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1 INTRODUCTION

The purpose of this report is to discuss the application of feedback control methods in the active
reduction of sound. Thoroughly examined in the literature single, or multi-channel feedforward
control systems fail for problems that involve random disturbances where no good reference for
the primary soundficld exists. Therefore recently, there has been a growing interest in feedback
control systems that do not require any separate reference but are only based on the residual
error.

In chapter 2 the plant and disturbance are introduced and some necessary assumptions are made.
Both the plant and disturbance are described in the Z - transform domain and the latter is split
into two separate parts by the Diophantine equation.

Chapter 3 deals with the design of optimal controllers. In section 3.1 two structures of control
system are presented that will further aim at minimising sound energy at the residual
microphone. The first is a classical feedback referred to as Minimum Variance Controller and
the second includes a model of the plant. The model, when it is perfect, cancels the contribution
of the controller output back to its input thus turning the system feedforward. It is proved
(sections 3.2 and 3.3) that, in this case, both the strategies are equivalent and will be further
treated together. However, it turns out (in section 3.2) that when the plant is non-minimum
phase the closed-loop is unstable and a modification of the control goal is required, which is the
subject of section 3.3. Special attention is paid to a modification in which the control effort is
included in the cost function (section 3.3.2). Section 3.4 continues to deal with optimal IMC, but
using a different approach as to that presented so far. It is based on signal processing analysis
which leads to the feedforward Wiener Filter applicable for both minimum- and non-minimum
phase plants. In section 3.5 robust stability of a feedback control system is discussed and its
relation to optimal performance is emphasised. The effects of measurement noise and plant
delay are the subjects of sections 3.6 and 3.7, respectively.

Chapter 4 is devoted to adaptive control and it is implicitly divided into two parts: the Z -
transform domain approach (sections 4.1 and 4.2} and the signal processing approach (section
4.3). All adaptive algorithms derived in this chapter are based on the optimal solutions presented
in chapter 3. In section 4.1 the mathematical description of the plant is rewritten to contain
polynomials of the controller in a linear way, and is referred to as the predictive model of the
plant. RHS of the model is considered as the identification error. Section 4.2 leads to update
equations of controller parameters via RLS and LMS identification procedures. In section 4.3,
the Filtered-x LMS algorithm for IMC is presented. When the model of the plant does not
accurately represent the plant itself the control system can become unstable. Therefore two
solution to that problem are further discussed: one is based on the on-line identification of the
model (section 4.3.2) and the next - on robust stability included in the adaptation procedure
(section 4.3.3).

Tn chapter 5 both the optimal (section 5.2) and adaptive control strategies (section 5.3) are tested
in simulations for an assumed plant and disturbance presented in section 5.1.

The final chapter of this memorandum, chapter 6, summarises, concludes and indicates main
contributions of this work.



2 THE PLANT AND DISTURBANCE

A real digital feedback active noise control system can be represented by the following block
diagram:

Primary soundfield
-..\\\ \\\\ .
. <
~. 1
- T
~—— 1
Reconstruction Antialiasing
filter filter
.3
[ Dac | [ apc ]
u(i) $ Y
|  conTROILER |

Fig. 1 A feedback noise control system.

Thus, the physical system includes not only the acoustic (path between the loudspeaker and
residual microphone) and electroacoustic (the loudspeaker and microphone) elements but also
the analogue anti-aliasing and reconstruction filters generally used before and after sampling
analogue signals, as shown on Fig. 1. Obviously, the analogue-to-digital (ADC) and digital-to-
analogue (DAC) converters are present in the system. All the elements between the output of the
controller u(i) and its input y(i) constitute the plant of control and contribute properties of the
plant. The signal measured by the residual microphone, when the loudspeaker (the secondary
source) is not driven, is referred to as the acoustic disturbance (noise, sound) to be controlled
and y(i) is the disturbance. When the primary soundfield is random the disturbance can be
modelled as a white noise passing by a filter which is called the disturbance shaping filter.

It is now assumed that the plant and disturbance shaping filter are linear (for frequencies of the
sound and its levels we are dealing with) and no aliasing is caused by the sampling process. The
presence of aliasing (due to, for example, inadequate anti-aliasing filters) caunses frequency
components above hall the sampling rate in the continuous waveform y(f) to appear as
components below half the sampling rate in the sampled signal y(¢). This would then constitute a
form of non-linearity in the loop.

In general, for active noise control applications the following structure of the plant and acoustic
disturbance can be considered:
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Fig. 2 General structure of electro-acoustic plant and acoustic disturbance shaping filter.

where:

A, B, C, D - polynomials of 7! of orders: dim A, dim B, dim C, dim D, respectively;
k - the discrete time delay;

u(i) - the control signal;

e{7) - the white noise of variance A*;

y(i) - the output - cancellation effect;

d(i) - the acoustic disturbance.

The mathematical description is as follows:

Y=t Ruiyr e M

The measurement noise is neglected here. This is justified due to its very low level comparing to
the level of the acoustic disturbance. Nevertheless, its presence will be the subject of section 3.6.
The disturbance shaping filter can be split using the following Diophantine equation:

%: F+z—"%, dimF=k~1, dimG=max(dimD-1, dimC-k). (2)

However, all calculations are simplified without loss of generality if the following structure is
considered:
J'e(i)

C

w T o,
A

+

Fig. 3 Simplified structure of electro-acoustic plant and acoustic disturbance shaping filter.

for which the output can be expressed as follows:

yi)=z"* B iy+cew. 3)
—>

Tt will be shown later that this description (the disturbance shaping filter being an FIR filter) has

a lot of other advantages.

Then the Diophantine equation is of the form:



C=F+z7%G, dmF=k-1, dimG=dimC-% 4)

It is assumed that polynomial C is monic (¢, =1). It does not constraint our considerations
hecause otherwise the value of its first coefficient can be included into the variance of the white
noise, e(7). Similarly, to have a unique plant representation, polynomial A is also assumed to be
monic, which means that a, =1. In general, both the plant and the disturbance can be time-

dependant (this refers to sections 4 and 5). Polynomials A, B, C should be then written as A(),
B(), C(i). To simplify the notation the time variable, i, will be omitted, further. However, one
should bear this in mind.



3 OPTIMAL (FIXED) CONTROL

The aim of this section is to design optimal (fixed) controllers which minimise energy at the
output of an active noise control system. However, some features of the plant, stability
conditions, and nonstationarities require a modification of the former performance criterion. In
section 3.1 two different control structures are presented. Section 3.2 deals with noise control for
minimum phase plants (see also Elliott, 1994) whilst section 3.3 considers more general case -
non-minimum phase plant (see also Niederlinski et al., 1995). To cope with the problem
different approaches are suggested (sections 3.3.1 and 3.3.2). Section 3.4 presents the design of
optimum controllers using signal processing approach (Rafaely, 1997). Robust stability is the
subject of section 3.5 (Elliott, 1994). The remainder of chapter 3 points out limitations of
performance due to the presence of measurement noise (sec. 3.6) and plant delay (sec. 3.7), and
a relation of the measurement noise to robust control is developed.

3.1 MVC AND IMC FEEDBACK STRUCTURES

In this work two different structures of the control system, which minimises energy at the output,
are considered. The first one is a regulator with classical feedback and will be further referred to
as Minimum Variance Controller (MVC):

u(i) ¥(i)

Fig. 4 Classical feedback structure - MVC.

In the second one the controller consists of two parts: W and P, where P is a model of the plant
P. Hence, the control structure is called Internal Model Control (IMC).

s

Fig. 5 IMC structure.



The overall IMC controller (see Fig. 5) is of the form:

=Y (5)
1+PW

The graph from Fig. 5 can be redrawn as shown on Fig. 6:

x(1)
—

W u® ) p

h 4
P

Fig. 6 Redrawn IMC structure.

Now it is clearly seen that if the plant model is perfect, P=P , then the input to W becomes the
disturbance, d(i), which was before not allowable, and the system becomes purely feedforward:

| (i)

oW udi) ¥ y(i)

x(i) = d(1)

Fig. 7 IMC reduced to feedforward control for P=P.

Further in the work filter, the control filter, W, will be referred to as the IMC filter.

3.2 NOISE CONTROL IN CASE OF MINIMUM PHASE PLANT

Let us now define the cost function L{i+k) which we are going to minimise:
Lii+k)= E{y*(i+0)}. (6)
The optimum MVC is given by the following equation (see Eq. (A.14)):

AG
H, =-=Z. 7
wm="BF (7)

The optimum IMC filter (IIR type) is given by (see Eq. (A.85)):

__AG (8)

" BC’



Substituting Eq. (8) for W in Eq. (5) and using Eq. (3) leads to the form of optimal IMC for
I?’ =P

_AG _46
___BC ___ BC
Hope = 1_AG B C-7*G’ ©
BC™ A

which after using DE (4) can be reduced to:

__AG (10)

o BF

This is exactly the same as for MVC (see Eq. (7).
In general, no matter how the plant and disturbance is modelled, IMC with perfect model of the

plant (optimal feedforward IMC filter) is always equivalent to optimal MVC.

Under optimal control the output value is an MA process (see Eq. (A.15)):

Yo (i) = Fe(i) (11)

and the minimum cost function (6), which is also the minimum energy at the output (see Egs.
(A.17), (A.18), (A.8B6), (A.87)):

min L(i + k) = min E{y* (i +k)} = E{(Fe(z +h)}= Azkf‘cf . (12)

=0

Tt is clear that only in the particular case when k = 1, will white noise be left at the output:
yam,k:l(i)= e(i) (see Eq. (11)) because C is monic and minimum variance is the variance of

white noise A> (see Eq. (12)). Otherwise, the form of the output can be deduced prior to control,
only on the basis of the disturbance shaping filter and plant delay.

It has been proved (see appendix A) that for control goal given by minimising (6) the
characteristic equation of the optimal closed loop system (or the condition for stable optimal
feedforward filter) is of the form (see Egs. (A.22), (A.90)):

A-B-C=0. (13)

Thus to have the closed loop system stable with the optimal controller in operation the following
requirements must be fulfilled:

a). the plant is stable;

b). the plant is minimum phase apart from delay;

c). the polynomial modelling the shaping filter is minimum phase.

Because no prior knowledge of the disturbance is used in any of these algorithms and only
magnitude of its frequency response is required (the phase is not important) spectral factorisation

over polynomial C can be made turning it into C which has only minimum phase parts. Then
the characteristic equation can be not formally transformed to the following form:



A-B=0. (14)

For minimum phase plant the best possible attenuation of noise at the output that can be
achieved depends only on the disturbance shaping filter and is expressed by:

k-1
2
J =101log,,| % |[dB] (15)
¢
i=0

provided that polynomial C is minimum phase. Otherwise, firstly spectral factorisation over non-
minimum phase parts of this polynomial should be made and then the optimum performance can
be calculated according to formula (15). From Egs. (15) and (4) follows that when C = 1 (the
disturbance is a white noise) then J = 0 [dB]. Similarly, when the band of the acoustic
disturbance is comparable to Nyquist frequency ( fy = f;/2) then there is no sense to employ any

algorithm minimising cost function given by Eq. (6).

Looking at Eq. (14) it is clear that constraints are imposed only on the plant which has to be
stable and minimum phase. All acoustic continuous space plants are stable and minimum phase
for low frequencies, which we here consider (for high frequencies higher modes appear due to
e.g. vibration of the membrane of the loudspeaker). But their discrete model can become non-
minimum phase. This can happen e.g. because their continuous time delay is usually not an
integer multiple of the sampling period. In that case, at least one zero of the plant lays outside
the unit circle on the left half of the Z-plane. If the continuous plant was non-minimum phase, in
its discrete representation at least one zero would lay outside the unit circle on the right half of
the Z-plane, that for acoustic plants is impossible. To try to avoid this non-minimum phase
discrete representation, a higher sampling rate should be chosen or a bigger discrete time delay
in the identification procedure should be imposed.

3.3 NOISE CONTROL IN CASE OF NON-MINIMUM PHASE PLANT

For non-minimum phase plants the optimum control law (10) derived in section 3.2 is not valid
because according to Eq. (14) the closed loop system is unstable. As a consequence, the
attenuation cannot be anymore calculated according to Eq. (15). However, as will be shown in
this section, it is possible to obtain stable controllers even for non-minimum phase plants
although it will influence other features of the whole system.

