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1. Introduction

The Filtered-X LMS algorithm is widely used in active noise control.[1] In this report, frequency
domain methods for the adaptation of active control system are considered. A Frequency Domain
implementation of the LMS algorithm using the FFT has two advantages. One is reducing computing
complexity for long control filter lengths. The other is the rapid convergence ability when the
normalized LMS is employed. The Frequency Domain LMS involves the estimation of a cross
spectral density. There is a problem in choosing the correct window function, that is applied before
FFT calculation, to obtain an unbiased estimation and to eliminate wrap-around effects.

This report shows the effect of the window functions in estimating the impulse response of a
primary path, The effect appears both as a modifier of the estimation and as eliminator of wrap-
around effects. Both are expressed as equations. Then some examples of window functions are
shown in figures. This makes clear what window function is suitable for estimation of impulse
response using cross spectral density. It is also suggested what window function is suitable for
estimation of cross spectral density.

The application of this method to active control system is then described. Frequency Domain
LMS Algorithms suggested previously for active control have implemented the control filtering and
the adaptation in the frequency domain [2, 3], which causes a one block processing delay in the
controller.

In the Frequency Domain Filtered-X LMS Algorithm used in this paper, the updating of the
control filter is performed in the frequency domain as a background task, while control filtering is
performed in the time domain, thus minimizing the delay in the controller.

Time and Frequency Domain Filtered-X LMS algorithms for active noise reduction of a single
channel system are simulated, which illustrate the importance of using the correct window function
and of zeropadding the data vector. A multi-channel system, which uses one reference two secondary
sources and two error sensors, is also described.

2. Estimation of Impulse Response with Cross Spectral Density

Although the frequency domain LMS uses the estimate of a cross spectral density, it is
convenient for comparing window functions to estimate the primary path impulse response with
various window functions. We compared algorithms using various window functions on estimating
such an impulse response by block averaging method as shown in Fig. 2.1

In Fig. 2.1 the estimation of the primary path impulse response is obtained by:

wii) = IFFT(W(®)  (=01,.,N-1, k=0,1,...N-1) 2.1)
where:
Sk
Wk =
Sl k) (2.2)
=1 -
5,0 = §>L: (Conj(X (k) Y (®)) 2.3)
S, (k)= Eg (Conj(X(k)) X(k)) (2.4)

X(k) and Y(k) are the spectra in the frequency domain of the input signal and the output signal
respectively. N is the number of samples in one block, and L is the number of sample blocks. The
correct estimation is expected in the first half of the block length, i.e., 0Si<N/2.
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Fig. 2.1 Estimation of Impulse Response with Cross Spectral Density

3. Effect of the Window Function on the Estimated impulse response

Suppose we estimate the primary path impulse response using a window function shown in Fig.
3.1. The input signal to the primary path is white noise. We assume the primary path is a simple
delay, i.e.,:

p(i) = b(l — il) i=0,1,..N-1, 0.<_i1 <N) (31)
The impulse response to be estimated should be causal.
The window functions are:

f@, £  @=01,..N-1 (3.2)
The time domain signals passed through windows functions are:
x, (@) =f£0) x(0), O ={@yD @=01..N-1) (3.3)
In circular convolution the cross-correlation is:
. N-j-1 N1
R(D=% X x@n6) 5 2 5@ y+j-N)
i=0 i=N-j (3 4)

The first term involves valid data, while the second term consists of only invalid data. If block
averaging is processed, it changes into:

N-j-1
E{R (D} =R, ()% > 10 D)

The auto-correlation in circular convolution at j=0 is:

R(0) = %Nf x,(0) 1,(3)
2 (3.6)

If block averaging is processed, it changes into:
, N_1
E(R 0} =R(0) =% £i()
i=0 3.7)

As the primary path is a simple delay, the estimation of the primary path is easily obtained. The
estimation of iith element will be:

(3.5)
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Fig. 3.1 Window Functions and Signals



A E(R)}

w(l,) = ———— =w(i,) m(i,)
CUEROY 3.8)
where R
W(ll) — :qy(ll)
R ) (3.9)
is true estimation, and:
mi,) = aG)
q, 3.10)
is scale function, that diminishes the amplitude. Where q(it) and q1 are:
N-ij-1
. 1 L -
== 2, fO) fG+i
q(,) i f()];( 1) 3.11)

o1
q, = izEO fi(i) (3.12)

The value of m(i1) shows how window function scales down an estimated simple delay. It means that
the simple delay defined in equation (3.1) is estimated as:

w'(‘z) =m(i) 0(i-1i) (=01..N-1 (3.13)
This rfisuit is genaralized to any primary path impulse responses.
w(i) = m() p@} (=01..N-1) (3.14)

This means m(i) distorts the impulse response. The m(i) can be calculated about various window
functions. Now we can examine what window function is suitable for impulse response estimation.

