arbitrary radial and azimuthal positions within the flight stream jet (the azimuthal
reference being provided by the external microphone location). Chapter IIT sets out the
theoretical basis of the generalized correction procedure, and discusses three special cases in

detail:

»  Measurement microphone in the geometric far field; (7, /a = o°)
+  Measurement microphone immediately outside the jet; (r,/a=1)
»  Source on the jet centreline. (ro/a— Q)

Obtaining an analytical result for the general case requires a careful discussion of the ray-tube
geometry, as presented in Appendix B. Note that in all cases, the general result contained in
Eq. (33) of Chapter I1I remains valid. It relates the power spectrum of the pressure measured
in the facility to the desired far-field measurement in flight. The algebraic complication
which arises in the off-axis case is due entirely to the dA,/dQ; term in Eq. (33), which is a
measure of the ray-tube area outside the flight stream.

In a companion paper,} the refraction corrections described above are evaluated numerically
for a range of source positions across the flight stream jet, and for a realistic range of flight
Mach numbers and emission angles. The purpose is to determine whether

(a) source transverse position has too small an influence to be worth allowing Tor under
realistic test conditions, or

(b)  source transverse position has an appreciable influence on the interpretation of facility
data. In the latter case the actual source geometry must be fed into the data correction
procedure, and the results of Appendix B are needed.

% Oral presentation: C L. Morfey, P Joseph 1997 “Shear layer corrections for off-axis sources in an open jet
flight simulation facility.” First CEAS~-ASC Workshop (Wind Tunnel Testing in Aeroacoustics, 5-6 November
1997); DNW, Noordostpolder, the Netherlands.
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Ill. Theoretical Analysis of Refraction Corrections

1. Basis of model calculation

The following analysis is based on geometrical acoustics (GA), plus an idealized model of
the flow field. Use of GA means the shear layer correction is source-independent.

Region 1 = flight simulation jet; modelled as a top-hat profile, velocity I/ = const.
Region 0 = exterior region, fluid at rest

x axis = downstream direction; flow field does not vary with x.

2. Angular frequencies moving with fluid

@, = angular frequency relative to outer fluid (laboratory-fixed reference frame);
o = angular frequency relative to inner fluid (frame of reference moving at U).
The symbol @ without a subscript will sometimes be used in place of @, where there is no
risk of confusion.
3. Doppler relation
For a given wavenumber &,

wy=w; +kU. (b

We introduce the angles (8, 8;) defined by

cos 0; = k, ¢/, = kJk, (inside the flow) ,
J
(2)
cos Oy = k, co/ g = k Jk, (outer region) .

Substituting @y = k, ¢ /cos 8; , @y =k, cpfcos Gy in Eq. (1) gives -

¢ c ) c
0 -1 40U, ie|cosy=-2D,cos 8. 3
0=¢ 1

cos 8; cos

Equation (3) relates the wavenormal angles inside and outside the flow. The two frequencies

are related by

-1
A D= (1 _Y s Go)z (1 + ¥ cos 91) (4)
ay Co €y

The Doppler factor D is the ratio of the frequency heard by an observer moving with the
inner flow, and the frequency in a fixed frame.

4. Transverse wavenumbers

In the plane normal to the x axis, the wavenumbers in regions (1, 0) are denoted by K, Kj.
They are related to &, by
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Klz + kxz = (@I/C'l)z s
()
K02 + kxz = (a)O/CO)z .

Note that the same axial wavenumber k, applies inside and outside the jet. The (Kj, Ky)
relations above can be rewritten in terms of 8, or 64, rather than &, by using Eqs. (2) and (4):

thus
K oy _ (ﬂjz D,? —cos? G ; K ay_ sin? 6 ; (6)
10 ‘1 ay ,

KO CO = Sinz 90 : ‘IY—O“C—I' = (gijz Dlﬁz — COS2 91 . (7)
o) oy °

5. Transverse refraction

In the transverse plane, the ray emerging at B from the jet has angles of incidence and
transmission (¢, @) respectively, defined relative to the local normal at the interface

between regions 1 and O (see Fig. 2).

Conservation of the transverse wavenumber parallel to the interface gives

K sin o = Ky sin o (&)

which is a form of Snell’s law. Note that the ray and wavenormal directions projected onto
the transverse plane are the same, since the flow is assumed to be axial.

6. Transverse angle relation

Combining Egs. (6)—(8), and writin -C—OD “as I, gives
£ Eq g, o

(sin ocOJZ 3 (& )2 _ sin?@  E2—cos? § ©)

sin o Ko) E-2_cos? sin? 6,

Equation (9) allows rays to be traced in the transverse plane from a source at A, via the shear
layer at B, to points in the exterior field.

7. Ray tracing

A ray starts from the source at A, at (r, 0, 0) in cylindrical coordinates (r, ¢, x), and crosses
the jet shear layer at B. We want to find:

«  The coordinates of B.

