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ABSTRACT

'The response of two spring-coupled elements is investigated in an attempt to
develop a unifying approach to the weak coupling criterion for applying
Statistical Energy Analysis (SEA). Recently, Bessac, Gagliardini and
Guyader presented a series expansion technique for analysis of high
frequency vibrations in spring coupled structures while Fahy and James
proposed a measurement method for indicating SEA coupling strength. In
each article a new measure of coupling strength is presented. Here, the
similarity between these two measures is demonstrated. They are both related
to the concept of ‘local’ and ‘global’ modes and, in effect, they are
equivalent to the measure previously proposed by Finnveden and Mace. As a
consequence it is possible to further our understanding of SEA. The study is
mainly a compilation of previous results while some new results for the
transient response of two coupled oscillators are derived. Also, in an
intermediate step of the analysis, the “standard” SEA equations for the
energy flow between two weakly coupled, statistically defined, single d.o.f.
elements are formulated, for the first time.



1. INTRODUCTION

Statistical Energy Analysis (SEA) is a convenient approximate method for predicting
high frequency vibrations in built-up structures. It is quick to apply and requires only
general structural information. It is believed that SEA applies if there are many
resonances in each element and if these are weakly coupled. However, there is no
universally agreed criterion for coupling strength. Therefore, much effort has been put
into investigation of the SEA hypothesis that energy flow between two directly
coupled elements is proportional to the difference in their modal energies. Recently,
Bessac, Gagliardini and Guyader [1] and Fahy and James [2] published investigations
of the high frequency energy flow between two multi-modal elements. In each article a
new and very interesting measure of coupling strength is presented. The object of this
work is to show the similarity between these two measures. It will be shown that, in
effect, they are equivalent to the measure previously proposed by Finnveden and Mace
[3, 4, 5]. As a consequence, it is possible to further our understanding of Statistical
Energy Analysis.

When applying SEA, the investigated structure is divided into ‘elements’ and equations
for the conservation of energy are formulated with the vibration energies as
independent variables. This formulation is facilitated by two assumptions: 1) In each
element the response is determined by its ‘resonances’, that is, vibrations are described
by those of the elements’ eigenmodes having resonance frequencies within the
considered frequency band; 2) The energy flow between coupled elements is
proportional to the difference of their modal energy, (i.e., Coupling Power
Proportionality).

The first assumption enables us to define an ‘element’. In many cases it enables
response calculations (e.g., velocity, sound pressure or stress levels) from SEA results.
The first assumption is related to the (perhaps not rigorously defined) concept of
‘local’ and ‘global’ modes. Local modes are those proper to an isolated element. In
coupled structures only global modes exist; that is, they are solutions to an eigenvalue
problem for the entire structure. However, modes may be localised, meaning that all or
most vibration energy in a mode may be found within an element. Since it is localised,
not much energy is exchanged at the boundary. Hence, in principle, it is possible to find
conservative boundary conditions for an element such that the local modes’ resonance
frequencies and their mode shapes are not much different from those of the global
modes. In such a situation assumption 1) is approximately fulfilled and one is entitled
to say that the structure's response is given by its local modes.

The second assumption, of coupling power proportionality, is based on the result
derived by Lyon and Scharton showing it to be exactly true for the frequency-averaged
energy flow between two conservatively coupled oscillators [6]. This result is then, in
an ad hoc manor, extended to apply to the coupling between sets of oscillators. The
assumption is fundamental to the formulation of the SEA equations. It is also the basis
for the calculation of the parameters in these equations. Moreover, because of this
assumption, these calculations are simplified since it is then implicit that the energy
flow between two directly coupled elements could be considered while neglecting the
rest of the structure.



First, in Section 2, some previous work on SEA and aspects of the recent articles by
Bessac et. al. [1] and Fahy and James [2] are discussed. Subsequently, in Section 3, by
combining the analysis by Bessac et al. [1} with those by Langley [7] and Skudrzyk [8],
for two point-coupled elements, the second SEA assumption is proved for weak
coupling. A criterion for the validity of this assumption is determined. It is found to be
the same as that which applies for ensemble averages in one-dimensional systems [3-5].
It is then also demonstrated that the coupling measure defined by Fahy and James is, in
effect, equivalent to this measure. Because of the equality of the measures of coupling
strength discussed, the significance of the measurement method developed by Fahy and
James is enhanced. With this method it is possible to perform simple in situ
measurements to determine whether or not SEA applies. Finally, while the second SEA
assumption appears to be the more suspect (historically most effort has been made to
prove or find limits for the coupling power proportionality), it is argued that the
coupling strength measure indicated in references [1-5, 7] is essentially related to the
first SEA assumption. That is, it is argued that if the responses in two coupled
elements are with some effectiveness described by their uncoupled resonant modes,
coupling is weak and SEA applies.

2. PREVIOUS WORK

In this section some results from the literature and some minor reflections are
assembled. All are useful in the analysis in Section 3.

2.1 RESPONSE IN A SINGLE ELEMENT TO BROAD BAND EXCITATION

It is well known that the frequency averaged input power to a weakly, viscously,
damped single-degree-of-freedom oscillator from a white force excitation of bandwidth
€2 is given by

s

I 2 2
an :'EJQ ’f| Yd(!) :|f| 2mg’

o, € Q,

(1)
P, =0, o ¢ Q,

m

where

o, =Vkim, Y=-io/(k-ioc-w’m), 2)

where a time dependence e’ is implicitly assumed and where f is the rms complex

amplitude of the force, ¥ is the input mobility, k is the spring stiffness, ¢ is the viscous
damping coefficient and m is the mass of the oscillator. Equation (1) is asymptotically
exact in the limit of zero damping. It is very accurate for small damping in which case
it is also valid for mass- or stiffness- proportional damping.