Example 1 Rectangular Window
Assume that fx and fy are rectangular windows, i.e., :

_ _f1 0£i<N
D= fO= 0 otheil';ise (3.15)

About these functions g1 and g(i) are:

_1
=3 (3.16)
_N-i
q@® -~ 3.17)
Then the scale function m(i) is obtained as:
m(i) = N1
N (3.18)

Example 2 Zero padding in output signal
Assume that fx is rectangular window and zeros are padded in first half of output signal y, i.e..:

N f1 0<i<N An=f0 0<Zi< N/
2oy = {0 otherwise 5@ _{ L otherwise (3.19)

About these functions qt and q(i) are:
@ =1 (3.20)

0<i<N/2

1

2
g(i) = .
NI_V:E otherwise

(3.21)



Then the scale function m(i) is obtained as:
L o<i<ni2
N 2
m(i) = N—i
&1 otherwise
N (3.22)

Example 3 Zero padding in input signal
Assume that fy is rectangular window and zeroes are padded in second half of input signal x,

fx(i)={(1) 0<i< N2 fy(i)={(1) 0<i<N

otherwise otherwise (3.23)

ie.,:

About thesle functions q1 and q(i) are:

“=3 (3.24)

%- 0<i<N/2
0= N—i otherwise
N (3.25)

Then the scale function m(i) is obtained as:
1 0<i<N/2

m(i) =
AN 1) otherwise
N (3.26)
Example 4 Hanning window
Assume that both fx and fy ar¢ Hanning windows, 1.¢.,:
1-cos (211'—-]{,-
0= f(i)= O0<i<N
=10 > (3.27)
About these functions q1 and q(i) are:
a=L1% & q-cos2niy’=2
' Nis 2 N 8 (3.28)
N-j-1 . .
=L Lq_ iyq1- iy
9N =+ 2;) 4(1 cos 2m N)(l cos 2% 7 ) (329
Then: (
== 1—— 1+—c0s2n: +—C81112‘Jt
q(@) = 51— %X L)+ o + .30
oo 2sin’ ZTEF —COs 211:% + COoS Zn%
(I —cos ZnL) sin 2n-L
N (3.31)
Then the scale funcuon IIl(I% is obtained as: .
m)==(1-= 1+—c03211:—-— +—CSlIl21'C—
(=301- )1 +3 )+ 3y < 532
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Fig. 3.2 the Scale Functions in Estimating Impulse Response depending on the Window Function

The results of the examples are shown in Fig. 3.2. It is found that both rectangular window and
Hanning window distort estimation of impulse responses. Zero padding on x successfully estimates
impulse response in the first half of it. As zero padding on y provides constant half scaling in the first
half, it can be also used for this purpose.

4, Comparison of Window Functions in Simulation

To ascertain above, we compared algorithms using the rectangular window, Hanning window
and zero padding + rectangular window on estimating an impulse response by block averaging
method as shown in Fig. 4.1. In the estimation the number of sample points of one block was
N=512, and the number of averaging blocks was L=1024. The input signal was white noise. The
impulse response of the primary path used here is shown in Fig. 4.2.
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Primary Path ()
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i

rectanglar window rectanglar window
gt [ —| i_ 2 I zeros, data
CFrr_] 256 256
. 512.