3.3.1 Splitting polynomial B

One of the possible solutions to cope with the problem of instability for non-minimum phase
plants is to split polynomial B into two parts:

B=B'B (16)

where B includes only the minimum phase part and B~ consists only of the non-minimum
phase part of B. It further requires reformulations of the cost function and the Diophantine
equation. As the result, the controller compensates only minimum phase polynomial B* allowing
stable behaviour, but the output signal is now an ARMA process and its variance is increased.
This approach is not presented in the report. An interested reader is referred to Niederlinski et
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al., 1995 where this strategy is discussed in details for the particular case of the disturbance
shaping filter having exactly the same poles as the plant itself (an ARMAX plant).

3.3.2 Control effort in the cost function

Another approach that can be used to obtain the control system stable for non-minimum phase
plant is to modify the cost function (6) to be minimised to the following one:

L(i+K)=E{y’ (i+k)+g’ ()}, (17)
where g is a penalty imposed on an excess control effort. This modification for classical
feedback can be called Weighted Minimum Variance Control - WMVC (although as it is shown

later, see Egs. (24) and (25), the variance at the output is no longer the minimum one).
The optimum WMVC has the form (see Eq. (A.44)):

H =-—25 (18)
F BF +q AC

and optimal feedforward filter for the cost function given by (17) (see Eq. (A.110)):

GA

W =——, 19

w C(B+qA) (19
where

' q

=1 20
q b, (20)

Tt can be easily shown that, as it was done in section 3.2 for the case without control effort

(follow Egs. (8) through (10)), the whole IMC feedback controller (for P=P ) is expressed by
Eq. (18) and is equivalent to WMVC. Hence, the remainder of this section concerns both MVC
and IMC controllers.

The stability condition is given by the following equation (see Eq. (A.49}):

AC(B+q A)=0 21
or after excluding C (refer to the explanation to Eqs. (13) and (14)) by:
A(B+4 A)=0. (22)

From this equation follows that choosing proper value of g it is possible to have the control
system stable. When A and B are of the same order, it is easy to precisely calculate the optimum
g . This method can be also used in case of minimum phase polynomial B, for which some of its
zeros are very close 1o the unit circle, to suppress an excess variance of control signal which can
be difficult to stand by some actuators (mainly in vibration control).

But, as one can expect, this approach influence other features of the algorithm. The output is no
longer an MA process but is closely related to control effort and takes the form (see Eqg. (A.58)):



(i) + qu(i — k) = Fe(i) (23)

and, what is mostly important, its variance is increased (see Egs. (A.60) and (A.61)):

E{y*(i+h)}= E{[q' : ijA e(i)] } + E{[Fei+ )]}, (24)

or in other form:
Ey2 G+ 0} =(q ) Eflu®] }+ E{[FeG+ 0T }. (25)

Eq. (25) shows that the variances of the output and control effort are strictly related and when
one is reduced, the second has to be increased because the second term on the RHS of Eq. (25)

can be regarded as a constant for a given disturbance shaping filter. Thus the choice of q isa

trade-off between sufficient stability margin (and in the same time, suppression of the variance
of the control signal) and increasing the output variance (and as the result - decreasing the
attenuation).

The minimum value of the cost function (17) is of the form (see Eq. (A.52)):

minL (i+k)=(q ) (1+5 )E{H - o ]e(i)} } + E{[Fe(i+ b)) }. (26)

+q A

The control effort introduced in the cost function (17) influences also other features of the
algorithm like increases the robustness of the system and decreases the sensitivity of the output
to non-stationarities or nonlinearities usually met in real plants.

3.4 SIGNAL PROCESSING APPROACH - WIENER FILTER

Control algorithms presented in sections 3.2 and 3.3 (both MVC and IMC, with- and without
contro! effort) where based on Z-transform domain approach and led to forms of controllers
expressed in terms of plant polynomials and polynomials defined by the Diophantine equation.
Another way of calculation of optimal feedforward filter (and thus IMC design) is based on the
signal processing approach and particularly - on the correlation analysis. Assuming that both the
plant P and the filter W are time invariant their order can be commuted:

| d(i)

B o,
P 1(i) | w y(i)

x(i) = d(i) +

Fig. 8 IMC reduced to feedforward control for pP=P.

An assumption is also made that both the plant and the filter have finite impulse response and
can be regarded as FIR filters of orders N.

16



Let us first define (vertical) vectors expressing:

the reference signal (equivalent here to the disturbance signal):

x7 (1) = [x(D), x(i—D),...,x(i - N+ 1], (27)
the reference signal filtered by the plant:

r' (i) =[r@),ri—D,...,ri—- N+1D], (28)
the impulse response of the plant:

o' O =[p, P Pyl (29)
and the impulse response of the control filter:

wi(i)=[w,, wp,.... Wy |- (30)

The input to the controller in time domain can be written on the basis of the reference signal x(i)
(equal in this case to the disturbance) and plant impulse response p:

(i) =p"x(). @31
The output signal can now be written as:
y(i) = d(i) + w'r() . (32)

The discrete plant delay is now hidden in vector p and that is why the cost function L(i) instead
of L(i+k) (see Eq. (6)) will be further considered.
The cost function can now be written as:

L) = E{y(i)y" (0} = E{[d(i) +w e[+ wTr(i)]T}
= E{w r(ir" (Ow +dOr" (w+d@Ow (@) +d* ()}
= wEfr(i” () }w + 2w  E{r()d(i)}+ E{d* (i)} (33)

or, in more comprehensive form:

Liy=w"Aw+2w'b+c, (34)
where:
¢ = E{d* ()} (33)

11



is a scalar.
b is a vector of cross-correlation:

b” =[R,(0), R, (D,.... R, (N-D)], (36)
where:
R (D) =E{r(i—Hd(i}. (37)

A is a Toeplitz matrix of autocorrelation values of r:

R0 RO - R(N-1

R R0 (38)

‘Rrr(N_l) Rrr((})

Since Eq. (36) is a quadratic one, the minimum of the mean square error with respect to w can
be easily found:

2
M:szA+2b=o. (39)
ow

Thus the optimal controller is expressed by:
W, =—A"'b (40)

and is called Wiener Filter.

The Wiener Filter can be also derived starting from the orthogonality principle (Papoulis, 1984)
which states that minimisation of Eq. (6) is equivalent to removing all components of the error
(output) which are correlated with () over the time-scale of the filter W (see Fig. 8):

OSl\gN—l E{y(z) ri—0}=0. 1)
Then, using Eq. (32) for the output, Eq. (41) leads straightforward to the optimal solution given
by Eq. (40).

Substituting Eq. (40) for w in Eq. (34) yields the minimum cost function, which in this case is
equal to minimum energy at the output, as:

min L(i) = E{d” (i)} +b"w, (42)

where the first term on the RHS of Eq. (42) represents the energy at the output without control
(w=0).

Sometimes the autocorrelation matrix A can be ill-conditioned e.g. due to not sufficient
excitation. To allow the inverse operation in that case a component 1, , can be introduced to

Eq. (40):
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-1
wop: = _(A-'_ ﬁINxN} b * (43)
\._...._\,:.._J

A

which is equivalent to modification of the cost function minimised, (6) or (33}, to:
LG)=E{y* () + pw'w} (44

where 8 is a weighting coefficient and I, denotes unity matrix of dimension

dim N xdim N .

The weighting coefficient acts in the same way as Tikhonov regularization and improves the
conditioning of matrix A’ (see Elliott and Sutton, 1996).

Because since invention of FFT algorithm it is much faster (for long filters) to calculate auto-
and cross-correlations as inverse Fourier transforms of auto- and cross-spectrum densities
Wiener filter coefficients are usually computed according to this time - frequency approach.

3.5 ROBUST CONTROL

Acoustic plants are usually subject to changes. The effect of plant changes on a feedback control
system is two-fold. First, the performance is generally degraded because the optimal design of a
controller is a function of the plant response. Second, and potentially more spectacularly, it may
make the system unstable with the controller designed for the original (nominal) plant.

The goal of this section is to design a feedback controller which is robust, in terms of stability, to
arbitrarily assumed group of plant changes. It should be emphasised that the design of robust
feedback controllers outlined below assumes that their characteristics are fixed at the design
stage, or in other words - they are not adaptive.

Let us write the cost function given by Eq. (6) in terms of the sensitivity function of the control
system S(jw) (frequency response from the disturbance d(i) to the output y(i)) in H, norm

notation:
(45)

2
7

L(jw)=|S(jo)D(jo)

where D{jw) is the amplitude of the Fourier Series of periodic disturbances or the square root
of the power spectral density of random disturbances (in our case: D(jw)=AC(jw)).
Consider a plant with a multiplicative uncertainty described by Doyle, 1992, as:

P=P(1+4A,), (46)
where P, is the nominal plant and the plant uncertainties A, are bounded as follows:
A, ()| < W () (47)

(a fractional uncertainty of W, (@)= 0.1, for example, corresponds to an uncertainty in the level

of about 1 [dB] and about 0.105 [rad] in phase)
The robustness condition becomes then (as commonly used in H_ control theory):

13



T,(jo)W,(jo)|, <1, (48)

where T (jo) is the complementary sensitivity function with the nominal plant. To simplify the
notation, the term * jo * will be omitted further. Eq. (48) constitutes a constraint to minimisation

of the cost function (45). Eqs. (43) and (48) can be combined into a single cost function (see
Rafaely and Elliott, 1996a):

L=|sDi; +[T, W - (49)

This cost function, which represents an H, control problem with an H_ constraint, has no
simple solution required to be implemented in an adaptive system. The simplest approximation
is to replace |7, W;||_ with a weighted |7,;|. which results in the following cost function:

L=|spl} + Bz, Wil (50)

This equation also defines the trade-off between optimal performance and robust stability of a

feedback control system.
In IMC structure for perfect model of the plant the complementary sensitivity function simplifies

to:
T, =WB =WP. 1)

Thus the cost function (50) takes the form:

. (52)

L=|sD’ +ﬁHWﬁwe

The relation between the sensitivity function and the complementary sensitivity function, for the
nominal plant, is defined by the following equation:

T=1-§. (53)

Eq. (53) defines the compromise between performance and stability in the design of feedback
controllers. If the control system is designed for maximum performance, so that §=0, then
T =1 and if the upper bound of the multiplicative uncertainty is greater than one, the system
will not be robustly stable. From Egq. (46) the multiplicative uncertainty can be expressed as
follows:

A mp"%. (54)

As the nominal response of the plant, F,, becomes very small at certain frequencies, the
uncertainty can become large. Then W, (47) is greater than one and the system cannot be stable.

Fortunately, this case is more likely to happen at high frequencies whilst good performance is
required for low frequencies in active noise control.

14



3.6 THE EFFECTS OF MEASUREMENT NOISE

Let us now relax the assumption about absence of the measurement noise made in section 2.
Now the closed-loop system can be represented by the following graph:

u(i)

H

Fig. 9 A closed-loop system with the measurement noise.

a(i) is the measurement noise which is assumed to be uncorrelated with d(¢). This assumption is
very well justified because d(i) is an acoustic disturbance whilst n(i) is a random noise
introduced by the measurement path: sensor (microphone), wires, A / D converter. No other
assumptions concerning its spectral features are made.

The system output can be now expressed as:

HP .
P n(i). (55

N 1
Y@y =1

d(iy+
ap O

The first term represents the sensitivity function and the second term - the complementary
sensitivity function, Thus the equation can be rewritten as:

(i) = Sd{i)+ Tn(i) . (56)
Because of the assumption of orthogonality of n(7) to d(i) the cost function (6) takes the form:
L() = E{y* 0} = E{[s4@] }+ E{[Tn)]' } (57)
or in H, norm notation:

LD+ M. 58)
If we now model n(7) as a white noise of variance f, shaped by filter W,, then:

L=[sDf;+ BT, (59)

This is exactly the same as the cost function representing nominal performance and robust
stability, given by Eq. (50), when:

181=ﬁ’
W, =W,, (60)
r=1,.
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Thus the conirol system with the measurement noise can be considered robust to plant variations
defined by the multiplicative uncertainty A (46) bounded by the spectrum of the noise itself.