In SEA, the one-oscillator result is generalised to apply for an element, described by its
Iocal modes
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where ( f 2) is the mean square modal force on the element, m is the mass, N is the

number of resonance frequencies within the frequency band € and n is the modal
density. ¥, is for large elements equal to the characteristic mobility, the mobility for an
infinite element. Equation (3) is derived for rain-on-the-roof excitation or as the
expected value of the input power for a point force at a random location within the
element. (Derivations are found, e.g., in [9, Section IV, 4] and in [10].)

Equation (3) applies for frequency band averages. Skudrzyk [8] showed that at higher
frequencies (above the first few resonances) the space-averaged point mobility for a
particular frequency is bounded by

LeM/2<Y <Y /(rMp2), “

where M is the modal overlap, that is, the ratio of the bandwidth of a resonance to the
average frequency spacing between resonances. M /2 is the modal overlap based on

the noise bandwidth whereas M is based on the 3 dB bandwidth
M =naen, (3

where n is the loss factor. The upper limit in equation (4) is reached at resonance and
the lower at anti resonance. It should be noted, these limits are not exact but depend
on the position in the element. However, for uniform elements (beams, plates, air-
volumes, etc.) the upper limit does not much differ from the one given.

2.2 SEA OF THE ENERGY FLOW BETWEEN TWO ELEMENTS
In SEA, the independent variables are the modal energies

Em = E/n , (6)

where E is the vibration energy of an element within a frequency band. The governing
equation is that of conservation of energy which is written

M+C -C Em | | B
-C  M,+C||Em,| |P,!’ (7)
where the coupling coefficient C is defined by this equation. In the new edition of Lyon
and DeJong’s book [11] it is proposed that the modal energies, defined by equation (6)
should be termed ‘modal power potential’. To further this suggestive definition, it is here

proposed that the non-dimensional parameter C should be termed the ‘modal energy
conductivity’, or, when the context is given, simply the ‘conductivity’.



For two elements, coupled at a point via a spring, the conductivity is [10,
equation (23a)]
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where k, is the coupling spring stiffness, and where ( ) denotes that appropriate
averaging (frequency, space, ensemble, etc.) should be performed.

For two end-coupled rods, C'is, in the limit of large elements, given by [5]

v:+¥i+(0/k) ©)
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If coupling is weak in the sense that the mobility of the spring is much higher than the
characteristic mobilities of the elements, both equations (8) and (9) simplify to

C= TE(DCQ v, X, . (10)

2.3 DERIVATION OF SEA EQUATIONS

Langley derived equations similar to the SEA equations for linearly vibrating systems
with conservatively coupled elements which are rain-on-the-roof excited [7].. The
coupling coefficients are found from the solution to the equations of motion for the
entire system which, for practical applications, is a drawback. However, the theoretical
implications are immense.

The independent variables in Langley’s formulation of the equation of conservation of
energy are

E == T,./_[Q_[Vi Re(p ¥)dxdao , (1D

where f is the kinetic energy in element i within the frequency band Q, V, is the
element’s “volume’, p is the mass density and ¥, is the point mobility.

As shown by Langley, if the mass density is uniform, and if the first SEA assumption is
fulfilled, that is, if the point mobility of each element is given with sufficient accuracy by
those of its uncoupled modes that have resonance frequencies within the considered
frequency band, then equation (3) applies and the independent variables are

E =2T/N, , (12)

!



where N, is the number of modes having resonance in the frequency band Q. If the

response is given by resonant modes then to a good approximation 21?; =E , where E,
is the total vibration energy within the frequency band.

Thus, using the results by Langley, it is possible to define weak coupling by the
requirement that the frequency and space averaged point mobility in each element in a
structure is governed by its resonant modes and that it is, within the accuracy required,
unaftected by the presence of coupled elements. If these criteria are fulfilled for a two-
element structure, the coupling power proportionality is proved; the second SEA
assumption is demonstrated to be a consequence of the first SEA assumption. For a
many-element structure, Langley’s analysis shows that if the first assumption is fulfilled
the conservation of energy is expressed with coupling powers proportional to the
difference of modal energies. However, the importance of the indirect couplings is still
an unsettled question [5, 12, 13].

2.4 ENSEMBLE-AVERAGED ENERGIES IN ONE-DIMENSIONAL STRUCTURES

Mace [4] and Finnveden [5] calculated ensemble averaged energies and energy flows in
structures with one-dimensional end-coupled elements. The ensembles are defined so
that at each frequency, and for each uncoupled element, there is an equal probability
that the nearest resonance is above or below this frequency. This definition implies that
the ensembles are, for each element, defined via stochastic Helmholtz numbers