+  The trajectory of the emerging ray, in terms of the ray launch angle A in the
transverse plane (see Fig. 3).
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8. Azimuthal location of ray crossing

In cylindrical coordinates, Fig. 3 locates the crossing point B at

rp=a (jetradius), (10)

Ppp=A-0ay . (11)
The angle of incidence ¢ is related to A by

s _a

sinog  sinAd
ie.  sing =%sin A. (12)
From (11) and {12),

g =A—sin! (%‘ sin /l). (13)

9. Axial location of ray crossing : axial ray velocity

To find xz we need to consider the ray velocity vector v in the jet. Its axial component is
V=01 n1x+U, (14)
where n, is the unit wavenormal vector in the flow. In terms of &,

_k, kycy cos @y
nlx—E_Tl—WE =cos 8, (15)

where E = % = (%Q)DI was first introduced in Eq. (9).
o &

10. Transverse ray velocity

The component of v in the transverse plane has magnitude

V= Cp Ry (16)

where 7, is the magnitude of the component of n, in the transverse direction. It is related to
ny, and the wavenormal angles by

cos G

nlrzwfl—nlxzz\/l—( E )Zzsinel. a7n

11. Axial distance travelled by ray in jet flow

The ratio of v, to v, gives the ratio of distances travelled by the ray, in a given time, parallel
and perpendicular to the x axis. Thus if @, is the transverse distance between A and B (Fig. 3),

given by
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sm ‘PB :
d; = (18)
! sm A7
it follows that
Xg 2& =C1n1x+U (19)

dl vy Cy Ry,

from Egs. (14) and (16) above. This expression can be rewritten, using Eqs. (15) and (17), in
the alternative forms

xp cosBO / A / - cos 90 cos & + (20)
dl Cl sin 61 .

12. Summary of ray crossing location results

The cylindrical coordinates of the point B where the emerging ray crosses the shear layer, i.e.
(xg, ¥p, @), are now defined. We choose as independent variables the source radius 1 ; the ray
launch angle, A, in the transverse plane; and the wavenormal angle in the flow, 6,, measured

from the jet axis. Then:
*  xpis given by Eqgs. (18) and (20) above, and
»  ¢pis given by Eq. (13) above.

13. Ray geometry in outer region

The emerging ray outside the jet flow has a unit wavenormal vector ny. The direction of ny
can be specified in terms of azimuthal and polar angles, (¢, &), as in Fig. 5. The polar angle
@ has already been introduced in Eq. (2), and ¢ is the ray orientation in the transverse plane;
it corresponds to the azimuthal coordinate of a far-field point on the ray. Thus

do=A-04+ 0 (see Fig. 3)
= A—sin! Gf sin l)+ sin-! (%% sin ﬂ.) , 21

from Egs. (8), (12) and (13). The polar angle 8, is given by
cosg=Ecos B (E=cyDley) . (22)

14. Ray-tube solid angles

In the far field outside the flow, the ray tube shown in Fig. 5 encloses a solid angle
dA,, sin3
d0, = Ty 0 %, (roda — o) (23)
m

which can be expressed in terms of dA and d@; with the help of Egs. (9), (21) and (22). The
details of this calculation are deferred to Section 22.
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In order to apply an energy conservation argument to relate the mean square pressures in
regions (0) and (1), we shall need to calculate the ratio dA,/d(2;. Here dA, is the ray tube
cross-sectional area in region (0) outside the jet, which in the far field is simply related to the
solid angle €, defined above; while d€2; is the solid angle defined by the corresponding n,
directions inside the jet flow. (Note that d€2, is not the ray-tube solid angle inside the jet flow,
but the wavenormal solid angle.) Thus

dQ, = ldA d(cos 6))| . 24

15. Facility data correction

Figure 6 shows the comparison between

(1)  the ray path ABM in the flight simulation facility, and
(2) the corresponding ray path ABN in the true flight situation,

with the frame of reference in both cases chosen to make the source stationary. The power
spectra of the acoustic pressure at M in the flight-simulation facility (outside the jet but not
necessarily in the geometric far field), and at N in the flight situation (with the microphone in
the far field), are respectively P, (@) and P (w), both measured in the aircraft reference

frame.

“Corresponding ray paths” means that the wavenormal n; inside the flow is the same in both
cases (1) and (2). Given this correspondence, the ratio P, (w)/P.(@) can be predicted within
the limitations of geometrical acoustics, without the need for source information.

1t then follows that measured P, (®) values can be processed to yield P_(w).

16. Measurement practicalities

»  Data are assumed to be collected at discrete points outside the open jet.

+  The objective is to recover R,2 P_(w) values, for selected emission angles {4, &)
within the flow.

«  This will involve interpolating between measurement points to get the desired
(4, 8;) combination, and applying correction factors to the interpolated measured

P, (@) values.

17. Relation between measurement position and source emission angles

The same cylindrical coordinates are used to locate M as were used for A and B (Figs. 1-3).
Thus the (r, ¢, x) coordinates for these points are:

(Source point A) T s 0, 0;
(Shear layer B) a, A-ay, Xp , [Egs. (20), (18) give xp];
(Microphone M) Fin » By » Xy -

Our aim is to relate (¢,,, x,,) to (4, 8;), for given values of r,,,, r;, and a.

10
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18. Azimuthal measurement position

From Fig. 7,
O =A— )+ (=9}, (25)
where
[4] ¥ (26)

sin§ sinof
It follows that

0, =A— 0y + o - sin! (ri sin 050) ) (27)

Note that ¢ is related to A by Eq. (12), and ¢ to ¢ by Eq. (9). Therefore ¢,,(A, 6;) can be
calculated, for any given values of #/a and r, /a, using Egs. (9), (12), and (27).

19. Axial measurement position

The axial displacement x,, - x5 follows from a calculation similar to that used earlier to find
xp (see Sections 9 to 11); but since this segment of the ray path lies outside the jet, there is no
complication arising from flow convection. Thus

9 Mor  sin 6 \/l - E2 cos? 6, .

Xp—Xp Mgy Cosfy  Ecost 28)

The distance dy is the projection of BM on the transverse plane (see Fig. 7); using Egs. (25)
to (27) gives
sin (¢ — 9)

dO =Fm .
sin og

. . 14 . -
=7,,. sin {ao ~ sin! -~ sin ao} . (29)
Ht

sin o
As was noted in Section 18, 04 can be found from (A, 8;). Therefore Eqgs. (28) and (29) allow
(x,, — xp)la to be calculated, as a function of (A, 8;) and the parameters (ry/a, r,/a).