3.7 INFLUENCE OF PLANT DELAY ON PERFORMANCE

The best possible attenuation of the acoustic disturbance that can be achieved at the output of
active control system depends upon many factors. The influence of the form of the cost function
minimised (and in this way, other requirements imposed on the system) was widely discussed
throughout the whole work. The dependence upon the disturbance to be cancelled (or the
disturbance shaping filter) was considered at the end of section 3.2.

Let us now assume that polynomials A, B, and C arc minimum phase, the system is free of the
measurement noise and the cost function is defined by Eq. (6). Then the optimal performance is
defined by Eq. (15). It is strongly dependant on the discrete time delay of the plant. Figure 10
shows graphically the influence of this delay on the optimal performance for a given plant and
disturbance (refer to sec. 5.1 and appendix B for details).

25 T T T T T T
[

20

Discrete time delay k

Fig. 10 Attenuation vs. discrete time delay of the plant for optimal feedback controller.

Tt is clear that increasing the time delay from 1 sample to 2 samples reduces the attenuation of
about 10 [dB] which means 40 [%], here. Moreover, there is no sense to use the feedback
control for delays more than 7. Therefore every effort should be done to reduce the delay.

The delay consists of three different components:

1. The plant under consideration (Fig. 1) includes an acoustic path, from the output of the
loudspeaker (the secondary source) to the input of the error microphone, of length . Making an
assumption that the propagating wave is a plane one, the delay associated with this path is equal
to:

Ly 61)
[

dcoustic
0

where ¢, is the speed of sound.
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2. A significant part of the plant constitute analogue filters (the anti-aliasing and reconstruction
filters). The delay through the analogue filters may be approximately evaluated by assuming that
each pole of each filter contributes 7/4 of phase lag, or 1/8 cycle of phase delay, at its cut-off

frequency, f,. The total delay through the two analogue filters, which are assumed to have a
total of m poles, is thus approximately m/(8f,). The cut-off frequency is typically one-third the
sample rate ( f, =17, ) sothat f, = f,/3=1/(3T}. Thus (Nelson and Elliott, 1994):

7 NELLYS (62)

analogue ~ 8

The discrete delay introduced by the analogue filters is then independent upon the sampling rate.

3. A one sample delay is implied by data converters and computing the response of the digital
filter:

Tdigiml = T.:‘ ' (63)

Summing up, the total delay of the plant is about:

% o =f}(1+38’3+ l J 4

and the discrete time delay is an integer number of the expression in brackets (measured in
samples).

Example

Let us now assume that the plant presented on Fig. 1 is an active headset. Then, the distance
between the secondary source and the residual microphone is about 1 [em]. Thus, for f =

2{kHz] and ¢, = 343 [m/s], the acoustic path introduces the delay of about 0.058 sample.

To well protect the controller against the aliasing effect and well reconstruct the signal driving
the loudspeaker, the analogue filters have usually a high order, e.g. 8th - each of them. Then,
according to Eq. (62) they introduce 6 samples delay. Obviously, still remains one sample delay
due to data converters and computing the response of the digital filter. It is now clearly seen that
the total discrete time delay is approximately 7 samples where for 6 of them the analogue filters
are responsible. Therefore, if it is only possible, the order of these filters should be reduced or
gven they should be excluded from the system. This can be justified when the maximum
frequency of the acoustic disturbance is much smaller than the Nyquist frequency ( f,/2) what

can be achieved by increasing the sampling rate. On the other hand, for plants like active
headsets, when they are properly designed, higher frequencies are well attenuated by the passive
barrier they contain and only low-frequency noise remains to be dealt with.

For large dimension plants the delay due to the acoustic path can be much larger than those
considered above (is equal for 1.2 [m] distance between the loudspeaker and microphone) and
then other strategies should be employed.
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4 ADAPTIVE CONTROL

Real control system should ensure satisfactory attenuation and have sufficient stability margin
for some nonstationarity of the plant and disturbance, which are likely to appear. In IMC design
for real applications the controller is usually made robust for significant plant parameters
changes (which is considered in the cost function being minimised) and adapts to disturbance
nonstationarity and small variations in the plant (Rafaely and Elliott, 1996). In turns, MVC
controller cannot tell the difference between nonstationarities of the plant and disturbance, and
usually adaptive version is used for both purposes (Niederlinski et al., 1995, and Pawelczyk,
1995). However, no disturbance nonstationarity, even leading to non-minimum phase
disturbance shaping filter, can cause instability of the whole adaptive system because while
adaptation some kind of spectral factorisation over polynomial C is made implicitly.

4.1 PREDICTIVE MODEL OF THE PLANT

As seen from Egs. (7), (8), (18), and (19) both optimal MVC and IMC filters (with, and without
control effort) are expressed in terms of plant parameters (polynomials A and B). Thus the most
obvious method to identify the controllers is to first identify a model of the plant and on its basis
calculate the controllers. The main advantage of this approach is that it allows to have a look
inside the algorithm and easily interpret it. However, the controller synthesis should be done on-
line (usually in every sampling period). It involves a great deal of non-linear computations and is
difficult to perform in fast systems like acoustic ones, which require high sampling rate.

Another approach that can be used here is to modify “the plant equation” in such a way that it
includes parameters of the controller (to be estimated) in a linear way and, under optimal
control, satisfies the right form of the output of the system. This type of plant equation is called
the predictive model of the plant. For both MVC and IMC filter (with, and without control effort
included in the cost function) the predictive model takes the following form (see appendix A for
details, mainly: Egs. (A.30), (A.31), (A.38), (A.69), (A.71), (A.78), (A.98), (A.99), (A.106),
(A.115), (A.122)):

y(i)— fe(i)u(i —k)— Sfi) x(i—k)=(AC-D[Fe(d)—y(D]+ Fe(i) =€), (65)
or in vector form:
Y- (r;)u(i —k)-@'(i—k) 0G) = £(3). (66)

Then, the control law has the form:

wy =9 1oy, (67)
R

Further notations are as follows:

(i) = {y(il) SJor MVC (68)
d(i) for IMC filter
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is the general controller input (for versions with- and without control effort);

. y(i) for MVC and IMC €
Y= y(@) +-Lu(i—k) for WMVC and IMC with control effort (©9)
is the generalised output;

AT

8 (D) =[50 5,D)srer Sams D R D Do T (D] (70)
1s the identified controller parameter vector;

e (i—k)=[x(—k),...., x(i~k— dim ), u(i —k —1),...,u(i —k—~ dim R)] (71)

is the data vector, or in other words - the vector of regressors.

4.2 IDENTIFICATION OF THE CONTROLLER

In the last section a predictive model of the plant was derived (see Eqgs. (65) and (66)). Its RHS
can be regarded as an error which linearly depends upon controller parameters. Thus, if the
parameters are searched as:

6(i) = Argmin E{e* (0}, 72)

a(i)

the error surface is quadratic. Having this estimate, the control value is calculated according to
the following formula:

u(i) = - 7 ()66 . (73)

o

Figures 11 and 12 depict adaptive control configurations of MVC and IMC filter, respectively,
and indicate signals required in the identification procedure:

Lo

Direct C
identification )
¥ of the controller a6
+ .
i ~ u(i y(i)
oM INESIN IO N SO0

Fig. 11 Adaptive direct MVC.
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Fig. 12 Adaptive IMC.

4.2.1 RLS

Because the surface to be minimised is quadratic (see Eqgs. (72) and (66)), Recursive Least
Squares (RLS) algorithm can be then employed to identify the paramecters on-line. The
expectation operator E is approximated by the sum operator, and usually additional forgetting
term is included:

0) = Argmin ¥ {0 2 (0}, (74)
8{i) =0
where:
0 <<a <1 orin practice: 0.97 <o <1. (75)

This can be interpreted as the forgetting of old datum (errors), on the present identification, with
time constant:

T=—%. (76)

RLS algorithm with forgetting is given by following equations:

8() = 60—+ k()| y()— 1, uli— )~ 9" (= K)BG=T) . (77

&)

where the amplification vector is given by:

k() =PRI = T PG Dot - k)

and the matrix P is of the form:
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. , T,. .
by L P(i_l)_P(z—l)(ﬁ(z—k)(p (z—k)P(z—l)} 79
a o+ @7 (i—k)PGE - Do —k)

with the initial condition:

P0Y={1. (80)
¢ is a positive value assumed arbitrarily (e.g. ¢ =100).

Matrix P is called the covariance matrix because if multiplied by the variance of white noise (i)
it has variances of parameters of the identified vector on its diagonal, and beyond - covariances
(without forgetting: & = 1.0). Trace of matrix P can then serve as an assessment of convergence
for RLS without forgetting. For o < 1.0, and stationary plant and disturbance, care must be
taken of the conditioning of the matrix (D-U decomposition, constant trace, varying forgetting or
other - well developed methods widely presented in the literature on process identification, e.g.
Ljung and Soderstrom, 1983, Stoica and Soderstrom, 1989, or Zarrop and Wellstead, 1991).
When the disturbance shaping filter (being already minimum phase) can be factorised as:

C=AC (81)

and C satisfies the positive reality condition:

Y Re{ L —lH >0 82)
O<ent, < C 2 g T

then, after Ljung, 1977:

0G) > 8,, (83)

with unit probability provided the disturbance is sufficiently reach (the plant is sufficiently
excited) and orders of polynomials of the controller satisfy adequate conditions defined in

appendix A (otherwise, the estimate é(i) is biased which does not lead to instability, yet).

Further, if k¥ = 1 then, according to Ljung, 1977, the estimate é(i) is consistent.

Condition (81) is justified when dim C >>dim A because in this case dim A roots of polynomial
C which are close enough to roots of polynomial A are likely to appear. Moreover, as seen on
Fig. 1, both the plant and the disturbance shaping filter contain the same measurement path (the
residual microphone, anti-aliasing filter and analogue-to-digital converter).

42,2 LMS

Another algorithm that can be employed to identify the parameters of the controiler (74) on-line
is based on the steepest descent search. In such an iterative process, controller parameters are

updated in the following way:
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JE
bGi+1)=0()— 2 a{:((;)} (84)
I

where 1 is the convergence coefficient. Alternatively, the gradient can be written in terms of
the error and reference signal as:

(0} {2 o 2ELe) )}} (85)
26() 90

Substituting for (i) from Eq. (66), Eq. (85) takes the form:

IE{e* (i)}
260)

=-2E{e(iyp_.} (86)

Since 0(i) is updated in the opposite direction to the gradient of the error surface, it will descent

on the error surface towards its minimum. However, estimation of the cross-correlation term
E{s(i)q)(i - k)} would require a lengthy averaging procedure which is difficult to perform in on-

line procedure. Therefore, a simplified alternative is found in the form of the Least Mean Square
(LMS) algorithm (Widrow and Stearns, 1985) where the gradient is estimated by the
instantaneous value £(i)@(i —k). Then, the update equation becomes (substituting for &(i)):

Bi+1)= 60+ i~ () i~ )= 9" (i~ 0é). (87)

6]

Control value is calculated according to (73).

Some features of LMS as well as some modifications of this algorithm are discussed further in
section 4.3.1.

4.3 SIGNAL PROCESSING APPROACH

Tn section 4.2.2 the application of LMS algorithm to identify parameters of both MVC and IMC,
FIR or IR, on the basis of the predictive model of the plant was presented. However, originally
LMS was designed to search optimal Wiener solution - filter W given by Eq. (40) (this is
obviously adopted to seek IMC filter) as:

W(i) = Arg min E{y*()}. (88)
W)
4.3.1 IMC with FXLMS

Recalling Eq. (32) and following the reasoning presented in section 4.2.2, this leads to the LMS
update equation:
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Wi+ 1) = W) + pr@)y(). (89)

If applied to noise cancellation problem considered in this research, and particularly to the IMC
structure for perfect model of the plant, the input signal to the adaptive filter is expressed in
terms of the reference signal (follow Figs. 6, 7, 8, and Eq. (31)):

(i) =px(), (90)

where p is defined by Eq. (29) and x - by Eq. (27) (see Fig. 8). Because the plant impulse

response p is unknown, the impulse response of its model p is used instead of it. Thus, the
parameter update equation can be written together as:

W(i+1)= W() + urQ)y()
) HrQ)y o1
i) =p" x().
This form of LMS is referred to as Filtered-x LMS (FXLMS) (see Fig. 13) and is rather a
feedforward control algorithm then an identification method.

d(i)

x(1) u(i) y (i

W P =

h 4
B

Fig. 13 Filtered-x LMS.