KL =90+¢, 6 ={kL), ¢ = R[-n/2,7/2], (13)

where k is the wavenumber, L is the element length, 0 is the expected value of the
Helmholtz number and ¢ is a rectangular distributed stochastic variable. The energies
and energy flows are stochastic functions and their expected values are calculated on
this basis. Mace considered two-element structures with arbitrary wave-guide elements
in which only one wave-type may propagate [4]. Finnveden restricted the analysis to
elements described by the Helmholtz equation while considering three elements [3].
The four major findings, relevant for the present analysis, are: (i) The relations
between ensemble averaged energies and energy flows depend only on non-
dimensional numbers: C (one for each coupling) and M, (one for each element). (i) If

the factor y is small,
v = C/(n M, M,), (14a)
that is if
Y <1, _ (14b)

the so-called ‘travelling wave’ estimates, e.g., equation (10), apply for the two-element
structure. If v is larger than unity, the coupling factors decrease and, if the modal

overlaps M, and M, are of the same order, this decrease is directly proportional to

the square root of their product. (Recently, this conclusion has been confirmed by Yap
and Woodhouse for plates [14].) (iii) For the three-element structure, when y is small



for both couplings, the travelling wave estimate of the modal energy conductivity
applies, and the indirect couplings vanish. That is, only when the inequality (14b) is
fulfilled, the coupling power proportionality applies for the ensemble averages in a
three-element structure [5]. (iv) As shown by Mace [15], the criterion (14b) marks a
qualitative change in the characteristics of the energy flow between two coupled
reverberent elements. When coupling is weak according to the criterion (14b), the
response in each element is dominated by its local modes; a directly excited element
may, significantly, only accept energy from the source via its local resonances and,
similarly, a coupled element may only accept energy from another element via its own
resonances. Thus, if y is small the ensemble averaged energy flow between two
elements is governed by those members of the ensemble that have at least one pair of
equal uncoupled resonance frequencies. On the contrary, when y is large, energy is
both accepted and transferred at the resonance frequencies of the coupled systems,
these differing from the uncoupled frequencies. The conclusion is that the coupling
measure Y signifies, from an ensemble-averaged point of view, whether response is

local or global.

The conclusions presented above are further enhanced by the discussion in the recent

article by Mace [16]. (Please note, Mace uses a different expression for 7y ; for
reverberant elements (and if C is not close to its limit value one) this expression is to a
fair approximation y = \/'7 . For the qualitative discussion here this difference is of

muce

no importance.)

2.5 COUPLING EIGENVALUES

Bessac, Gagliardini and Guyader investigated two coupled elements, each having a
motion described in terms of its uncoupled modes [1]. These modes form a complete
basis and may therefore be used to express the solutions to the coupled equations of
motion. It is shown that the response of the coupled structure is given by

w w, ¢ C
[I—C][wj = {ij, C = [Cn tﬂ, (15)

where the vector w, contains the modal velocity amplitudes in element i, w,;

contains the uncoupled modal amplitudes, I is an identity matrix and C is a non-
dimensional coupling matrix. If the magnitude of C is small, that is, if

A= max!eigenvalues(C)l <1, (16)

it is possible to use a series expansion to solve equation (15),

Wil _ 2, 1| We
|:W2:I = [I+C+C + ]|:Wb2j| . (17)

It should be pointed out that this series expansion method has previously been used to
solve the same problem by, e.g., Newland [17]. However, in reference [1] a criterion



for the convergence of (17) is derived. The special case of spring coupling, is
considered. It is shown that in this case the magnitude of A is given by

(18)

4

A= ‘(kc/co)z Y Y,

The authors then investigate coupling involving many degrees of freedom and seek
solutions of the form (17) using only the coupling path, the part of C, that is given by
its largest eigenvalue. In the present work, only point coupling via one spring is
considered; however, the analysis in [1] implies that the results possibly have wider
applications.

2.6 TRANSIENT EXCITATION OF COUPLED OSCILLATORS

Pinnington and Lednik investigated the application of the transient version of SEA for
prediction of failure due to shock excitation of equipment mounted on larger structures
[18]. The equipment, and the structure on which it is mounted, are modelled as single
d.o.f. system, see Figure 1. Of special interest for the secondary system are the total
vibration energy, maximum amplitude, the rate of initial rise in vibration energy and the
time to peak energy (of which only the latter, the ‘rise time’, is of interest here).
Analysis was made for the case of ‘equal’ resonators, having equal uncoupled
resonance frequencies and loss factors, but not necessarily the same mass. The initial
conditions are

4 =x=%=0 x=1m,
where the ‘dot’ signifies the time derivative. Upon considering the envelope of the
secondary oscillator’s kinetic energy, it was found that its maximum energy occurred

atatime ¢ given by (please note the print error in [18])

ta‘n(x Im/zo‘)l) = X/n] 0“)12 ? (19)

where

M = /mo, o, = Jk+k)m, x =k /Jmm,. (20)

The exact SEA coupling loss factor for two spring-coupled oscillators is given by [11]

1 (@m +o,m,)
5 .
((1)12 —(’)é) +(0317h +603ﬂz)(60m1€0§ +0}zﬂ26012)

My, = (21)

From this it follows that the right hand side of equafion (19), for equal oscillators, is

xme! = 2n,/m . (22)



The ‘Smith criterion’ for coupling strength in SEA is that 1n,, /n, <<1 [19]. Thus, it

was in [18}' concluded that the rise time is very dependent on coupling strength as
defined in this manor. In the limits of very strong or very weak coupling it is given by

ot, =2/M, N,/M, <1, ot, =" /Y n,/n > L (23)

Tt is seen that for equal resonators, for very weak coupling the rise time is independent
of the strength of the coupling spring while for very strong coupling it is independent
of damping.