20. Amplitude correction

The analysis of Sections 17-19 allows the ray position (@,,, x,,,) to be identified, on the near-
field cylindrical surface r = r,,, for any combination of source emission angles (4, 8,) in the
jet flow. The next step is to convert the measured P, () value to an equivalent R,2 P_ (@)
value in the true flight situation.

The approach adopted is that used in Ref. [1]. Based on the GA approximation, the acoustic
energy flow along a ray tube — such as that in Fig. 5 — is conserved. If dW (@) denotes the
power travelling along section AB of the ray tube, per unit angular frequency in a reference

11
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frame attached to the facility (or aircraft), and dWy(®) is the power in the same ray tube after
it emerges from the jet, then energy conservation means that

AW, () = dWy(w) . (30)

(D Outside the flow, dWy(@) is related to the measured power spectrum of acoustic
pressure P, (@) as follows:

aWy(@) =22 p_(w) (31)
Po Co

Here dA,, is the ray-tube cross-sectional area (measured normal to the ray direction),
at the measurement location M outside the jet (see Figs. 6 and 7). It is not the same as
dA,, (measured on the cylindrical surface r =r,, ; see Fig. 5).

@) Inside the flow, dW (@) is related to the far-field quantity R,2 P_(e) that would
ideally be measured in the true flight situation. The distance R, is the distance
travelled by an acoustic wavefront relative to the fluid, as indicated in Fig. 8. The

relationship 18

AW, () L/ R2P. (), (32)
I 2
Py e Dy

and follows from Eq. (15) of Ref. [1].

Equating expressions (31) and (32) gives

2
1a D By p g (33)
Poco 4L

R2P_(w)="L

This is a key result, as it provides a conversion from the near-field measurement P, (@) made
in the facility outside the shear layer, to the desired far-field measurement that would be
made in the true flight situation without the shear layer. The frame of reference in both cases
is attached to the source (aircraft).

21. Calculation of dA ,/d<2, factor

The solid angle d€2, is related to the incremental source emission angles, dA and d6,, by
Eq. (24). However, the cross-sectional area dA,, of the emerging ray tube in the geometric
near field is a complicated function of several variables:

dA,=a?dAde, . fA, 6), U lcy, cpfcy, rda, rja) . (34)
There are two special cases where dA,/d(2; is relatively straightforward to calculate, and
which can be used fo test any subsequent approximations: they are
(1)  Measurement position immediately outside the shear layer, i.e. at point B in Figs. 1-7;

(2) Source position on the jet centreline.

12
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The exact calculations for these two cases are presented in Sections 24 and 25. In Section 22
below we present an approximation which is asymptotically valid in the far field, and which
is relatively simple to derive; the general exact result, which can be obtained analytically but

is considerably more complicated, is developed in Appendix B.

22. Approximation to dA,/d(2, factor

For distances 7, from the jet axis which are not too small (say r,/a > 10), it may be
sufficiently accurate to estimate dA,, from the far-field expression

dA, = R 2 d, . - (35)

Here d(,is the ray-tube solid angle in the outer region [region (0)]. Further information on
ray geometry in this region, in the far-field limit, is provided in Fig. 5 and Section 13. The
distance R, is shown as OM in Fig. 6; it is based on projecting the far-field refracted ray
back to the jet axis, and is given by
Rg=—m— (36)
sin G,

From Egs. (23), (35) and (36), we get the approximate relation
dA ) dA
P sin 6, (—2@) . 37)
rm rm e -3 00 . 7

The sin 6, factor in this result is expected, since dA,, has its normal at angle 6, to the ray
direction.

The last factor on the right of Eq. (37) is evaluated in Appendix A. Combining Egq. (9) from
Appendix A with Eq. (37) above gives

¢y E?sin 6
€01 - E2cos? 6

dA do, . -(38)

%“(I—ﬁl + Bo)

As a check on this result, we note that for on-axis sources (i.e. f; = B = 0) it reproduces the

exact far-field expression

dA
) =d. = dA.sin 6, d6, . 39
(Rr{)z}ar field <o 00 (39)

The equivalence of Egs. (38) and (39) in this situation can be demonstrated by first using Eq.
(36) to replace Ry, and then using Eq. (3) above with Eq. (6) from Appendix A to replace 6,

by 91.

Finally, when Eqs. (24) and (38) are used to substitute for dQ, and dA, in Eq. (33), we obtain
the following approximate equation for correcting measured power spectra to their equivalent
far-field flight values:

13
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(1-B+hB)- (40)

2p
er Pm(w) = & DI4 ’;‘m m(a))
Po 1- (C_ODI cos 6‘1)2
1

As mentioned above, the exact version of Eq. (40) is given in Appendix B. An interpretation
of the various factors in Eq. (40) is presented in the following sections.

23. Interpretation of the flight-facility amplitude correction equation

«  Equation (40), or its generalized version Eq. (33), converts power spectra of sound
pressure measured outside the jet, on a cylinder of radius r,, concentric with the jet

axis, to equivalent far-field flight values.

«  The measurement location on the cylinder r = r,, is chosen to correspond with the
desired source emission angles (A, 8;). For this purpose, microphone coordinates
(@ X, are chosen as described in Sections 17-19.