It must be emphasised here that it has been derived after commuting the order of the plant and
the control filter (see Figs. 7 and 8) which is only true under assumption that both of them are
time-invariant. In practice the controller is adaptive and time-varying, while the plant ¢an also be
time-dependant, so Fig. 7 and Fig. 8 are not equivalent. However, when they are slowly varying
in time comparing to delays involved in the plant and the controller, this is a reasonable
assumption. The accuracy of the plant model affects the convergence of FXLMS and the whole
IMC system. It has been found, however, (Burgess, 1981, Morgan, 1980, Elliott and Nelson,

1993) that this algorithm will converge as long as the cross-correlation matrix between r and r
has positive eigenvalues. For tonal disturbances this condition implies that for convergence the
phase mismatch between the model and the plant must be less then 7/2 .

The LMS algorithm has the advantage of simple implementation and usually the disadvantage of
slow adaptation if (i) is not a white noise or a tone. Convergence coefficient it is responsible

for the speed of adaptation (the bigger g the faster adaptation) and for fluctuations about the
steady-state solution with variance (Widrow and Stearns, 1985, Haykin, 1991, Rafaely and
Elliott, 1996a):

E{W()-W,, |~ 2By}, ©2)
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Widrow and Stearns, 1985, showed that FXIMS algorithm converges provided the convergence
coefficient is bounded by the following value:

(93)

<2
H<Nc.

r

where N is the length of the FIR control filter, W(i), and o is the variance of the filtered
reference signal, r(i).

As seen from the analysis presented above, the choice of value of y has crucial influence on all
features of an adaptive control system with LMS identification. It is obvious that when the level
of input signal to the controller changes the convergence coefficient should be properly adapted.
Therefore, a normalised version is commonly used in practice where the convergence coefficient
becomes time-dependant as follows:

: H

= (i) =——. 94
p=pb=-7 O o4)
Another modification to the LMS algorithm which increases its robustness is used in the term of
the Leaky LMS (Widrow and Stearns, 1985). It has the following update equation:

Wi +1)= EW()+ pr@)y(), (95)

where £ is the leak factor and 0<<&<1. The effect of adding the leak factor is equivalent to
using the conventional steepest descent algorithm with a modified objective function:

. Ll PN

L= E{yz(z)}+—§ wl (D) w(i). (96)
w2

This prevent the filter coefficient from obtaining high values without a significant reduction in

the mean square error, which has a stabilising effect on the adaptive process. This is equivalent
to minimising the cost function given by Eq. (44) where:

1—5
=2, 97
B 2 97

4.3.2 Fully adaptive IMC with FXLMS

In IMC structure a model of the plant is required (see Fig. 6). Its accuracy has significant
influence on the reference signal, controller identification, and finally on the performance of the
entire system and its stability. If no other “precautions” are made (see section 4.3.3) the model
should follow the plant in terms of its changes, if they appear. Rafaely and Elliott, 1996, showed
that the plant response (the model) cannot be extracted from the observable signals in the IMC
control system when the only disturbance is present. Therefore, an extraneous identification
signal is added to the control signal. The simplest and most obvious form of this fully adaptive
system is presented on Fig. 14.
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x{1) , ﬁ/ + u(i} P
+
. v(i)
H P < T

Fig. 14 Fully adaptive IMC system with injection of low-level random noise v(i). The control
filer identified via Filtered-x LMS, and the model of the plant - via LMS.

However, the observed signal (equivalent to the reference signal for IMC) whose power is
minimised to adopt the model is of the form:

x(7) =ﬂ-—~—A1—Ad(i)+——[~hjjid(i). (98)
I—W[P—-P] 1—W[P—P]

Thus, the identification error surface:
L.()= E{x’ (i)} (99)
P

is not quadratic and LMS might have difficulties in converging to the optimal value.
Rafaely and Elliott, 1996, suggest two other methods of identification of the model during
controller adaptation.

The first one is called ‘joint input / output adaptation of the plant model’ and is performed in
three different stages (refer to Fig. 14):

1) An LMS identification system identifies the response from v(i) to u(i).

2) An LMS identification system identifies the response from v(i) to y(i).

3) An LMS identification system extracts the model from 1) and 2).

In the second plant identification structure, proposed by Rafaely and Elliott, 1996, in the first
stage the response from v(i) to x(7) is identified by an LMS system:

F, ?% (100)

and then, by P— P is extracted by another LMS identification system, as:

F=pP-p=—te (101)
1+WF,
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Finally, the plant model is updated as:

}Snew = ﬁ-'_-F;' (102)

All the fully adaptive algorithms presented above suffer problems of modelling accuracy
comnected to the presence of signal d{i) and finite lengths of the temporary filter used.
Apparently, they involve multiple identification procedure to be performed on-line. As also seen
from Fig. 14, the extraneous noise injected affects the system output and reduces the

performance.

4.3.3 Robust IMC - MFXLMS

In the previous section different fully adaptive IMC algorithms were presented. Although they
seem to be able to track changes in the plant and adapt the controller to them, many obstacles
emerge which significantly influence efficiency and stability of the entire control system.

To protect the closed-loop IMC control system against instability due to a mismatch between the
plant and its model (which can be caused by modelling errors or nonstationarity of the plant),
instead of on-line adaptation of the model of the plant, another approach can be used. This
approach is based on H_ control theory (refer to section 3.5). It aims at ensuring sufficient
stability margin for a certain group of mismatch between the plant and its model which is
arbitrarily assumed (e.g. on the basis of former off-line identification in the open-loop), and on-

line adaptation of the controller filter, ﬁf’(i).

_ term replaced by a weighted H, term) cost

fanction, defined for IMC system with perfect model of the plant given by Eq. (52). This can be
equivalently expressed in the time domain as:

Let us now recall the approximated (the /1,

L() = E{y* ()} + BE{z* (D}, (103)

where an artificial signal, z(i), has been introduced and it has the form:

20)) = W, PWv(i). (104)

v(i) in Eq. (104) is the white noise, of unit variance, uncorrelated with d(i). Due to orthogonality
of (i) and z({) (that can be assumed because, as will be shown further, signals v(i) and z(i)
appear only in the identification procedure and do not really exist in the system), minimisation
of the cost function given by Eq. (103) is equivalent to minimisation of:

LG)= E{y* () + B2’ ()} = E{y; (D} (105)
where (106)
¥5(D) =) +/B2(). (107)
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Following the same steps for derivation a form of the steepest descent algorithm, as presented
earlier in sections 4.2.2 and 4.3.1, we obtain:

W +1)= W)+ P[x(i) + /B Wzv(i)][y(i) +JBW, ﬁﬁf(i)v(i)} . (108)

350

The weighting coefficient § can be regarded as the variance of v(i) and then Eq. (108)

simplifies to:

Wi +1) = W)+ i P +Wzv(i)]|:y(i) +W, P ﬁ/(i)v(i)} : (109)

-v

yp()

This algorithm, designed for optimal performance and robust stability, is referred to as Modified
Filtered-x LMS (MFXI.MS) and presented on Fig. 15.

dm
. . + -
x(1) 1/%/ u(i) 2 l(’l)
+
o 5 e
> P
+ +
o P 0
0y W b [0
Gy =

Fig. 15 Modified Filtered-x LMS for IMC - robustness included.
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5 SIMULATIONS

Throughout the work many active noise control algorithms were presented in both fixed
(optimal) and adaptive versions, and theoretically compared. However, as it was stressed several
times, most of them were derived under some assumptions which are not always fulfilled.
Apparently, during parametrization a trade-off usually appears. It concerns convergence
requirements, speed of convergence, computational burden, satisfactory performance, and
sufficient stability robustness. Also, during working of a control system, additional problems
associated with numerical errors emerge. It is thus clear that a simulation analysis is required to
give a survey of the algorithms from practical point of view. To perform the simulation test the
plant and the disturbance should be chosen.

5.1 THE PLANT AND DISTURBANCE

Simulations were performed with 2 [kHz] sampling frequency. A minimum phase, second order,
unit delay plant was chosen, described by Eq. (110):

_, 0.420-0.050z ' —0.160z* (110)
1-03677 ' +0.0687>

yi=z

Fig. 16 shows magnitude of its frequency response and zeros / poles distribution.

a). b).
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Fig. 16 The plant: k = 1; A = [1 -0.367 0.068]; B = [0.42 -0.05 -0.16]:
a). magnitude of the frequency response of the plant in linear scale;
b). zeros / poles distribution.

The disturbance shaping filter modelling the noise to be cancelled is represented by a non-
minimum phase FIR filter of 20th order. Magnitude of the frequency response of the filter and
its roots (zeros) distribution (before, and after spectral factorization) presents Fig. 17.
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Fig. 17 The disturbance shaping filter:
a). the magnitude of the frequency response of the filter in linear scale;
b). zeros distribution: ‘o’ - before spectral factorisation; ‘@’ - after spectral factorisation.

For further tests a plant nonstationarity will be introduced by sinusoidal change of first
parameter of the plant according to the following rule (in MATLAB notation):

if time > 500, B(1) = 0.42 + 0.2%sin(2*pi*200.*time /2000); end. (111)

This affects both magnitude and phase of the frequency response. Fig. 18 shows the boundaries
of zeros placement and magnitudes of frequency responses which are reached one after another
at every 5 samples.
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Fig. 18 The nonstationary plant:

a). the magnitude of the frequency response of the plant in linear scale;
b). zeros / poles distribution.

5.2 OPTIMAL PERFORMANCE

The best attenuation calculated according to Eq. (15) without spectral factorisation was 34.35
[dB] and the attenuation of optimal fixed IMC filter designed as IIR filter (10) (or MVC) was
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31.34 [dB] (see Fig. B.1). However, any fixed controller cannot yield such an attenuation
because it is unstable. After spectral factorisation over non-minimum phase parts of polynomial
C. the best optimum attenuation was calculated, according to the same formula, as 23.67 [dB].
Optimal fixed IMC filter designed as IR filter produced the attenuation of 23.64 [dB] (see Fig.
B.2). The small discrepancy can come from numerical errors. Tab. Bl and Fig. B.3 show the
dependence of attenuation with respect to discrete time delay of the plant. Optimal fixed IMC
filter designed as an FIR (40) filter produced the performance, calculated according to Eq. (42),
which depends on the number of parameters of the filter. For 550 parameters the attenuation
achieved was 23.58 [dB] (see Fig. B.6).

The dependence of the attenuation with respect to the number of parameters is illustrated in Tab.

B.2 and on Fig. B.7. As it is seen, it is still possible to achieve better performance by increasing

the number of parameters. This can be easily deduced on the basis of equations defining optimal

controllers in which polynomial C appears in their denominators. In turn, from its roots
distribution (see Fig. 17) follows that the disturbance mainly consists of random sine-waves

(random phase and amplitude) because most of the roots are very close to the unit circle. Thus

the discrete impulse response of the optimal feedforward IIR filter decays very slowly what

illustrates Fig. B.4. However, (see Fig. B.7) the difference in attenuation for 550 and 100

parameters of the filter is less then 0.5 [dB]. Further, if we agree to loose about 3.5 [dB] we can

reduce the filter length to only 4 parameters (see Tab. B.2). In practice, for real plant, it is even
better to chose less parameters for many reasons:

- the more parameters the higher computational burden which can lead to a reduction of the
sampling rate;

- the more parameters the more numerical errors and higher sensitivity of the whole system;

- in real applications for high number of parameters the system tries to interpolate noise of
different type, like quantization noise, and measurement noise and can be far from the optimum
one for different realisation,

- in adaptive systems, the more parameters the slower convergence rate (see subsections to

section 5.3 for details).