2._7 MEASUREMENTS OF SEA COUPLING STRENGTH

The observation that the transient response of a secondarily excited system is very
dependent on coupling strength is explored by Fahy and James in developing a
measuring technique for in-situ assessment of the correct sub-division of a structure
into SEA-elements [2, 20, 21]. The method’s principle is motivated by the Langley
definition of coupling strength: coupling is said to be weak if the Green’s function for a
system is approximately equal to that for the uncoupled system. It is argued that the
quite dramatic qualitative change in the impulse response when the coupling strength is
altered is a good indicator of the degree of modification of the Green’s function.

In [2] numerical experiments are made considering coupled rods, beams and plates.
The physical coupling strength is altered, showing that if there is a reasonable overlap
of uncoupled resonances in the connected elements, and if coupling is weak, the rise
time is very long while, otherwise, it is only of the order of a few cycles or less. A
normalised measure of the rise time, C,, is introduced as the ratio of the rise time to

the time until the energy has decayed to 10% of its peak value.

In [20] measurements on coupled plates and connected reverberation rooms are
presented. For the plates the physical coupling strength is altered while for the
reverberation rooms the damping is modified. These measurements confirm the trends
indicated by the numerical experiments. However, attempts to match the results to the
Smiith criterion of coupling strength are not entirely successful. Large values of C, are

correlated to the ratioc mn,, /7, but not in a systematic manner.

10



3. ANALYSIS

3.1 WEAK COUPLING IN SEA, TWO ELEMENT STRUCTURE

For the series expansion in equation (17} to be useful, it must converge for all
frequencies; hence, also when there is resonance in both connected elements.
Combining equations (4), (5), (16) and (18) it is seen that the convergence is certain if

K kK> Y,Y 2 C

A= o
oM, M, =7MM,

where C is given in equation (10) and where v is defined by equation (14a). It is the
coupling strength measure proposed by Finnveden and Mace [3, 4, 5].

This means that if ¥ is small the local modes are effective in describing the response of
the coupled system: the series in equation (17) converges rapidly. Hence, if ¥ 1is small,

the first SEA assumption is fulfilled and equation (12) is asymptotically accurate.
Consequently, the analysis by Langley proves that the energy balance is governed by
the SEA equation written as in [13, equation (6)], with coupling loss factors defined by
[13, equation (2)].

Here, it is preferred to use the modal energy, defined by equation (6), as independent
variable since the modal density does not in general depend on the bandwidth, and,
more important, this scaling renders the matrix in equation (7) non-dimensional. Using
this scaling in Langley’s work, the energy variable in equation (12), [13, equation (3)]
is replaced by the modal energy defined in equation (6) and the matrices M and q, [13,
equations (4) and (5)] are evaluated as frequency averages, that is they are divided by
€2. Upon this basis the energy balance for a two-element structure is written as in
equation (7).

Thus, the application of SEA for the energy balance between two spring-coupled
multi-modal elements is demonstrated. It is found that this application is valid when the
non dimensional number v , defined in equation (14), is small.

3.1.1 Moderately strong coupling

Above, results in SEA are derived directly from a deterministic analysis without using
any statistical assumptions or, even, without accounting for the smoothing effect of
frequency averaging. The results were derived on the assumption that A <<1. In
equation (17), neglecting all but the leading order terms results in a relative error that
is 0(7@) = 0('}!). Including the coupling terms result in modifications, which are of this
order, of the mode shapes, damping and resonance frequencies. However, the
frequency- and space- averaged point mobility in equation (3), and thus also equation
(12), is hardly altered by such modifications, unless they are large. This observation is

supported by the results in {22] showing that for three cascade-coupled rods SEA
predicts ensemble averages accurately if v <1, implying that vy <<1 is much too

severe a criterion.

1t



In the present work, we are content to derive results for very weak coupling and to
demonstrate a criterion by which the validity of this assumption could be assessed.
Quantitative estimates of the errors resulting for moderate or strong coupling, or the
quantitative implications of stochastic assumptions in SEA, are not dealt with.

3.1.2 Other coupling conditions :

It should be noted that the rapid convergence of (17) is only a sufficient condition for
weak coupling - not a necessary condition. For instance, consider two large thin
flexurally vibrating plates which are connected via a rigid, very heavy, mass. These
elements are, from an energetic point-of-view, weakly coupled. However, if the free
plate modes are used in (15) to express the solution to the coupled equations of
motion, for each frequency a large number of modes are required to fulfil the condition
of almost blocked motion at the heavy mass. Thus, the series expansion (17) converges
slowly (if at all) even though the elements are weakly coupled. If, instead, equation
(15) is formulated with fixed-base modes, having blocked motion at the mass,
convergence of (17) is rapid. The implication of this is that when calculating SEA
coupling factors and using a weak coupling assumption, as in (10) or in [13, equation
(43)], care must be taken so that the uncoupled modes obey appropriate boundary
conditions. This, of course, also applies when, as explained above, the effectiveness of
the uncoupled modes in describing coupled motion is used as an indicator of SEA
coupling strength.

3.1.3 Transient analysis for weak coupling
If v <<1, it is sufficient to calculate the response of a directly excited element to zero

order in coupling strength, neglecting connected elements. Similarly, the response of a
second, indirectly excited, element may be found considering only the first order terms
in coupling strength, using the calculated response in the first element as a velocity-
source at the end of the spring; this, for weak coupling, results in a force-source on the
element. This mode of analysis, when ¥ <<1, applies for all frequencies, hence it also

applies for transient analysis. This approach is used by James and Fahy in investigating
theoretically the efficiency of the rise times as an indicator of coupling strength [21].
Here, the criterion y << 1 for this application is demonstrated.