»  The polar emission angle 0, is the wavenormal polar angle within the jet flow,
referred to a polar axis pointing in the flight stream direction. It also corresponds to
the flyover polar angle based on the aircraft position at the emission time.

= The far-field distance R, is the distance travelled by the wavefronts in the true
flight situation. In aircraft coordinates, the atmosphere is moving and R, is the
distance travelled relative to the fluid. Note that for an aircraft flying past a fixed
observer in a still atmosphere, R, is the source-observer distance in the far field,
measured at the emission time.

»  The final factor on the right of Eq. (40) accounts for off-axis source locations. It is
an approximation, valid when r,/a is greater than 3 or so, which can be checked
against the exact special-case results presented below.

«  The next-to-last factor in Eq. (40) represents R,y P, (®). -

»  The factor (p;/py)D* is what was called the “facility correction factor” in Ref. [1].
It represents the amplitude correction factor, for on-axis sources and a far-field
observer, required to correct for refraction through the shear layer after scaling for

distance by (R,¢/R,)%.

»  All frequencies in Eq. (40), or its generalized version Eq. (33), are measured
relative to the source (aircraft). Using a ground-based microphone is equivalent to
measuring the frequency relative to the flow, and yields Doppler shifted

frequencies Dy @= ;- Thus if P, (@) is the power spectrum measured by a
ground-based observer at the same emission distance R,, the two power spectra are

related by
wy Py(y) = 0 P (). (41)

Equation (41) implies that proportional-bandwidth levels (measured in 1/3-octave
bands, for example) are the same for both observers.

14
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«  One may wish to convert proportional-band facility measurements at frequency @
into equivalent far-field {lyover data at @;, as measured by a stationary observer on
the ground. It follows from Eqs. (33) and (41) that

2 dA
ercoIPg(a)l)=p1 ¢ Di7 44, WP () (42)

Po € e,

The angular frequencies which appear in Eq. (42) may conveniently be replaced by
ordinary frequencies in Hz.

24, Near-field tést of ray-tube area approximation: (i) Measurements immediately
outside jet shear layer

It is straightforward to calculate dA,, exactly for points immediately outside the shear layer
(r,, = @), noting that dA,, is then related to dA,, by dA, =dA,, ny, = dA,, sin §, cos . The
area A, on the cylinder r = r,, is given, for the special case 7, = a, by

dA,, =a | dgp dxg| (43)
where
d¢p oxp
dop=|—"2| dA, dxp=|—2|d0O 44
op (aﬂvl; B (391]1 1 (44)
and ¢p, xp are given by Eqgs. (13), (20) and (18). It follows that
%‘ cos A
dop=41- dA=F(A)dAi (say); (45)
\ ; I —(fﬁ sin ﬂ.)z
a
U -
, 1+-—cos 6
dig=—a 0% G de, . (46)

sinA  sin? 9,

Finally, substituting Egs. (45, 46) in Eq. (43) gives

sin ¢ dA dO;
sin A Dy sin2 6,

dA,, = a? F(A) 47)

The ray-tube area dA,, (= dA,, sin 6, cos o) follows directly. We can now combine Eq. 47)
with the ¢ equation (13) and the ¢ equation

sin? @ r
in2 —— 2 1 (Is¥ a2
M0 TR con2 & (ajz sin® 4 9

—which follows from Egs. (8), (9) and (12)—to obtain the exact ray-tube area at point B
immediately outside the shear layer. Comparison with Eq. (38) provides the first check on the

15
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approximate ray-tube area. Thus for comparison purposes, we rewrite the exact result at

rp=aas
P p ) 5198 o g, 0 sin b cos 6y 1) gp, (49)
T'm sin A €1 cos G, sin? 6,

The first 3 factors on the right of Eq. (49) are equal to 1 for on-axis sources; this fact is used
below in Section 25, to provide a cross-check on Eq. (49). '

25. Near-field test of ray-tube area approximation: (ii) Source on jet axis

A second exact expression for dA,, can be found by limiting the source position to the jet axis;
in this case there is no restriction on the measurement distance from the axis, beyond r,, > a.

The ray-tube area is given by

dA, = R,y (R, + AR, sin 6 1d6, dA| , (50)

where AR, is defined in Fig. 9. From Eq. (29) of Ref. [1],

2
AR, =9 [Eaﬂ_eo (5@,)_1] 51)
sin 6 [ {tan 6; ) \C1

Equation (6) of Appendix A gives

2
. ¢y cos< 6,
sin 6y dfy =— 0

sin 8, d6, , (52
€0 cos? & P ©2)

and R, is defined by Eq. (36). Combining these results gives

dAg:{ui[ tan 6, (99)2_1]}&@32 0, sin 6 7 d6, (53)
T Fm| | tan 91 3! o sin? 60 C052 91
which gives dA, exactly for on-axis sources. The corresponding approximate exbpression,
obtained from Eq. (38) by putting the source on-axis, is
dAg_ .
Fm™ €0 sin? 6, cos? 0,

9 :
_¢q cos? 6 sin 6 dh db, . (54)

For on-axis sources, the only difference between the exact expression (53) and the approx-
imation of Eq. (54) above is the factor in curly brackets. This observation suggests that the
more general approximate expression in Eq. (38) could be improved simply by inserting the
curly-bracketed factor from Eq. (53).