5.3 ADAPTIVE CONTROLLERS

Adaptive control systems presented in the work were tested in simulations.

It should be emphasised here that while designing and parametrizing an adaptive control system
aiming at cancellation of acoustic noise (of whichever type it is) a reasonable trade-off between
the attenuation and the speed of convergence should be considered and taken into account. It is
imposed by sensibility of applications of that kind (for some ANC applications, like an acoustic
duct, the convergence time can be of order of minutes while for active headsets it should be less
then one fifth of second to follow a movement of the head of a wearer).

All the adaptive systems are further analysed in terms of numbers of parameters of controllers,
discrete time delay of the plant, speed of convergence, plant nonstationarities (see Eq. (111) and
Fig. 18) and parametrizations assigned to each one separately. Presented attenuation results were
obtained after the time of 2000 samples (1 [s] for fs = 2 [kHz]) which was found to be “enough”
to allow to examine main features of the adaptive systems. By the convergence time we consider
the time (in samples) after which the attenuation differs from the best possible one, under
present conditions, of no more than 3 [dB].

IMC systems are also analysed in terms of a significant (in spectral features) model mismatch
with respect to the plant. This mismatch was introduced by setting the first coefficient of the
nominator of the model on 0.22 or 0.62 whilst for the plant it is 0.42 (see Fig. 18).
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5.3.1 MVCRLS

1. The number of parameters

The controller was assumed to have the same number of parameters in numerator and
denominator and furthermore the total number of parameters is only referred to. Simulations
showed that this is equivalent to different numbers, in terms of performance, for more than 4
parameters.

The best performance achieved was about 21.39 [dB] which is less then the calculated one.
Starting from 14 parameters the performance is about to be saturated (21.38 [dB]) and this
number will be considered in further investigations. It can be also deduced that increasing the
number of parameters over a particular value leads to decreasing the attenuation what can be
explained by numerical errors or convergence difficultics.

For details refer to Tab. B.3 and Fig. B.8.

2. Speed of convergence

The speed of convergence depends on the number of parameters of the controller and the
forgetting factor in RLS identification method. For N = 14 and & = 1.0 it is about 30 samples.
But for the same number of parameters and ¢ = 0.99 it is only about 10 samples (less then the
number of parameters because the speed depends only on the bigger number of parameters in
aumerator or denominator of the controller). Tt can be assessed on the basis of the trace of
covariance matrix. For & < 1.0 and stationary plant and disturbance care must be taken of the
conditioning of the matrix.

For N = 2 the convergence time is only 3 samples what is equivalent to 1.5 [ms] and attenuation

about 9 [dB].
3. Effects of plant nonstationarity

The control system proved to be stable and yielded the attenuation that reaches 7.70 [dB] for «
= 1.0 and 9.26 [dB] for o = 0.99 (see Figs. B.12 and B.13, respectively). Beiter results were
obtained for weighting (WMVC) coefficient ¢ = 0.05 # 0: 8.65 [dB] for @ = 1.0 and 12.93
[dB] for & = 0.99 (sece Figs. B.14 and B.15). This testifies that the system is then more
conservative and less sensitive to nonstationarities and nonlinearities. When both the plant and
the disturbance shaping filter are time-invariant and linear then q = 0 deteriorates the
performance. It is also seen then that, in case of plant nonstationarities, the forgetting allows to
better track the changes and improves performance.

4. Discrete time delay
The attenuation drops down with the discrete time delay in an exponential-like way. For delays

more than 7 there is no sense to employ MVC - the attenuation achieved is less then 1 [dB].
For details refer to Tab. B.4 and Fig. B.8.
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532 IMCIIR RLS

I. The number of parameters

The IMC TIR filter was assumed to have the same number of parameters in numerator and
denominator and furthermore the total number of parameters is only referred to.

The best performance achieved was about 21.60 [dB] which is less then the calculated one. It is
also seen that starting from 14 parameters the performance is about to be saturated (21.45 [dB])
and this number of parameters will be considered in further investigations. It can be also
deduced that increasing the number of parameters over a particular value leads to decreasing the
attenuation what can be explained by numerical errors or convergence difficulties.

For details refer to Tab. B.5 and Fig. B.16.

2. Speed of convergence
Similar conclusions as for MVC (see sec. 5.3.1).
3. Effects of plant nonstationarity

The control system proved to be stable and yielded the attenuation that reaches 10.46 [dB] for o
= 0.99 and 8.12 [dB] for ¢ = 1.0 - see Fig. B.20 and B.21, respectively. Better results, 9.07
[dB] (for o = 1.0), were obtained for the case with control effort included in the cost function
(g =0.05).

4, Discrete time delay

The same conclusions as for MVC.
For details refer to Tab. B.6 and Fig. B.17.

5. Model mismatch

For B1(1) = 0.62 the attenuation achieved was 21.43 [dB] (see Fig. B.22) and for B1(1) = 0.22:
21.34 [dB] (see Fig. B.23) which comparing to the case with perfect model of the plant (B1(1) =
0.42), 21.60 [dB], testifies that IMC IIR RLS control system is not sensitive to this kind of
mismatch. Only the speed of convergence is slightly reduced. Worse results, 11.15 [dB] (for
B1(1) = 0.22), were obtained for g = 0.05.

5.3.3IMC FIR RLS

1. The number of parameters

An FIR controller constitutes only an approximation of the IIR one. Thus, the more parameters
the better attenuation can be expected. Although, after crossing a particular threshold numerical
errors overcome the benefits of better approximation and the attenuation drops down. The best
result obtained was about 22.33 [dB]. However, this is for about 30 parameters what
significantly reduces the speed of convergence. On the other hand, to have the opportunity to
compare the behaviour of different algorithms with similar computational burden, 14 parameters
of the feedforward adaptive filter were chosen which yielded the attenuation of about 21.61 [dB]

32



(only 0.72 [dB] less than for 30 parameters). This choice can be also justified taking into account
that in fact in IMC, the whole controller includes a model of the plant and in this case it is still of
the IR type. It is also worthy to know that that for 4 parameters only, the attenuation is about
19.89 [dB] which in many cases can be considered sufficient due to very efficient numerical
effort and convergence speed.

For details refer to Tab. B.7 and Fig. B.26.

2. Speed of convergence

The adaptive IMC FIR RLS system turned out to be relatively slow for & = 1.0 and after 2000
samples the attenuation was less than 14 [dB] (compare Figs. B.28 and B.29). This behaviour
can be explained taking into account the fact that the overall controller is of TIR type (it includes
a model of the plant) and parameters in its numerator and denominator are closely correlated.
Introducing a forgetting factor in RLS identification procedure dramatically speeds up the
system allowing it to yield of about 8 [dB] better attenuation in the same time (¢ = 0.99).
However, in case of plant nonstationarity or model mismatch, the speed and attenuation results
are comparable for both considered values of ¢ .

3. Effects of plant nonstationarity

The control system proved to be stable and yielded satisfactory attenuation which reaches 9.32
[dB] for @ = 1.0 and 9.56 [dB] for o = 0.99 (see Figs. B.30 and B.31, respectively). Similar
results, 9.28 [dB], were obtained for ¢ = 0.05 (& = 1.0).

4. Discrete time delay

The same conclusions as for MVC.
For details refer to Tab. B.8 and Fig. B.27.

5. Model mismatch

For B1(1) = 0.62 the attenuation achieved was 16.47 [dB] ( Fig. B.32) and for B1(1) = 0.22:
12.07 [dB] (Fig. B.33) which comparing to the case with perfect model of the plant (BI(1) =
0.42), 21.61 [dB], testifies that IMC TIR RLS control system is not sensitive to this kind of
mismatch. Only the speed of convergence is slightly reduced. Worse results, 10.45 [dB], were
obtained for ¢ = 0.05 (B1(1) = 0.22)

5.3.4 IMC FIR MFXLMS

1. The number of parameters

Similarly to IMC FIR RLS (see section 5.3.3), the more parameters the better performance
should be expected. However, numerical etrors arise with the number of parameters and, after
crossing a particular threshold, the attenuation drops down (see Tab. B.9 and Fig. B.36). The
best attenuation, 21.44 [dB], was obtained for 20 parameters. To have the opportunity to
compare the results to those presented in previous sections the experiments were performed

further for 14 parameters (21.38 [dB]).
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2. Speed of convergence

The convergence closely depends upon the convergence coefficient (compare Figs. B.38 and
B.39). However, even for the optimum one found, gt = 1.5 (which also guarantee stability), it
was about 500 samples. However, for nonstationary plant or model mismatch the convergence
coefficient had not so crucial importance (see Figs. B.40 and B.41).

3. Effects of plant nonstationarity

The control system proved to be stable and yielded satisfactory attenuation which reaches 13.30
[dB] for ¢ = 1.5 and 11.99 [dB] for p = 0.8 (see Figs. B.40 and B.41). Betier resuits were

obtained when the robustness was included ( § = le-3): 13.34 [dB] for ¢ = 1.5 (Fig. B.44).

4. Discrete time delay

The same conclusions as for MVC.
For details refer to Tab. B.10 and Fig. B.37.

5. Model mismatch

For B1(1) = 0.62 the attenuation achieved was 18.21 [dB] (Fig. B.42) and for B1(1) = 0.22:
14.78 [dB] (Fig. B.43) which comparing to the case with perfect model of the plant (B1(1) =
0.42), 21.38 [dB], testifies that IMC FIR MFEXLMS control system is sensitive to this kind of
mismatch. The speed of convergence is slightly reduced. Better results were obtained for 8 =

le-3: 14.94 [dB] (B1(1) = 0.22).

5.3.5 IMC FIR FXLMS fully adaptive

The last control structure examined was the fully adaptive IMC system with both the model of
the plant and the control filter identified on-line via Normalised LMS algorithms (control filter -
with reference filtering) and injection of low-level identification signal at the input of the plant
and its model (Fig. 7). Unfortunately, this structure does not assure proper identification of the
model of the plant and the control filter is not identified correctly. This reflects in very poor
attenuation - only 4.14 [dB] (see graph on Fig. B.46). The convergence time is extremely long.

34



6 SUMMARY

6.1 Conclusions

Different feedback systems, aimed at the minimisation of energy of the undesired signal, were
analysed.

Is there any sense in such a comparison?

Tf the model of the plant used in IMC is precise and accurately reflects the plant itself, a
significant amount of information is supplied to the control system. The controller is very close
to a feedforward filter. Thus better results in terms of attenuation and convergence (during the
adaptation) can be expected in comparison to the case when the whole feedback has to be
identified. However, when the model differs a lot from the plant, an additional large error is
introduced to the identification procedure, so the results obtained are expected to be worse.

Why are both FIR and IIR IMC structures compared?

Usually an FIR filter is used for IMC. However, when properly identified via RLS on the basis
of the predictive model of the plant, the cost function surface is quadratic for both FIR and [IR
versions and the global minimum is found. Besides, the computational burden is exactly the
same. On the other hand, it is obvious that an IIR filter should ensure better results, although for
longer filters care must be taken because numerical and quantization errors are accumulated. It is
extremely important to mention that the convergence time is much longer for FIR filters (at least

a few times).

Why thus MVC structure is analysed?

MVC cannot tell the difference between the plant and disturbance. It treats them in the same
way. Apparently, it does not require prior identification of the model of the plant except for the
evaluation of its discrete time delay. That is why it is less sensitive to any nonstationarities and
in that case a bit faster in convergence. When directly identified it involves much less
computations than IMC.

Generally, all the adaptive systems considered in the report do not require a large number of
filter parameters. Moreover, after crossing a particular threshold numerical errors overcome the
benefits of better approximation of the optimal controller and the attenuation is reduced.
Besides, the more parameters the lower speed of convergence.

The performance achieved by each algorithm similarly depends upon discrete time delay of the
plant.

Control effort (in the Z - transform domain approach) or robustness coefficient (in the signal
processing approach) introduced in the cost function being minimised, makes the systems more
conservative and less sensitive to any nonstationarities or, for IMC, model mismatches.

6.2 Main contributions of this research
1. Optimal MVC and IMC algorithms have been derived in the Z - transform domain. It has

been proved that for a perfect model of the plant, required by IMC, they are equivalent.
Stability conditions have been also derived.