3.2 WEAKLY COUPLED OSCILLATORS
The series expansion in equation (17) also applies for sets of spring-coupled oscillators
provided that equation (24) is fulfilled. Using the results in Section 2.1

R —.
m’ T (25)

M, =neon, ¥, =

ci

2| A

From this, the conductivity C and the coupling strength measure ¥ are

2 k?
C=—=
T

x_leNz

YY:Q)ZSY’

cl *c2

(R

(26)



v = ¢/lnm, Mm,) = x*/2onm,),

where % is defined in equation (20).

3.2.1 Two coupled oscillators :
The equations above apply also for two coupled oscillators having their resonance
frequencies within the frequency band €. In this case N, =N, =1. The expression for

the coupling strength measure ¥, in equation (26), is independent of the mode count
and hence it applies to the two-oscillator problem. Notably, v is also independent of
bandwidth, that is, of the probability that there is resonant coupling.

If two oscillators are weakly coupled according to the criterion Yy <<1, and if their

uncoupled resonance frequencies are assumed to be uniformly probable within the
frequency band €2, the energy balance between them is written as in SEA, equation
(7), with

M, =n,0/Q,
2 12 noy @7)
C = ;mz .1, = 50)292 .

The generic problem of two statistically defined, weakly coupled, oscillators is the
foundation for much of our understanding of the modal approach to SEA. Curiously
enough, it appears as if the standard SEA formulation for this problem has not
appeared in the literature previously.

13



3.3 THE RISE TIME AS AN INDICATOR OF THE APPLICABILITY OF SEA

3.2.1 Undamped single d.o.f. system

To understand the transient response of a secondarily excited element it is beneficial to
study a simple case first - the transient response of an undamped single d.o.f. system.
As discussed above, if two sets of spring connected elements are weakly coupled, the
motion of the directly excited element is governed by its uncoupled modes. This
motion acts via the spring as a force source on the indirectly excited element. If
damping is small this force is as a set of harmonic forces with frequencies equal to the
uncoupled resonance frequencies. For weak coupling, the response of the indirectly
excited element is then governed by its local modes which may be treated as set of
independent single d.o.f. oscillators. For times that are small compared to the of the
decay time, ¢ <7 : the motion is as if the oscillator had no damping. Hence, the

response of one undamped single d.o.f. oscillator describes much of the response of an
indirectly excited weakly coupled element.

Considering one such, undamped oscillator, and sinusoidal excitation the equations of
motion are

olx+ = f(t)m,

f) =010,  f() = f,sin(w, 1), t>0.

(28)
x(0) = x(0) = 0
The solution is
fo @ sirl(co2 t)—co2 sin(wl t)
x = 5 3 , O #®,,
m, @, w0 - o,

(29)

x = an(nf (sin(o)l t)-w, tcos(@, r)) ®, =0,.

If o, >>®, or ®, <<®,, the amplitude of the oscillator reaches its maximum almost

instantaneously. Therefore, for two weakly coupled systems with motion described
with their uncoupled modes: if none of the resonances of the two systems are equal, or
almost equal, the rise time is very small.

However, if ®, =, , after a few cycles the velocity is

v o= f(}/(2m1 (01) , rsin(a)l r), (30)

and the input power, averaged over a cycle, is approximately

L perien fo ,. ;&
an‘i'q'-[o fvae =gt To= e 31
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Consequently, for an undamped oscillator excited at its resonance frequency, both the
velocity and the input power increase linearly with time. This solution is valid also for a

weakly damped oscillator as long as r<<1/(n,®,). At larger times, if there is

damping a steady state will asymptotically be reached. The amplitude at steady state is
_given by energy conservation

1 romje, 1 ponfo, 5 (32)
P, = —fjo fvdt = P, = }:"‘0 no,m v dr.

For excitation at the resonance frequency, the force and the velocity are in phase.
Assuming this, the steady state velocity is found to be

v = fo/2mmn,0,) sin(o, ). (33)

An estimate of the time to reach steady state is arrived at if the solutions for v in
equation (30) and the expression (31) for input power are used in the energy balance
equation. Thus

2

fo ' 1 p2nfe, 2 0,2
P, = 4—mlt= P, = _]’TJ.D no mv dt = no 8m t (34)
From this, the steady state is reached approximately at a time
ot = 2/n,. (35)

This, see equation (23), is the rise time for two equal, weakly coupled oscillators. The
exact agreement is, of course, a coincidence which perhaps is explained by two
counteracting effects. On the one hand, the rise time is underestimated using equation
(30) for the velocity which does not account for dissipation, which becomes important
in the power balance as steady state is approached. On the other hand, the rise time is
overestimated when the exponential decrease in the force excitation, because of
damping and coupling loss in the directly excited system, is neglected.
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3.3.2 Two coupled unequal oscillators

Pinnington and Lednik investigated the transient response of two equal oscillators and
found equations (18) and (23) showing that the rise time is dependent on coupling
strength [18]. In the previous section it is, for weakly coupled oscillators, indicated
that the rise time is also dependent on the frequency spacing between the uncoupled
resonance frequencies. Fahy and James define ‘modal proximity’ to be when spacing
between resonances is small enough not to distort the rise time's capability as an
indicator of coupling strength [20]. To quantify this and to further our understanding
of the relation between rise time and coupling strength the transient response of two
unequal oscillators is studied.