In the special case r,, = a considered in the previous section, this bracketed factor takes the

tan 65Y rcoV
o=l 00 55
(..} (tan ej @) (55)

value
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Therefore for a combination of (i} measurement position immediately outside the shear layer
and (ii) on-axis sources,

dA, cpsin Gy cos 6 dA 4o (56)

7= )
Tm™ €1 cos G, sin? 6,

This special case of Eq. (53) agrees exactly with the on-axis version of Eq. (49), which was
derived for any source position and r,, =a.

IV. Summary and Conclusions

1. A simplified model of the open-jet type of flight simulation facility has been used to
study the refraction corrections needed for sources located off the flight-stream axis.

2. The mean flow model consists of a uniform parallel jet, separated from the outer
stationary fluid by a thin shear layer. The density and sound speed in the jet are
allowed to be different from those in the ambient fluid.

3. The acoustic model consists of a point source of arbitrary directivity, located at any
position within the jet, and radiating to any position in the outer fluid (i.e. including
the geometric near field).

4, The calculation is based on the geometrical acoustics (GA) approximation, and so
contains no explicit frequency dependence in the predicted refraction corrections. The
GA approximation is valid at high frequencies, and strictly requires the acoustic
wavelength to be much less than the shear layer thickness at the edge of the flight
stream. A detailed comparison is presented in Ref. [1] between the GA method and a
wave-theory numerical calculation for on-axis sources, using realistic ratios-of shear-
layer thickness to wavelength; it shows close agreement between the two transmitted
pressure levels, even for single-frequency sources. For finite-bandwidth data (e.g. 1/3-
octave) the agreement will be closer still.

5. The GA calculation uses ray tracing to identify what microphone positions outside the
jet correspond to specified source emission angles inside the flow. Exact analytical
expressions are presented for this purpose in Equations (27-29) and Eq. (20) of
Chapter II1.

6. Amplitude corrections are then applied along each ray path, to convert facility
measurements taken at a finite distance from the jet axis to equivalent far-field flight
conditions. The generalized correction procedure is summarized in Equation (33) and
Section 23 of Chapter II1.
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The influence of off-axis source positions, on the far-field in-flight noise levels which
are inferred from facility data, arises in two distinct ways:

(a) The required microphone position outside the jet, for a fixed source emission
direction and for measurements at a given distance from the axis, will differ
according to the transverse source location.

(b) There is a ray-tube area factor in Eq. (33), whose value depends on source
radial position within the jet.

The area factor mentioned above is calculated explicitly in Appendix B. The general
result, given in Eq. (44) of Appendix B, reduces in the appropriate limiting cases to
results given in Chapter 111

In order to assess the magnitude of the effects due to off-axis source location, a
numerical study has been carried out over a range of Mach numbers and geometrical
parameter values. The results of this study will be presented in a companion paper.
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APPENDIX A : Ray-tube area calculation in the far field

The area dA,, , defined in Fig. 5, has a far-field asymptotic value

dA, = r, |dgydx,l 6))
where
09
dgy= 37 ) dA, 2)
1
)
Bio= 5| a0 ®

the far-field azimuthal angle ¢, is given by Eq. (21) of Chapter HI for finite r/a, and the far-field axial
ray displacement x; is

Xg=r,cotf, . 4)
Thus

o) _ 2 % 5

881 ——rmCSC goaigl, ( )

where d8,/d0, follows from the differential version of Eq. (3), Chapter IIl:

sin 8, sin 8;
Comd%:c‘lmd%. 7 (6)

Combining the last two equations gives

ax,

dxy c, cos? 6; sin 8,
36, M

L Tmcg sin® @ cos? 6; -

Also, since K,/K; depends on 6, but not on A [as Eq. (9) demonstrates], differentiating Eq. (21) gives

9¢y

A 6,

rs 2 . -1/2 rs Kl rs 2 . 12 &‘r_ -
=1- [1 - (E) sin? A] 4 €Os l+[l - (F(j (a_) sin? }1] %, a“’ cos A
=1- B+ B, (8)

where f; = doy/dA and B, = dogf/oA.

1t follows from these results that in the far field (r, /a — <),

¢y cos? 8, sin 6,

dAmzrmzcﬂmm(i —ﬁ1+ﬁ0).|dﬂ,dﬂll
r 2 ¢; E?sin g
zm(l—ﬁl+ﬁ0)c—omld;{dﬂll . 9

In Eq. (9), the relation cos 8, = E cos 8, from Eq. (15) has been used to replace &, by 6,.
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APPENDIX B : Ray-tube area calculation in the general case

1. The ray tube shown in Fig. 10 is defined by the following four emission directions from the
source at A:
Ray 0O (the reference ray) 8, A
Ray 1 0,+d6,, Ai;
Ray 2 o, A+ dA;
Ray 3 B, +db, A+dL. ¢h)

The intersection of the ray tube with the cylinder r = a defines a paralielogram By B, B, B;.

2. Figure 11 shows a cross-section of the emerging ray tube in the vicinity of B just outside the
jet, normal to the unit vector n, (the emerging ray direction). The cross-section C C, C, Cy is
the projection of By B, B, B4 onto the plane normal to By. Our aim in this Appendix is to
calculate the cross-sectional area A(s) of the spreading ray tube, as a function of distance s
measured along the ray from B. Note that A(0) is equal to fh, where f is measured in the i,
direction and # in the i, direction; see Fig. 11. The unit vector i, is defined to be perpendicular
to n, and coplanar with (n, i), where i, is the unit vector in the x direction. The unit vectors
(i}, iy, 1) form a right-handed orthogonal set. They are further illustrated in Figs. 12 and 13.