35



. Provided that the plant is stable and minimum phase the only things that are necessary to
precisely evaluate the best possible attenuation are: the discrete time delay of the plant and
the FIR disturbance shaping filter i.e. the plant model is not required. But, if the filter is non-
minimum phase, spectral factorization over it should be first performed.

. Tf the plant is non-minimum phase, it is possible to precisely calculate the control effort
weighting coefficient, g, and thus precisely evaluate the best possible attenuation, control
signal variance and the form of the output signal.

. For minimum phase plant, it follows from the form of the output signal that only for £ =1 is
the output white noise. Otherwise it is an MA process and its form can be deduced prior to
control, only on the basis of the disturbance shaping filter and the plant delay.

. The effects of measurement noise have been examined and it has been shown that its
presence makes the system robustly stable to plant variations defined by the multiplicative
plant uncertainty bounded by the spectrum of the noise itself.

. The performance limitations are thoroughly examined. Special attention is paid to the
influence of plant delay and some solutions are suggested.

. The predictive model of the plant has been derived which expresses polynomials of the
controller (MVC or IMC) in a linear way and makes the identification surface quadratic (with
only one, global minimum). It should be stressed here that MVC is identified directly -
without the necessity to first identify a model of the plant and then calculate the controller.
Constraints of this method are also analysed.

. An LMS algorithm searching the global minimum (over convex identification surface) for IIR
IMC filter, or MVC has been derived (with, and without control effort) which constitutes an
alternative to Filtered-x LMS.

. The proof for Modified Filtered-x LMS (robustness included for the multiplicative plant
uncertainty) has been given.
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A1MVC

Consider the plant given by an IIR filter and the acoustic disturbance given by the white noise of
variance A filtered by an FIR filter (measurement noise is neglected here due to its
incomparably lower level than the Jevel of the acoustic disturbance):

y(iy=2z"* Eu(i) + Ce(i) . (A.1)
A ——

diiy

Shifted by k samples it takes the form:
. B . .
Wi+k)= Zu(z) + Ce(i+k). (A.2)

Let us define the cost function as the energy at the output of the plant:
Lii+k) = E{y* (i +0)}. (A.3)

The goal of control is to find such a control value u(i) that minimises the cost function given
above.

Define the Diophantine Equation (DE):

C=F+7'G; dimF=k-1; dimG=dimC~k. (A4
Substituting C in Eq. (A.2) by Eq. (A.4):

y(i+k):§u(i)+ Fe(i+k)+Ge(i). (A.5)
From Eq. (A.1) e(i) can be expressed as:

1. .. 1 ,B .
(i) =) - =2 Zuld. (A6)

Combining Egs. (A.5) and (A.6), we obtain:

y(i+k):%u(i)+Fe(i+k)+%y(i)—z‘k%§u(i), (A7)

or in other form:
Wi+k)=Fe(i+k) +~g— y(i) —%u(i)[l -z* %) (A.8)

From DE (A.4) follows that:
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G F (A.9)
c C
and thus Eq. (A.8) can be written as:
G BF
i+ k)= Fe(i+k)+—y({)+——ull), A.10
yi+k)=Fe(i+k) C ¥(D) iC (i) (A.10)
or after rearrangement the components on the RHS:
y(i+k):(%y(i)+—§%u(i)}+(1~“e(i+k)). (A.1D)

Because dim F = k - 1, the two variables on the RHS of Eg. (A.11) are independent and
orthogonal. The variance of the sum of two orthogonal random variables is equal to the sum of
variances of these variables:

Li+k)=E*(i+k}=E (E (i) + Eu(i)jz + E{(Fe(i + )’} (A.12)
C AC

From Eq. (A.12) follows that minimum of the variance of the output signal can be obtained
minimising only the first component on the RHS in Eq. (A.12) because the second one is
unknown in time instant i. Thus:

G BF

—y()+—=u(@=0, A3
C y(@) Ac () (A.13)
which defines the optimal control law as:

. AG .
e () == 2 () (A.14)

Substituting expression given in Eq. (A.13) into Eq. (A.11) and shifting back of k samples,
defines the output value:

Yo (D)= Fe(i). (A.15)

Taking into account the form of the DE (A 4), this can be written as follows:
k—1

IMOEDICATEIP (A.16)
I=0

Substituting again Eq. (A.13) into Eq. (A.12) determines the minimum cost function, which is
also the minimum possible energy at the output, as:

min L(i + k) = min E{y*(i + &)} = E{(Fe(i + 0))’} (A.17)

Because e(7) is the white noise of variance A’ and using Eq. (A.4), we have:
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min E{y*(i+k)} = fkicf : (A.18)
=0

Let us now examine the characteristic equation of the closed loop system (see Egs .(A.1) and
(A.14)):
L« BAG

’ A 19
A BF ( )
or in other form:

CH=A—B(1+Z_" ﬁ] X
BA

CH=1+z

- (A.20)
Taking into account DE (A.4), we have:
cg=28C (A2D)
BAF
Thus the characteristic equation can be expressed, not formally, in the following form:
CH = ABC, (A.22)

which fmposes three constraints to have the closed loop system stable.
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A.2 Adaptive MVC

Let us remind the optimal control law of MVC:

D= =223, 0, (A23)
which can be rewritten as follows:
%ﬁ”apr(i) +_G§éyw)r (=0 = Ru,@H+S5y,(H=0, (A.24)
where
dimR

R:R(z”)=ég+ grfz-’; dimR=dimB+(k-1), (A.25)
§S=8z"= difs,z*‘ ; dimS = dimA +(dim C - k). (A.26)

-0
Multiplying Eq. (A.1) by FA, we have:
AFy(i) = 7*BFu{i)+ ACFe(i) . (A.27)
Taking into account DE (A.4), Eq. (A.27) can be writlen as:
ACy(i)— 7 *AGy(i) — 2 BFu(i) — ACFe(i)=0, (A.28)
or after rearrangement:
—BFu(i—k)— AGy(i— k) = AC(Fe(i) — y(1)). (A.29)

Let us add to the LHS y(i) and to the RHS y(i) + Fe(i) — Fe(i), which does not change the
equation. Then we can rewrite it to the following form:

y(i) — BFu(i — k) — AGY(i — k) = (AC = 1)[ Fe(D) — y(i) ] + Fe(i). (A.30)

The RHS can be regarded as an error and denoted as £(7).
Then using the notation introduced in Eq. (A.24), we can write this as:

y(i}~ Ru(i — k) — Sy(i — k) =&(i). (A.31)

Considering the structure of polynomials R (A.25) and § (A.26) we can write this in more
convenient vector form:

@) - rui-k) -9 (i-k8=e@), (A.32)
where:
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e i—k)=|yi-k),...yi—k- dimS),u(i—k~1,...,u(i—k— dimR)] (A.33)

is the data vector or in other words - the vector of regressors, and:

BT:[so,sl,...,sdims,r},rz,...,r;ﬁmR] (A.34)

is the vector of parameters of the minimum variance controller.

In optimal control:

A uap,(i)+qu(i)9 =0. (A.35)

Thus the control value can be calculated from the vector form in the way as follows:

Uy (8) = —~:—(pr(i)9. (A.36)
0

From Egs. (A.32) and (A.30) follows that under optimal control (A.33):

y(i) = &) = Fe(i) (A.37)

because the first term of the RHS of Eq. (A.30) is nullified.
It is worthy to note that the error &(i) in Eq. (A.32) is linearly dependent on the controller

parameters 8 which allows to find the minimum of £%(i). In adaptive direct minimum-variance

control an estimate 6 satisfying:
y(i) — (i) uli— k) - @ (i — k) B(i) = €(i) (A.38)
is searched for, which can be found as:

8(i) = Argmin E{e* (D)} (A39)
8
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A.3 MVC with control effort

Let us consider the same plant and Diophantine equations as it was done for MVC - see Eqgs.

(A.1) and (A.4), respectively.
Define now the cost function as:

LG+k)=E (+0)+q’®}, (A40)

which we are going to minimise. In Eq. (A.40) g>0is a weighting coefficient or in other words

a penalty imposed on the control signal suppressing an excess effort.
Following the same reasoning as presented in Eqs. (A.1) through (A.12), the cost function can

be now expressed as follows:
, G .. BF .Y . e
L(i+k)= E{(—C— y(i) + XEu(z)) + quz(z)} + E{(Fe(i +k)) 2 (AA41)

The second term on the RHS of this equation is unknown in time instant i . Thus minimisation
of the cost function is equivalent to minimisation of its first term which can be done by:

9 el @ J(G o BF Y2l
atu(i) [Lq i+ k)] = Bu(z) {( C y(l) + Ve M(I)) + qit (I)} =0. (A42)

After making the partial derivation:
G BF
2(_6 ¥+ ac u(i))bo +2qu(i) =0, (A.43)

the optimal control law is expressed by:

AG

U () =~ ac’ (A.44)
where:
q = -f: - (A45)

Let us now substitute Eq. (A.1) for y(7) into Eq. (A.44):

o _ AG _k E il "
ul(i) = ——BF " q'AC (z " u(i) + C(z)j . (A.46)

Separating variables on different sides, we have:

A(BF +2™*GB+q AC)u(i) = —~AAGCe(i). (A4T)
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Using DE (A.4), Eq. (A.47) can be rewritten to:

AAGC ] (A.48)

u(z) = —me(l) .

Hence the characteristic equation of the closed loop system:
CH = AC(B+q A). (A.49)

Let us now calculate the minimum cost function at the output under optimal control. Let us
substitute for y(i), in Eq. (A.41), from the plant equation (A.1) and use DE (A.4). This gives:

min L, (i + k) = E{(g u(i) + Ge(i)) +qu’ (i)} + E{[Fe(i + )’} (A.50)
Substituting for u(i) from Eq. (A.48) , gives:

o ~BG : GA Y|, g
mqu(z+k)-E{KB+q.A+GJ +q(3+q. AJ }e (n)}+E{[Fe(t+k)] 1 (A1)

And finally, after rearranging in the first term on the RHS:

. . 32 2 GA . ’ . 2
min L, (i + k)= (q ) (1+5; )E{[(B"'QIA)E(I):l }+E{[Fe(z+k)] } (A.52)

Let us check how the system output differs now from its form obtained in case of no weighting
(MVC, see Eq. (A.15)):

A() = y(i)— Fe(iy. (A.53)
Substituting now for y(i) from Eq. (A.1):

AG@y=z7"" %u(i) + Ce(i)— Fe(i) . (A.54)

Using Eq. (A.48) and DE (A.4):

N B e
Al)=-z AB+q.Ae(1)+Fe(1)+z Ge(i)— Fe(i), (A.55)
or further:

~_ [ _BG . :ﬂ._AG .