For computational ease, damping is described as viscoelastic. Thus, the viscous
damping coefficients ¢, = ¢, =0, whereas the relation between force and displacement

in the springs are of the form [23]
F(t) = kx(t) - [HE@)x(-7)d7, (36)

The relaxation function H is

Hix)= Y, e™", (37)

where C, and A, are parameters governed by the relaxation process in the spring.

For harmonic motion, x(¢)=Xe ™", equation (36) simplifies to

F=fe =Fze™, E=k(l-m) =k —-2,C/0 -in). (38)

The equations of motion and the initial conditions for the coupled oscillators are

F+mi +k{x-x)=0, F+mi +k(x,—x)=0,
(39)

x, =x,=x% =0, x,=1/m at =0,

Harmonic solutions are anticipated and the spring properties, including the loss factors,
are assumed to be constant for the considered frequencies, while it is accounted for

that the loss factors are odd functions of frequency: k = k(l— in sign(m)). Thus, the

equations (39) are transformed to a linear eigenvalue problem in ©”. Upon solving
this, and applying the three homogenous initial conditions, the displacement of the
second oscillator is

1 1 o, (40)
x, = A | e sinhr — e sinb,t |,
b, b,
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where the constant A, is determined by the non-homogencous initial condition
together with the eigenvectors found, while o, and b, are given by minus the
imaginary and by the real part of the positive square root of the eigenvalues

o, = —Im d)‘fi\j(d)“f~oij)2/4+x2 ) an

b, = Re\/a")'fi\/(d)'f—dif)z/4+x2 ,

where % is defined in equation (20) and

@, = @7 +&7)12 5 & = (£ +k)/m = of(1-in). (42)

If damping is small, 1 << 1, @, is as given in equation (20).
The velocity of the oscillator is given by

%, /A = e™'{cosh t—a, /b sinb 1) ~ e (cosb,f—0,/b, sinb,t} =

43
~D sin(®, 1+0,,)sin(®, 1 +¢, )+ d cos{, t+0,)cos(®, 1 +¢, ) )
where
o, = (b+h )2, ©, = (b -b)/2. (44)
Upon assuming 1)* << 1, it follows that
(@, /B) << 1, (o,/5,) << 1, (45
thus, neglecting these small terms, we have
D =¢%te™ g =eM-e™, (46)
o, = (o /b, +ou, 1B,)/2, 0, = (00 /5, —0, /b,)2. @7

To arrive at an interpretable expression for the rise time, simplifying assumptions are
made. First of all it is, as above, assumed that damping is small, n*> << 1, so that in all
expressions only the leading order terms in 1} need to be retained. Upon this basis, it is
also assumed that

2 _ 2 2
lin—l—zm-g—l = ofe), :—;{- =ofe), e << 1. (48)

H 2

3]
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For small 1| and &, the time scale given by , 18 much shorter than those given by

o, and o,. Then it is justified to calculate the average kinetic energy over one period
of ®, while considering ®,,, D and d constant. Thus

é, = ;)—;C J:mmp ek.(t) dt / (Af m, /2) =
D*/2 sin*(w, 1+9,) + d*/2 cos*{w, t+¢,) = (49)

e (cosh(20,, 1) cos(20, 1 +29, ))

where
20, =0y +0,, 20, = O -0,. (50)

From equations (41) and (48)

4 (51a)

IEPRY 2 12
@ - o, { (0 - :
o = Re 5\/( i 2) +_0:ij: — _s_(( 1 2) +'X,_] + 0(83), (Slb)

60 e |2 4o +ofne?) (510

Also consistent with the assumption (48) is

! [g_l_u_zJ _1_(@-0,)-1;)

o =1 _ (514d)
" b b 4\/(“)1_(’)2)2""%2/@?

: + o(n ).

In what follows the small terms are neglected. It is seen, the evolution of the time
averaged kinetic energy is governed by three time scales: o, which is an average

damping constant; ¢, which is a measure of the difference of the damping constants
of the two modes and ®, which is the beating frequency. To further simplify the
expression for the rise time, non dimensional time, T, is infroduced

18



T'=o0,t=m,0,1/2. (52)

»
This leads to

&,(T) = 2¢77 (sinh®(WT) + sin*(x T+9,,)) » (53)
where

0, =M, R, N, = M+1,)/2, p=38A/k
(54)

0; — @,

m, N
= 11— x :JA2+27(1—82), A= o,

- n, +N,
and where the coupling strength measure +y is defined in equation (26).

The evolution of the average kinetic energy is thus given by three non-dimensional
numbers U, ¢, and K ; W is a relative measure of the difference in modal damping,

¢, is a time ‘delay’ that occurs if there is a difference in modal damping, and K is the
ratio of the beating frequency to the average damping constant.

3.3.3 Equal damping
For equal damping, n, =1, the expression for the time averaged non dimensional

kinetic energy, equation (53}, simplifies to

e, = 2e¢?Tsin’x T. (55)
So, for equal damping, the evolution of the time averaged kinetic energy is described
by only one parameter, K . The non-dimensional rise time, Tm, is determined by
equating the time derivative of (55) to zero, resulting in

Tm = atan(K)/K. : (56)

This function is plotted in Figure 2 where it is seen that 7m is equal to unity for small
K , then at ¥ =1 it rapidly decreases to small values.