3. The dimensions f, g, & of the parallelogram C,C; C, C, in Fig. 11 are related to the
corresponding dimensions 17, g, #”of the parallelogram B, B, B, B; by
f=f'sin@, ., g=g’sin 6, , h=h'cos . (2)

4, The ray direction outside the jet is given by (8;, ¢,). These angles are determined by the

angles (6;, A) at which the ray is emitted inside the jet. Note that ¢, is not the coordinate of a
point on the ray, but the ray orientation relative to ¢ = 0. The required relations are -

cos 8y = G(E, ci, z—é) , (E=cosB); 3)
9o = A—sin-1 (g sin 1)+ . @

For details, see Egs. (21, 22), (6, 7) and (4) of Chapter IIL

5. It is convenient to locate points (Bg, By, B;, B;) on r = a by means of their cylindrical
coordinates (xg, ¢g). From Eq. (13) of Chapter III, we obtain

05 =H(, 2D )
also

X u r

D=XE A D ©

as follows from Chapter III, Eqs. (20), (18).
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The emerging ray direction ny(€, A) is conveniently specified in cylindrical components,
based on the (¢, r) coordinate directions at point B:
(ng), =cos G, (ng),=sin 6, sin o, (my), =sin &) cos . (N

Here angle o, is defined in Figs. 3 and 12. The set of unit vectors (i, I,, i) is defined to

correspond with the local coordinate directions {(x, ¢, r).

In what follows, we shall need to convert between local (x, ¢, r) components, based on the (i,
i¢, i,) unit vectors defined above, and components based on the alternative (i, i,, ng) system.
We therefore begin by expressing i, and i, in terms of the former system. The unit vector i, is

given by (ng x1,) / [ ny x ix| , where

(g x i) = (i, cos 8, + i, sin 8 sin 05 + i, sin & cos o) X,

=1, sin 6, cos o —1i, sin 6 sin o . (8)

It follows that
Iny,xi, | =sin 8, (9)
Thus
i, =iz cos o —1i, sin ¢ . (10}
The unit vector i; is given by
ij=i,xng. an
Thus Egs. (7) and (11) give
i = (iy cos 0y —i, sin &) X (i, cos &, + i, sin 6 sin O + i, sin 6 cos o)

=1, (sin 6 cos?aq + sin 6, sin?0y) + iy (-~ cos Gy sin ) +1, (—cos By cos &) ~

=i, sin 6, — i, cos & sin 0 —1i, cos 6, cos oy . (12)

It is easy to verify that i;-i, = O, as expected.

Calculating the ray-tube area outside the jet (beyond point B) requires a knowledge of the
separate directions of the 4 neighbouring rays. We therefore define the unit-vector increments

(e, € as follows:
n, (ray 1) —ng (tay 0) = €, ng(ray 2) —ny (ray 0) = g . (13)
These increments are special cases of the general relation
dng = d{(i, cos 8, + i, sin G, sin 0 + i, sin &) cos o)}
=1, d(cos 6p) + i¢ [d(sin 8, sin 0g) + sin B cos & diyg]

+1i, [d(sin 6, cos o) — sin 8, sin oy dpl . (14)
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10.

11.

12.

The last step above involves the relations
di,=0, di,=(-d¢pi,, di, = (dog) iy (15

for the basis vector increments due to a shift in the ray crossing point B:the 4 rayscross r=a
at four different positions (Bg, By, By, B3), and the differences in @5 produce differences in

iyandi, .

From Eq. (3) above, with cos 8, written as &,

d{cos 6y = %—g dE; d(sin 8,) =— cot 8y d(cos 6) . (16)
Also, to evaluate Eq. (14) we need an expression for doy,. Equation (21} of Chapter III gives
. Kl rs - U Cl r.!'
Sln(L’O:K—OESln/'L:Q(}L,f,é—i,%,a) . (17
Therefore
. 510) a0 .
d(sin aq) = 3Ed§+ ﬂd/’l ;  d(cos o) = —tan oy d{(sin &) (18)

The next step is to express ¢n, and hence € , &) in terms of (d€ , dA), using Egs. (5) and (14)
to (18) above:

dng(dE, d2) =i, Gy dE
+1 [sin 6 (Qg dS + (0, dA) + sin 6, cos 0 H; dA—sin & cot 8, G dé]
+1, [ sin 6, tan 0ot (Q: dE+ Oy dA) — sin 8, sin o H; dA— cos 0 cot 8y G dé&y; (19)

£ =dny(dE 0), € =dng(0,dA). (20)

To calculate A(s), we shall need the components of €, ¢’ in the i) and i, directions. The scalar
products of dn, with (ny , i; , ip) are:

g dng = {Gg cos 6 + [Qy sin 6, — Gy sin 0 cot 6] sin B, sin &
+ [ — Qg tan o sin 6 — G cos & cot Gy sin 8, cos o} d&
+ {[Q, sin 6, + H, sin 6 cos o] sin 6 sin o
+{ - Q, tan a sin 6, — H; sin ¢ sin 6] sin 6, cos o4} dA
=0, asexpected ; _ (21)
ij-dny = {Ggsin 6+ [ Q¢ sin 6y + G sin ¢ cot 8y] cos 6 sin o
+ [Qg tan o sin G + G cos g cot ] cos 6, cos 0} d&
+ {—[Q; sin §,+ H; sin 6, cos o] cos 6 sin ¢

+[Q; tan o sin By + H) sin &, sin 6] cos B cos &} dA
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1

“p, 0 @
iy dng = {[Q; sin 6, — G¢ cot 6, sin o] €08 &
+ [Qg sin 6; tan ¢ + G cot 8, cos oyl sin o} d

+{ [, sin 8, + H; sin 6, cos o] €os O

+ [0 sin 6, tan 0 + H sin 8, sin o] sin &} 44

sin 6, ) ( 1 )
=COS%Q§d§+Sm90 MQA,'*'H}. dA . (23)
13. We can now find the components, in the i, and I, directions, of the unit-vector increments € ,
¢’ defined by Eq. (20):
1 sin 6,
€ =g, Ceds & = o5 o Q246 29
g'=0, &’ =sin 6, (a;slaQHHa di . (25)
14. The next step is to find the cross-sectional area of the ray tube, A(s), at an arbitrary distance s

from point B, measured along the reference ray.