A@) = £B+q.A G)e(z k) (q)[ B+q,Ae(; k)j. (A.56)

Now using again Eq. (A.48):

A()=—-qu(i—k). (A.5T)
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Thus, combining with Eq. (A.53), the output of the system satisfies the following relation:
y(@) + g u(i— k) = Fe(i). (A.58)

Let us substitute again for u(i-k), (A.48):

. AG
[y= —e(i—ky+ Fe(i) . A5
y()qB+qA( )+ Fe(i) (
Because the two random variables on the RHS of the equation are independent then the variance
at the output can be expressed as follows:

Efy*(i+k)} = E{q‘ BijA e(i)} } + E{[Fe(i + k)]z} (A.60)

or, directly from Eq. (A.58):
EfyG+0}=(q) Eflu] }+ BE{{FeG+ 0]}, (A.61)

which shows the relation between the variance of the output of the system and the variance of
the control signal.
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A.4 Adaptive MVC with control effort

Let us remind the optimal MVC control law:

4G MOF (A.62)

=" Br g AC

which can be rewritten as follows:

(BF + ¢ AC)u,, () +GAY,, (D=0 = Ru, ()+S5y,,[H=0, (A.63)
\——_V—JR S
where
. dim R
R=Rz")=(by+q )+ DX nt; dim R = max(dim B+k—1,dimA +dimC),  (A.64)
\_..._..,;,_J =1
dim §
§=8z")=Y5; dim$ = dim A + (dimC - k). (A.65)
I=0

Multiplying Eq.(A.1) by FA, we have:

AFy(i) = 77*BFu(i) + ACFe(i). (A.26)
Taking into account DE (A.4), Eq. (A.66) can be written as:

ACY() - 7" AGy(i) — 77 *BFu(i)— ACFe(i)=0 (A.67)
or after rearrangement:

—BFu(i - k)— AGy(i — k) = AC(Fe(i) - y(1)). (A.68)

Let us add to the LHS v(@)+g(—-ACu(i-k) and to the RHS
y(i)+ q'(l—AC)u(imk)+Fe(z')—Fe(i), which does not change the equation. Then we can
rewrite it to the following form:

() - (BF + ¢ AC)u(i — k) — AGy(i— k) = (AC = [ Fe()) - Y]+ Fe(i), (A.69)
where
Y(i) = y() + q u(i — k). (A.70)

The RHS can be regarded as an error and denoted as £(i).
Using the notation introduced in Eq. (A.63), Eq. (A.69) can be written in terms of controller
polynomials as:
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v(§)— Ru(i —k)— Sy(i —k) = €(i). (A.71)

Considering the structure of polynomials R (A.64) and S (A.65), Eq. (A.71) can be expressed in
a more convenient vector form:

y(@)—rui—k)— @ (i-k)0 =€), (A.72)
where:
eTi—k) =[yi—k),...y(( —k—dimS),u(i—k—1),...uli —k - dim R)) (A.73)

is the data vector or in other words - the vector of regressors, and:

87 = [59+512---sSaimsoTisTares Tienr ) (A.74)
is the vector of parameters of the controller under consideration.

In optimal control:

ru()+e (H6=0. (A.75)

Thus the control value can be calculated from the vector form in the way as follows:

u(i) = —%-rp (He. (A.76)

0

From Egs. (A.72) and (A.69) follows that under optimal control (A.75):
(i) = £(i) = Fe(i) (A.7TD)
because the first term of the RHS of Eq. (A.69} is nullified.

It is worthy to note that the error £(i) in Eq. (A.72) is linearly dependent on the controller

parameters & which allows to find the minimum of £*(i). In adaptive weighted minimum-

variance control an estimate 9 satisfying:
Y = (By)uli—k)— @ (i - k) 0() = e(i) (A.78)
is searched for, which can be find as:

8(i) = Argmin E{e* ()} (A79)
(i)
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A.5 IMC IIR filter

Consider the same plant, Diophantine equation and cost function forms as it was done for MVC
- see Egs. (A1), (A4), and (A.3), respectively:

For feedforward control with Wiener filter and measure-available acoustic disturbance control
value is expressed as follows:

u(i) = Wd(i), (A.80)

where W(z ') is the transfer function of the filter. Then, Eq. (A.1) takes the form:
. 4 B . :
W)=z ZCWe(t) + Ce(i). (A.B1)
Substituting for C from DE (A.4):
. B . .
yi+k)= (Z CW+ Gje(z) + Fe(i+k). (A.82)

The two variables on the RHS are independent and orthogonal, that is why the variance of the
output (which constitutes now the cost function) is equivalent to:

LG+k) = E{y*(i+k)}= E{[g CW + G)e(i)} } + E{(Fe(i + k))z} : (A.83)

Only the first component on the RHS can be minimised because the second one is unknown in
time instant ;. The minimum of the cost function can be obtained for:

§CW+G=0. (A.84)

Thus the optimal IR Wiener filter which minimises the energy of the output signal takes the
following form:

w -_AG (A.85)

apt BC

Taking into account On the Eq. (A.84), Eq. (A.83) gives the form of minimum cost function:
min L(i + k) = min E{y* (i + k)} = E{(Fe(?))’ 1 (A.86)

which for e(i) being white noise of variance A%, and considering (A.4), is:

k-1

min E{y* ()} = A" Y ¢} . (A.87)
1=0

The transfer function of the whole feedforward path (see: Egs. (A.1) and (A.85)) takes the form:
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1B AG @

Thus the stability of the feedforward control is determined by the following equation:
CH=A-B-C. (A.90)

which by analogy to the closed-loop system can be called, not formally, the characteristic
equation of the system.
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A.6 Adaptive IMC IR filter

Let us remind the optimal feedforward filter minimising the energy at the output of the control
system:

A
W = —E%d(z’), (A91)

which can be rewritten as follows:

BCu,, ()+GAd())=0 = Ruy,()+Sd@i)=0, (A.92)
R s
where
dim&
R=R(zZH=r+ Zr]z'f ; dim R =dim B+dim C, (A.93)
=l
dim.S
S=8z")= Y sz dimS = dim A + (dimC—k) . (A.94)
=0

Multiplying the plant equation (A.1) by AC, we have:

ACy() = 7 ¥ BCu(i) + AC(Ce(i)) . (A.95)
Taking into account DE (A.4), Eq. (A.95) can be rewritten to:

ACY(i)— 77 *AGCe(i) — 27F BCu(i) ~ AF(Ce(i)) =0 (A.96)
or after rearrangement, and substituting: Ce(i) = d(i):

—~BCu(i—k)— AGd(i— k) = AC(Fe(i)— y(i)) . (A.97)

Let us add to the LHS y(i) and to the RHS y(i)+ Fe(i)— Fe(i), which does not change the
equation. Then we can rewrite it to the following form:

y(i)— BCu(i — k) — AGd(i —k) = (AC —1)[ Fe(i) - y(@D)]+ Fe(i). (A.98)

The RHS can be regarded as an error and denoted as £(i).
Then using the notation introduced in Eq. (A.92), we can write this as:

y(i)— Ru(i — k)~ Sy(i—k)=£(D). (A.99)

Considering the structure of polynomials R (A.93) and S (A.94) we can write this in more
convenient vector form:

(@) - ru(i-k) - (i-k)8=¢d), (A.100)
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where:

© T(i—k) = [d(i—k),...,d(i—k—dimS),u(i—k-—l),...,u(i—k—dimR)] (A.101)
is the data vector or in other words - the vector of regressors, and:
GT:[sg,sl,...,sdims,r],rz,...,r[ﬂmﬂ] (A.102)
is the vector of parameters of optimal feedforward control filter minimising the cost function.
In optimal control:

D+ " (HB=0. (A.103)

r() uopt

Thus the control value can be calculated from the vector form in the way as follows:

(1) = Lorwe. (A.104)
¥

\]
From Egs. (A.100) and (A.98) follows that under optimal control (A.103):
y(i) = &@@) = Fe(i) (A.105)

because the first term of the RHS of Eq. (A.98) is nullified.
It is worthy to note that the error £(i) in Eq.(A.100) is linearly dependent on the controller

parameters & which allows to find the minimum of £(i), which is a quadratic surface. In this

control system an estimate 6 satisfying:
YD) — (by) i — k) — @ (i ~ k) 0() = (i) (A.1006)
is searched for, which can be find as:

6(i) = Argmin E{e*(i)}. (A.107)

(i)
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A7 IMC IIR filter with control effort

Consider the same plant, Diophantine equation and cost function as it was done for MVC with
control effort (see Egs. (A.1), (A.4), (A.40), respectively).

Optimum control value minimising the cost function is expressed by the following equation (see
the relevant equation derived for MVC):

e(i). (A.108)

GA
u(i)=— .
B+gA
Allowable disturbance in feedforward filtering is related to the white noise, for the system under
consideration, as:

d(iy = Ce(i). (A.109)

Provided the disturbance shaping filter is minimum phase (in other case, spectral factorisation
should be done first), e(i) in Eq. (A.108) can be substituted for Eq. (A.109) leading to the final
form of the IIR feedforward filter:

GA
u(i) C(B Py A) (i) = Wd(i) (A.110)

Stability condition is given by Eq.(A.48), the minimum of the cost function - by Eq. (A.52), the
relation between the output and the control signals - by Eq. (A.58), and the energy at the output -
by Eq. (A.60) or (A.61).
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A.8 Adaptive IMC IIR filter with control effort

Let us remind the optimal conirol law:

_ G4, (A.111)

uop!(i) == C(B-f— qA)

which can be rewritten as follows:

C(B+qA)u,, ) +GAMD=0 = Ru,([H+SdH=0, (A.112)
% §
where
. dim R
R=RzH={by+q)+ prnz";  dimR=dimC+max(dimA,dimB), (A.113)
\T-_} i=1
dim $
§S=8(z"= 23,2"1; dimS =dimA +(dimC-k). (A.114)
=0

By analogy to adaptive IIR filter minimising only energy of the output signal and to adaptive
MVC with control effort, the final predictive model equation can be written in the following
form:

y(i) — Ru(i — k) — SdGi— k) = (), (A.115)

where y(i) is expressed by Eq. (A.70).
Considering the structure of polynomials R (A.113) and § (A.114) we can write this in a more
convenient vector form:

y(@i)—buli-k) - (-k)0=¢e(), (A.116)
where:
@ (i —k)=[yli—k),...,y(i—k~dimS),d(i—k—1),...,d(i —k - dim R)] (A.117)

is the data vector or in other words - the vector of regressors, and:
07 =505 0ees S FinFaoe oo T | (A.118)

is the vector of parameters of the control filter.
In optimal control:

Tollyy D+ (H6=0. (A.119)

Thus the control value can be calculated from the vector form in the way as follows:
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1, (1) = —iqu(i)e. (A.120)
t

0

From Egs. (A.116) and (A.119) follows that under optimal control (A.110):
y(i) = €(i) = Fe(i). (A.121)

It is worthy to note that the error €(i) in Eq. (A.116) is linearly dependent on the controller

parameters 6 which allows to find the minimum of €*(i), which is a quadratic surface. In

adaptive version of this control algorithm an estimate 0 satisfying:
(i) — 1 u(i — k)~ @ (i — k) B(0) = £(i) (A.122)
is searched for, which can be find as:

8() = Argmin E{*(1)}. (A.123)

a(1)
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APPENDIX B

SIMULATION RESULTS
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B.1 Optimal (fixed) controllers

PSD of the afror {thick) and the disturbance {thin)
T T T v T T

4

L . L . . L .
200 400 500 600 700 BOC 800 1000
[Hz]

Fig. B.1 Optimum IMC IIR designed for non-minimum
phase C. J = 31.34 [dB]. System unstable.

k i 2 3 4 5
J[dB] | 23.64 | 14.00 8.41 551 4.65

k 6 7 8 9 10
J[dB] { 4.64 3.50 1.67 (.64 0.43

Tab. B.1 Attenuation vs. discrete time delay of the
plant for optimal IMC IIR.

\ . . . : . . ; .
100 200 300 400 500 800 700 BOO 900 1000
Lag

Fig. B.4 Discrete impulse response of optimal IIR
feedforward filter.

28D of the error (thick) and the disturbance (thin}

s . 1 L ' 1
400 500 &00 700 800 800 1000
[Hz]

s : v
[} 100 200 300

Fig. B.2 Optimum IMC IIR designed for C after
spectral factorisation, J = 23.64 [dB]. System stable.

A s P
7 9 10

L : 1
1 2 3 4

5 8
Discrete time delay k

Fig. B.3 Attenuation vs. discrete time delay of the plant
for optimal IMC IIR

A0F

. . . " L
5 10 15 20 25 30
Lag

Fig. B.S Discrete impulse response of optimal feedback
controller.
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25D of the error (thick) and the disturbarice {thin)
T v T T T ¥ T

10
107
0%
w0? 1
el T T ot t "f_i
10°F l £l
107 F
10%
10°F
B e T W we e
{Hz!
N 2 4 i0 12
J [dB] 10.86 19.97 21.54 21.65
N 14 16 20 30
J [dB] 21.69 21.72 21.77 22.56
N 30 50 100 150
J [dB] 22.56 22.89 23.21 23.35
N 200 250 300 350
J [dB] 23.42 23.47 23.50 23.52
N 400 450 500 550
J [dB] 23.54 23.56 23.57 23.58

Tab. B.2 Attenuation vs. number of parameters of

optimat IMC FIR (Wiener filter}.
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Fig. B.6 Attenuation result for optimal IMC FIR
{(Wiener filter). J=23.58 [dB].