For equal damping the parameter ¥ simplifies to

K = AP +27 (7)

where v is the coupling strength measure defined in equation (26) and where the non

dimensional number A is the ratio of the frequency spacing between uncoupled
resonance frequencies to their 3-dB bandwidth.
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In Figure 3 the rise time is shown as a function of v and A . For small A, the rise time
is close to ﬁnity if v <1 whereas it rapidly decreases for larger v . For large A, the
rise time is small regardless off the size of y . It is seen that if A=1 then y <1 if
Tm>2/3 and, put the other way, if A<1 and Tm>2/3 then y <15. Similarly, if
A<2 and Tm>05 then y <3. From the Figure it is concluded that, for equal

damping, modal proximity means that the separation between uncoupled resonance
frequencies is less than or approximately equal to the 3-dB bandwidth of the
resonances. If there is modal proximity, 7m is a good indicator of coupling strength,
that is, an indicator of whether v is smaller or of the order of one, or if it is larger than

this.

3.3.4 Unequal damping
For unequal damping, in addition to A and v , the parameter &, specifying the degree

of inequality of the modal dampings, is needed to determine the rise time. Also needed
is the factor ¢, =m,|L which appears in the phase of the beating oscillation. By

definition, the magnitude of | is always less than unity, so ¢, is restricted. However,

the sign of W may be just as well positive as negative (dependent on which of the

oscillators that has the higher resonance frequency and which of them that has the
higher damping). This means that ¢, has the annoying property of making the

expression for &, unsymmetric with respect to the characteristics of the two
oscillators. Clearly, unless 8 =0, ¢, is not negligible for small times. Here, we are
interested in its significance for the rise time.

For three limiting cases ¢, is clearly negligible: 1) If ¥ >>1>|u|, the rise time is
approximately given by kT, =n/2 and the small phase shift, ¢, <m,, is of no
significance. 2) The same applies, off course, for n, = 0. 3) If I>jp|>>x, ¢, is

negligible since, in this case, for 7' << 1/x

g, = 2e77 (sinh2 uT+(T]P u)z) + ok T) 58)

and the rise time is

Tm =~ atanh(u)/ p (59)

where it is used that, in the present case, Tm >1>> ’rlf, .

For all cases but the three discussed above, it appears that numerical investigations
have to be made to find the relative importance on the rise time of the parameters ¢_,

KL and K€ . Now, the rise time is determined when the derivative of equation (52) is
equated to zero
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[},L siﬁh(u Tm)cosh(nTm) + x sin(K Tm +¢m) COS(K Tm+¢m)] -

(60)
[sinh2 (1 Tm) + sin’(k Tm+9,, )] =0

This equation is solved numerically. In Figure 4, Trﬁ is shown as function of i and ¥
for ¢,,=m, =0. In the figure it is seen that if [l is close to unity while ¥ is small,

Tm is large as stated in equation (59). For all other cases, Tm is virtually independent
of w. That is, if ¥ << A<1, the rise time may become larger than that given by

equation (56), otherwise this equation is also valid for very small but unequal
dampings.

For m,>0, Tm depends on ¢, and it is not a symmetric function of u. For
M, =0.01 and 1, =0., in Figures 5a and 5b, Tm is shown as a function of |u| and
K . In the calculations the sign of |1 have been chosen at random. In this manor the
irregularity of Figures 5 expresses the errors resulting when ¢, is neglected in
equation (60). For engineering structures 1, is rarely larger than 0.1. Therefore, from

the figures, it is concluded that the rise time is determined with sufficient accuracy also
when ¢,, is neglected.

Neglecting ¢, the rise time is determined by the non dimensional numbers 3], |A|
and y . In Figure 3, Tin was shown as a function of |A} and v for § =0 while in

Figures 6 it is shown for 8 =0.98. This value should be of the order of the maximum
possible value since, in engineering structures, the loss factor is in general limited to

107 <m <107, Comparing Figures 3 and 6, it appears that the rise time is larger for
large &, especially so when y << A <<1. The question, however, is whether small
values of the rise time are, ultimately, an indicator of large values of vy .

For various values of A, in Figures 7a, 7b and 7c for & =0, .75 and 0.98, the rise
time is shown as a function of vy . In all cases, if A is not large then if ¥ is small the
rise time is large. Also, if v is large the rise time is small. However, if 8 is large, the
transition between these two states is not at y =1 but at larger values.

In equation (54) x is defined as a function of A and

Cir

= 1—82 = ———ee——,
Ve = Y08 = o (61

In Figure 8 the rise time is shown for & =0.98 as a function of y,. It is seen, the
transition between large and small values of the rise time isat y, = 1.
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For ensemble averages in one-dimensional structures the most natural descriptor of
coupling strength is

y = Clm
MM, (14)

The same appliés' for the deterministic analysis in Section 3.1. However, the coupling
strength measure that is indicated by the rise time is apparently v ,, equation (61).

When the dampings of connected elements are of the same order, v, =7 and the

analysis made demonstrates the link between coupling strength in SEA and the rise
time. But, for largely unequally damped elements, there is yet more to discover.
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CONCLUSIONS

The response of structures with two spring-coupled elements is investigated in an
attempt to develop a unifying approach to the weak coupling criterion for applying
SEA. The study is mainly a compilation of previous results while some new results for
the transient response of two coupled oscillators are derived. Also, in an intermediate
step of the analysis, the “standard” SEA equations for the energy flow between two
weakly coupled, statistically defined, single d.o.f. elements are formulated, it is
believed, for the first time.