Figure 11 shows the cross-section Co C; C, Cy in (x,, x,) coordinates, at s = 0. The dimensions

(. g, k) of the parallelogram are given by:

F=G0,-iy) drg(dE, 0) =asin 6. Xy dE, (26)
g = (i i;) dxg0, dA) = asin 6. X, dA, @n
h= (i¢-i2) a dgg(0, dA) =acos 0. HydA, (28)

where we have used Egs. (5), (6), (11) and (13).

15. Further along the reference ray, the coordinates of Cq, Cy, Cy, C4 change as follows:
Point (x, x,)ats=0 {x1, x,) at arbitrary s
Cy 0,0 0,0
c 50 f+es, £y
C, g h g+g's, h+g's
Cq freh frg+es+e’s, h+6s+&’s

The area of a triangle whose vertices are located at [(0,0), (a;,&,), (51,57)] i% | a; by~ by a2| .
It follows that the ray-tube area at arbitrary s is

As) = |fh + s(eh — e,g + &) +s2g & — & e (29)
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Note that the leading term gives the cross-sectional area at B (on the edge of the jet); while
the 52 term gives the far-field area, and accounts for spherical spreading.

16. The ray-tube area expression (29) may be written as
Al = |Ag+ As+4, 2| . |dEdal . (30)
The coefficients follow from Egs. (24) to (28). Thus
Ag=a?sin G cos 0y X H; (31)

1 sin?8,
A {SIH 6 a cos aoGgHA 08 O o, Q5X1+a sin 60 (COSC(O Q1+Hl) Xg} (32)

Ay = (cos oy Q1+Hl) G§ (33

17. The explicit functions G, H, Q, X and their derivatives are listed below. From Eqgs. (3, 4, 13)

of Chapter III,
G ___¢ eI VLAY
&M.0= Fi i1 ( =2 M_CJ’ (34)
1 C
Ge =i+ 127 2% G
H(A, )= A-sinl (0,sin D), (0,=r/a); (36)
o, cos A
=l =1-8,. (37)
From Egs. (4, 6, 7, 8, 12) of Chapter III,
112 -
Q& A M,C, )= sina = [@(1 +M§)2 52] o, sin A ; (38)
2 T+ M .
Q=11 6/3:2)1/2 ([%;-(f/?. ;452 %2]312 o sin A ; (39)
12
Q= C2(1+M§)2 52] o,cos A=Qcot 4 . (40)

Finally, from Egs. (20}, (13) and (18) of Chapter ITI,

_h 6xM
e
X(S 2 M, o) =gy ;Lsm[?., = sin~( 0 sin 4] «/614- A;
={(1-o2sin? Y2 — g, cos A] . M @n
rE
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19.

20.

Appendix B

Xe=[(- 0,2 sin? A2 — g, cos 4] (ll—jggm; )

o2sin A A M
.~ sin A cos 2:|. E+ 43)

Xﬂ,=|:0-.i‘ Sin}v— (1—(75.2$i112)b)” W

The ratio dA,/d€2, which appears in Eq. (33) of Chapter III can now be calculated as

dAn A(s)

m=m=lA0+A]S+A2S2| s (44)

from Eq. (30) above and Eq. (24) of Chapter IIL The coefficients Ay, A;, A, are known from
Sections 16 and 17 above. The ray path length s (equal to BM) is given by

1 _
a£= Sin 6, [xf O'm2 - smzao— cos 0(0] , (C,, = rda) (45)

which follows from Eq. (29) of Chapter III and the relation s = dy/sin §; .

The following special cases of Eq. (45) provide a useful check on the ray-tube area result, Eq.
(44).
(1} Farfield (o, —> =):

s G,
a”sin g, (46)

(2) Measurement on nozzle lip line (0, = 1}

sfa=0 . (47)
(3) Source on jet axis (0 = 0):

5 1

2=sn gD - (48)

We consider these special cases in turn, and evaluate Eq. (44) for each one.

First, consider special case (1). In the far fiéld, Egs. (44) and (46) give

L S | o g2 (49
a0, ~ Al g - )

With A, given by Egs. (33, 35, 37, 40), we get
dA P

11

1
d, ™ sin26, | cos

. C
sin gy cot A+ 1-; cos28, cos?6,

cos26, 1
=12 Corg 900 o6, |1 -8, + B! - (50)
The quantities
Jo
Bi=g1=1-H;. 1)
d 1
ﬁ{):a;?:MQA:tanaocot?u (52)

were introduced in Appendix A. Equation (50) yields
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21.