24

zz—ﬁ

20

J [dB]

L .
100 200 0 400 500
Number of paramgtars

Fig. B.7 Attenuation vs. number of parameters of
optimal IMC FIR {Wiener filter).
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B.2 MVC RLS

N 2 4 6 8 10
J[dB} | 8.90 10.67 | 16.79 | 19.03 | 19.66
N 12 14 16 20 30
J[dB] } 2001 | 21.38 | 21.38 | 21.39 | 21.10

Tab. B.3 Attenuation vs. number of parameters of
MVC for ¢ =0.0 and g = 0.0.

k 1 2 3 4 5
Ji{dB] | 21.38 | 11.71 6.67 5.39 4.23

k 6 7 8 9 10
J[dB] | 3.00 2.73 0.87 042 0.33

Tab. B.4 Attennation vs. discrete time delay of the
plant for MVC (& = 0.0 and g = 0.0, N = 14).

PSD of the etror {thick} and the disturbance (thin)
T T T T T T T

L L I
700 800 900

) L : 1 1 .
1 j00 200 300 400 500 60O 1000
THz]

Fig. B.10 Attenuation result for MVC (¢ =1.0,q=
0.0, N = 14). J = 20.86 [dB].
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25 T T

20r

[dE]
101

' L L .
a 5 10 15 20 25 30
MNumber of parameters of the controtler

Fig. B.§ Attenuation vs. number of parameters of MYC
for ¢{ =0.0and g =0.0.

25 3 T T T T
201

15

{aB]
1oF

) 1 1 i 1 1 2

1 2 3 4 7 8 9 10

5 [
Discrete time delay k

Fig. B.9 Attenuation vs. discrete time delay of the
plant for MVC (& =0.0 and g = 0.0, N = 14).

PSD of the error (thick) and the disturbance (thin}
v T T T ¥ T T

600 700

500 800  80C 1000
[Hz]

0 160 2;'.30 3(‘)0 4;10
Fig. B.11 Attenuation result for MVC (& =0.99,q=
0.0, N = 14), J=21.39 [dB].



PSD of the error {thick} and the disturbance (thin}
T T T T T T T

' L L ) y
500 600 700 800 800 1000
[Hz]

o a0 a0
Fig. B.12 Attennation results for MVC (X =1.0,q=
0.0, N = 14) and nonstationary plant. J = 7.70 [dB].

PSD of the arrer (thick) and the disturbance {thin)
T T T T T T T

800

400

. L L ;
500 600 VOO 800 1000
[Hz}

160 2;]0 3;.'!0
Fig. B.14 Attenuation result for MVC (¢ =1.0,q=
0.05, N = 14) and nonstationary plant. J/ = 8.65 [dB].
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PSD of the eror {thick) and the disturbance (thin)
T T T ¥ T T

1¢° T '

-4 L L '

i00 200  30C

500 600 700 800 960 1000
[Hz]

400

Fig. B.13 Attenuation results for MVC (¥ =0.99,q=
0.0, N = 14) and nonstationary plant. J = 9.26 [dB].

PSD of the error (thick) an the disturbanca (thin}
T T T T T T

10 T T

500
[Hz]

:

T00

L L L . L L L
100 200 oo 400 600 800 800 1000

Fig. B.15 Attenuation result for MVC (X = 1.0, q =
0.05,N = 14), J=12.93 [dB].



B.3IMCIIR RLS

N 2 4 6 8 10
J[dB] | 10.70 | 12.85 | 18.29 | 19.27 | 20.24
N 12 14 16 20 30
J[dB] | 20.59 | 21.45 | 2147 | 21.60 [ 20.57

Tab. B.5 Attenuation vs. number of parameters of
IMCIIRRLS {&x =1.0).

k 1 2 3 4 5
J[dB] | 2145 | 11.84 6.72 4.51 3.94

k 6 7 8 9 10
J[dB] | 3.90 274 0.86 -0 -0

Tab. B.6 Attenuation vs. discrete time delay of the
plant for IMC IR RLS (& = 1.0, N = 14},

PSD of the error {thick) and the disturbance (thin)
T T T T T T T

160 1 : L . . . L L
] 100 200 300 400 500 800 700 800 600 1000

[Hz]

Fig. B.18 Attenuation result for IMCIIR RLS (& =
1.0, N = 14). J=20.99 [dB].
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Number of parameters of the controlter

Fig. B.16 Attenuation vs. number of parameters of IMC
IIRRLS (& =1.0).

25 u T T

[dB]

L s . L L n
1 2 3 4 & ] 7 8 9
Discrete time delay k

Fig. B.17 Attenuation vs. discrete time delay of the
plant for IMC IIR RLS (& = 1.0, N=14).

PSD of the error {thick) and the disturbance {thin}
T T ! T 7 T T

100 L L L L 3 : L L '
0 100 200 300 400 560 600 700 806 800 1000

[Hz1

Fig. B.19 Attenuation result for IMC IR RLS (¢ =
0.99, N=14). J=21.63 [dB].




PSD of the error {thick} and the disturbance (thin)
T T T ¥ T T

500 &00 700 800 800 1000
[Hz}

L s i L
a 100 200 300 400

Fig. B.20 Attenuation result for IMC IIR RLS (& =
0.99, N = 14) and nonstationary plant. J = 10.46 [dB].

PSD of the error (thick) and the disturbance {thin)
T v T T ¥ T T

900

400

169 ; , . : .
100 500 800 700 800 1000
[Hzt

3 L
200 300

Fig. B.22 Attenuation result for IMC IR RLS (X =
1.0, N = 14} and model mismatch: B1(1}=0.62. J =
21.43 [dB].

PSD of the error (thick) and the disturbance (thin)

2| I i 1 I L 1

; . :
200 300 400 500 800
[Hz]

Q 100

Fig. B.24 Attenuation result for IMC IR RLS (&
1.0, q = 0.05, N = 14) and nonstationary plant. J = 9.07
[dB].
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PSD of the emar (thick) and the disturbance {thin)
T T T T T T T

y : L I
500 600 700 8ae
[Hz1

100 200 300 400 00 1000

Fig. B.21 Attenuation result for IMC IIR RLS (& =
1.0, N = 14) and nonstationary plant. J = 8.12 [dB].

PSE of the arror (thick) and the disturbance (thin)
T T T T T T

10’ T T

800

16° L L 4 s x L L
00 200 300 500 800 700 600 1009
Hz;

460
Fig. B.23 Attenuation result for IMC HR RLS (& =

1.0, N = 14) and model mismatch: B1(1) = 0.22. J =
21.34 [dB].

PSD of the error (thick) and the disturbance (thin)

. \ .
300 400 SO 600 FOO BOD 900 1000
[Hz]

Fig. B.25 Attenuation result for IMC TIR RLS (0
1.0, g = 0.05, N = 14) and model mismatch: B1(1)
0.22.J=11.15[dB].



B.4IMCFIR RLS

N 2 4 i0 i2 14
J[dB] | 10.85 | 1969 | 21.38 | 21.48 | 21.61

N i6 20 30 50 100
J[dB] | 2170 [ 2195 | 2233 | 2221 | 2211

Tab. B.7 Attenuation vs. number of parameters of IMC
FIR RLS (& =0.99).

k 1 2 3 4 5
J[dB] | 21.61 | 11.76 6.82 4.62 4.27

k 6 7 8 9 10
J[dB] | 4.01 2.75 0.86 0.35 0.11

Tig. B.8 Attenuation vs. discrete time delay of the plant

for IMC FIR RLS (& =0.99, N = 14).

PSD of the error (thick) and the disturbance (thin)
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Fig. B.28 Attenuation result for IMC FIR RLS (& =

1.0, N = 14). J = 13.64 [dB]. Slow convergence.
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Fig. B.26 Attenuation vs. number of parameters of IMC
FIR RLS (¢ = (.99}
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Tab. B.27 Attenuation vs. discrete time delay of the
plant for IMC FIR RLS (& =0.99, N = 14).

PSD of the error (thick) and the disturbance {thin}
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Fig. B.29 Aitenuation result for MCIIR RLS (& =
0.99, N = 14) J =21.61 [dB]. Fast convergence.



PSD of the error (thick) and the disturbance (thin)
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Fig. B.30 Attenuation result for IMC FIR RLS (& =
1.0, N = 14) and nonstationary plant. /= 9.32 [dB].

PSD of the error (thick) and the disturbance {thin)
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Fig. B.32 Attenuation result for IMC FIR RLS (& =
1.0, N = 14) and model mismatch: B(1) =0.62. J =
16.47 [dB].

3 PSD of the error (thick) and the disturbance (thin}
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Fig. B.34 Attenuation result for IMC FIR RLS (& =
1.0, q = 0.05, N = 14) and nonstationary plant. J = 9.28
[dB].
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Fig. B.31 Attenuation result for IMC FIR RLS (& =
0.99, N = 14) and nonstationary ptant. J = 9.36 [dB].

PSD of the error {{hick) and the disturbance {thin)
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Fig. B.33 Attenuation result for IMC FIR RLS (0 =
1.0, N = 14) and model mismatch: B(1}=0.22. J =
12.07 [dB]

PSD of the error {thick) and the disturbance {thin)

) " ) : . 1 ) 1
[ 100 200 300 400 500 60O 70O 8OO SO0 1000
[Hz]

Fig. B.35 Attenuation result for IMC FIR RLS (¢
1.0, g = 0.05, N = 14) and model mismaich: B(1)
0.22. J=10.45 [dB]



B.5 IMC FIR MFXLMS
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e

N 2 4 10 12 14
J[dB] | 16.40 | 18.29 | 19.34 | 20.82 | 21.38 e |
N 16 20 30 50 100
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Tab. B.9 Attenuation vs. number of parameters of IMC

Number of parameters of the controller

Fig. B.36 Attenuation vs. number of parameters of IMC
FIR RLS (& = 0.99).

25

FIR MFXT.MS.
k 1 2 3 4 5
JI[dB] | 21.38 | 11.43 6.48 4.53 4.21
k 6 7 8 9 10
J[dB] | 3.98 2.73 0.81 0.30 0.05

Fig. B.10 Attenuation vs, discrete time delay of the
plant for IMC FIR RLS (& = 0.99, N = 14).
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Fig. B.38 Attenuation result for IMC FIR MFXLMS,
({ =135, B =00N=14).J=21.38 [dB].
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Fig. B.24 Attenuvation vs. discrete time delay of the
plant for IMC FIR RLS (& =0.99, N = 14).

PSD of the error {thick) and the disturbance (thin)
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Fig. B.3% Attenuation result for IMC FIR MEXLMS,
(U =08, B =00N=14). J=16.04 [dB].
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5 PSD of the emor (thick) and the disturbance {thin}
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Fig. B.40 Attenuation result for IMC FIR MEXT.MS
{4 =1.5, N = 14) and nonstationary plant. J = 13.30

[dB].

3 PSD of the error {thick) and the disturbance (thin)
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Fig. B.42 Attenuation result for IMC FIR MFXLMS
(4 =1.5,N = 14) and model mismatch: B(1) = 0.62. J

= 18.21 [dB].

3 PSD of the error (thick) and the djrslurbance {thin)
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Fig. B.44 Atenuation result for IMC FIR RLS (U =
1.5, B = 1e-3, N = 14) and nonstationary plant. J =
13.34 [dB].

5 PSD of the error {thick) and the disturbance {thin)
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Fig. B.41 Attenuation result for IMC FIR MFXLMS
(i =0.8, N = 14) and nonstationary plant. J = 11.99

[dB].
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Fig. B.43 Attenuation result for IMC FIR MFXLMS
(4 =1.5, N =14) and model mismatch: B(1) =0.22. J

= 1478 [dB].
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Fig. B.45 Attenuation result for IMC FIR MFXTL.MS
(it =15, B = le-3, N = 14) and model mismatch:
B(1)=0.22. J = 14.94 [dB].



B.6 IMC FIR FXLMS fully adaptive

a PSD of the ervor {thick) and the disturbance (thin}
T T k T T T T T

Fig. B.46 Attenuation result for IMC FIR EXL.MS fully

adaptive (N = 14, dim P = 10, SNR = le+6).
J=4.14 [dB].
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