The responses of the elements are described by their ‘local’ uncoupled modes. These
modes are a complete set and may be used to formulate the equations of motion for the
coupled structure, as was made by Bessac et. al. [1]. The equations of motion were
then solved by a series expansion which is valid for weakly coupled elements and the
authors found a criterion for this. Coupling becomes stronger for frequencies and/or
systems for which there is resonance in the elements. Here, by using Skudrzyks result
for the mobility at resonance [8] (the characteristic mobility divided by the modal
overlap) it is found that the rate of convergence of the series is governed by the ratio
of the modal energy conductivity to the product of the modal overlaps in the connected
elements. This is the parameter vy that previously was found to govemn the application

of SEA to predict ensemble averages in one dimensional structures [3-5].

If coupling is very weak, the series expansion converges immediately and the space-
and frequency- averaged input mobility in an element can be calculated without
considering connected elements. This is the assumption that Langley used to derive the
SEA equations from exact equations for the energy balance in structures built up of
conservatively coupled rain-on-the-roof excited elements {7, 13]. Thus, it is here found
that if v is small, the local modes are effective in describing the response of a coupled

structure. It is also found that the criterion for Langley’s exact equations for the energy
balance to transform to the SEA equations is that there are resonances in the structure
and that v <<1.

Fahy and James developed a method for in sifu measurements to determine whether a
structure is subdivided according to the weak coupling criterion [2]. This is vital when
using SEA in the predictive mode and, even more important, when SEA is used in the
inverse mode, for when the elements are strongly coupled, the equations are badly
conditioned and measurements of SEA parameters become impossible.

It is first noticed that if ¥ << 1, the response of two coupled elements is determined by

their local modes. Thus, if one element is excited by an impulse force, the response of
this element is given by its modes, acting via the spring as a set of harmonic forces on:
the other element. The response of this element is governed by its local modes which
can be described as a set of single d.o.f. elements. Considering one such element
excited by a harmonic force, which started at =0, it is found that if the excitation
frequency is close to the oscillator frequency then the rise time, the time to reach
maximum vibration energy, is large. If, however, the frequencies are different, the rise
time is small.
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Fahy and James define modal proximity to be when the frequency spacing is small
enough not to distort the rise time's validity as an indicator of coupling strength {20].
To quantify this, and to find the dependence of coupling strength on the rise time, the
transient response of two coupled oscillators is analysed. It is found that, in effect, the
coupling strength quantity that determines the rise time is v . Also it is found that there

is modal proximity if the separation between uncoupled oscillator frequencies is of the
order of their 3 dB bandwidth, or less. If there is modal proximity, the rise time is large
if v £1 while it rapidly decreases for larger v .

It is believed that SEA applies if: 1) the response in each element is governed by its
resonances, i.e., by its local modes. 2) Coupling Power Proportionality holds. In this
study it is shown that, for spring coupled two-element structures, the second criterion
is a consequence of the first. It is speculated: if the first assumption holds, the response
of each element is given by its local solutions to the equations of motion (unless the
forcing or coupling apply restraints - as, e.g., in periodic structures). The local
solutions act independently and interact weakly, otherwise the first assumption would
not hold. If, in addition, the local solutions are statistically defined, the interaction is of
a random nature and the situation resembles the one treated in statistical mechanics.
Hence, the heat conduction analogy for SEA, i.e., Coupling Power Proportionality.

To sum up: it is demonstrated that a deterministic approach to the SEA equations is
valid if v << 1. It is found that modal proximity, defined by Fahy and James [20], is

measured by the separation between uncoupled resonance frequencies divided by their
3 dB bandwidth. If there is modal proximity, the rise time is an indicator of whether
v <1 or not. Previously, it was found that the standard SEA equations predict the

ensemble averaged vibration energies in one dimensional structures if ¥ <1 [4, 5]. The

coupling strength measure that characterises the solutions to the SEA equations is the
ratio of the conductivity to the modal overlap [19]. It is argued, the coupling strength
criterion that indicates the applicability of these equations is not based on this ratio but
on ¥, the ratio of the conductivity to the product of the modal overlaps in the

connected elements.

Obviously, there is a gap between the criterion for the deterministic result (y <<1) and

the one for the stochastic ensemble average result and for the threshold level for the
rise time (7y <1). Perhaps this gap will be bridged, also for other structures than rods

and beams, if frequency and ensemble averages are considered.
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Figure 5a. The rise time as a function of x and  for 1, =0.01. Note, the sign of |t is
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Figure 7a. The rise time as a function of v for § =0; —x—, A=0; ~= -,
A=05; —0—, A=1; ——, A=2; % A=4,



Figure 7b. As Figure 7abut & =3/4.



1.8

1.6

1.2

1
[

Tm

0.8

¥

0.6

0.4+

0.2

Figure 7c. As Figure 7a but 8 =0.98.




1.8 : : . . ' .

16F >

1.2+ \

m

0.8

0.6

04r

¥

0.2

0 -5 ' ‘ I I I 0
10 10
PH(1-5+2)

Figure 8. As 7c but as a function of the coupliﬁg factor divided by the square of the
arithmetic mean modal overlap instead of the square of the geometric mean modal
overlap.




	TR268cover.doc
	E COPYRIGHT NOTICE.doc
	tr268.pdf