22,

dA, = s 9 dA, (see Fig. 5)
cas?6, | dE dA|
=T Csm39 cos28, 1= B+ Byl
c0s28, sin 6
:rmzC'g;ﬁgFDﬁg—i l1- ﬁ1+ﬁ0 Idﬂ.d@ll, (53
which agrees with Eq. (9) of Appendix A.
Next, consider special case (2). When r,, = a, we have s = 0 and Eq. (44) gives
dA, ™
a0, = Ao
= a2 | sin 6, cos o X§Hl|
3 ) sin ¢ cos 6 1 .
= a2 |Sin 90 COs 0(0 sin /’l B CCOS 90 . Sin391 Hll ’ (54)

hete we have used Eq. (42) and converted the result back into the notation of Chapter III,

using angles ¢p and 6. Since
dQ, =dEdA| =sin 8, |46, da| , (55)
Eq. (54) gives

sin ¢ sin 8, cos 6 .
dA(r,=a) = a?H) . cos 0<% - Trcos ?90 sinzﬂi 1de, dAl . (56)

Equation (56) agrees with Chapter III, Eq. (49), where H, is written as F(A). This provides a
second check on our general result, Eq. (44) above. The Ay and A, terms have now both been
verified, but we still need a check on A,; a partial check is provided in the next two sections,

where we consider on-axis sources.

Qur final check on Eq. (44) is provided by special case (3). When r; = 0 (i.e. c;s =0), o
becomes zero and the coefficients Ay, Ay, A, simplify as follows.

H=¢z— 2; He=0, Hy=1. 7)

Q=sin o — 0] Q§=0,Q1=O. (58)

X— s+ M (since d; — a);

)

1+ME cos 8 1
Xe=T == Ccos 90 sin?6, ° X =0. (39)

Thus
1 cos 6
Ag = a* sin 6, . Ccos sm36 ’ (60
29 7]
— g Ccos 1 1 cos 0, 61)

cos26, sin 6, " & S8 - Teos 8, sin>, ’
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24.
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cos?6,
A,=C cos28, - (62)

The ray path length s in this case is given by Eq. (48):

st'n}—ﬂo(rm_a) . (62}

Substituting Eqgs. (60-62) in Eq. (44) gives, for on-axis sources,

Lﬂ 1 cos G
a2d,~ 'C an905m39

cos 6, )

+ (_"— ].) (C cot BOCOSZB Ctan eo‘s“mT
T .
+ (a - 1) CCOtZQO&‘)*S"fgl . (63}

The constant terms (i.e. those independent of r,,) on the right-hand side cancel, leaving

a2 dQ I ( ) Ccot? 6000529 ( ) ¢ tan Bﬂsm36 — Ccot? 9000329) I
an 6\ |
) ~1t] (64)

@ tan 8,

= ( cot?f —r
Co"% Cos g
which agrees with the result in Chapter III, Eq. (53).

All three special cases listed in Section 19 above have now been checked; in each case our
general result, Eq. (44), reduces to the previously known result from Chapter III. The only
terms not checked in this process are the Q;and Q; terms in Eq. (32). It therefore appears safe
to base a numerical study on Equation (44), with the three coefficients (Ay, A, A,) given by
Eqgs. (31-43).

27



List of Figures

Figure 1
Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8
Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Ray geometry: (a) side view; (b) view along x axis.
Refraction in transverse plane.

Source emission angle and ray refraction in the transverse plane. Transverse
distance AB = d;.

Ray diagram for sound propagation from source (at A) to jet boundary (at B).
Ray velocity vector v is the resultant of ¢; in the wavenormal direction and U

in the axial direction.

(a) Ray tube geometry between source and far-field point.
(b) Enlargement of ray tube intersection with the cylindrical surface r =

Iy in the far field (r,, >> a).
Flight simulation versus the true flight situation: comparison of ray paths.

Geometry for calculation of measurement azimuth angle. Transverse distance
BM = do.

Definition of intensity component normal to wavefront.
Near-field correction for a source on the jet axis.

Intersection of ray tube with the edge of the jet (r = a). Also shown is the
emerging reference ray, with direction ny,.

Cross-section of ray tube immediately outside the jet, viewed looking back
along the reference ray towards By; the unit vector ng points out of the page.
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Figure 1  Ray geometry. {(a) Side view. (b) View along x axis.

Figure 2  Refraction in transverse plane.

Figure 3  Source emission angle and ray refraction in the transverse plane.
Transverse distance AB = d;.



Figure 4  Ray diagram for sound propagation from source (at A) to jet boundary
(at B). Ray velocity v is resultant of ¢4 in the wavenormal direction,
and U inthe axial direction.
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Figure 5 (a) Ray tube geometry between source and far-field point.

(b} Enlargement of ray tube intersection with the cviindrical surface
r =1, in the farfield (r., >> a).
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Figure 8  Flight simulation versus the true flight situation: comparison of ray paths.

Figure 7  Geometry for calculation of measurement azimuth angle. Transverse
distance BM =d,.
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Figure 8  Definition of intensity component normal to wavefront.
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Figure 9  Near-field correction for a source on the jet axis.



Ray direction

Figure 10 Intersection of ray tube with the edge of the jet (r = a). Also shown is
the emerging reference ray with direction ng,.
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Figure 11 Cross-section of ray tube at point B, viewed looking back along the
reference ray towards By; the unit vector ng points out of the page.
The three unit vectors iy, i, Ny forma right-handed orthogonal
set, and remain constant along the ray.
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Figure 12 View in i, direction (paralle! to jet axis), showing the incident and
transmitted ray angles at B and the unit vector i, normalto the
emerging ray in the transverse plane.
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Figure 13 Viewin i, direction, showing the emerging ray (as in Figure 12) and
the unit vector iy perpendicular to the ray.
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