T [ Wl =Say(k)/Sxx(k
® (0=Sxy(SEx() o ®
1block : 512 samples 1 block : 512 samples
? w(i) [=estimated p(i)] ; wii) [=estimated p()]

(a) Rectangular window (b) Rectangular window + Zero padding
I p(i) :
serial->parallel setial->paraltel
FFT
[ Wi(k)=Sxy(k)/Sxx(k) 512

=
W(k)=Sxy(K/Srx(K
X®) w T X® LRI pan
1 block : 512 samples 1 block : 512 samples
(i ]
w(i) [=estimated p(i)] w(i) [=estimated p(i)]

(¢c) Hanning window (d) Zero padding + Rectangular window
Fig. 4.1 Comparison of Window Functions
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Fig. 4.2 the Impulse Response of the Primary Path

The results of simulation are shown in Fig. 4.3, in which the scale function calculated in
previous section can be seen.

The rectangular window is not suitable for this estimation as shown in Fig. 4.3(a). Rectangular
window + Zero padding in y provides the estimation whose amplitude is just half of the expected one
as shown in Fig. 4.3(b). Previous frequency domain adaptive algorithms (2) have used the Hanning
window, that provides a wrong estimation as shown in Fig. 4.3(c). However Zero padding in x +
rectangular window is shown to provide a better estimation of the true response of the primary path,
as shown in Fig. 4.3(d).
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an unbiased estimation is expected in the range of 0<n<256
Fig. 4.3 Estimation of a Primary Path by Block Averaging Method



5. Effect on Acausal Path

In estimation of the impulse response of the primary path with circular convolution, if there is
delay in sensing input signal as shown in Fig. 5.1, the estimated impulse response has some non-real
acausal part by wrap-around effects. This sitmation usually occurs in active noise control. In this
section we consider the wrap-around effects when window functions are applied.

Assume that primary path is a simple delay expressed in equation (3.1), and the delay in sensing
input signal is expressed as:

di)=0(i—-i)  (=01..N-1, ij<iy) (5.1)

In this case, estimated impulse response obtained should be zero, there will, however, be some non-
real acausal pari. Because there exists only acausal part, the cross-correlation in circular convolution
is obtained as:

‘ j-1 =l
Ry = 3 2 %O n 4N 7 & 50 36D 52)

The second term involves valid data, while the first term consists of only invalid data. If block
averaging is processed, it changes into:

E(R,(-)) = R,(~) L% £ £

(5.3)
The auto—correlaﬁt;ioln in circular convolution at j=0 is:
- 1
R (0)=+ X x() x,0)
Nig ™™ 5.4
If block averaging is procegseid, it changes into:
E{R0)} =R,(0) = % fi)
N iso (5.5)

As the primary path is a simple delay, the estimation of the primary path is easily obtained. The
non-real impulse will be appear at (i1-i24+N)th element, i.e.,:

E{R (i,- 1)}

Wi, — i,+N) = W(i,— i,) = = w(i,— i,) m(i,— i,)

E{R (0} (5.6)
where
.., RG-1)
wii— i) = RO 5.7)
is true estimation, and: o
i, i+ N) = m(iy- iy) = L0218
q, (5.8)

is considered as leaked impulse amplitude, that provides non-real image of an acausal impulse. Where
q(i1-i2) and q1 are:

d-i) =1 T [0 fori i)

- i=ipi) 5.9
_1¥
9 N g{;‘ fi(i) (5.10)

Replacing i1-i2+N with i, m(i) is considered as a leak function, which expresses how wrap-
around effect disturbs the correct truc impulse response at every ith element. Now we can calculate
this function about several window functions.
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Fig. 5.1 Estimation of Impulse Response of Primary Path under exist of Delay in Input Signal

Example 1 Rectangular Window
The leak function m(i) for equation (3.15) is obtained as:

N
mi=y (5.11)

Example 2 Zero padding in output signal
The leak function m(i) for equation (3.19) is obtained as:

0 0<i<N/2
2i-N otherwise
2N (5.12)

Example 3 Zero padding in input signal
The leak function m(i) for equation (3.23) is obtained as:

0 0<i<N/2

m(i) =

mi) = ,
2-N otherwise
N (5.13)
Example 4 Hanning window
The lealzc ft}nc’tion1 m(i) for f;quatioln (3.27) is obtained as:
=21 (1 +=cos2nL)—— Csin2n+
m(i) BN( +2005 'JtN) AN sin nN (5.14)
2sin?2nL — L 29p L
. sin 21tN cosZ‘n:N + cos ﬂ:N
1y 1
1—cos 2n—=) sin 2=
( N N (5.15)

These results of examples are shown in Fig. 5.2. It is found that both rectangular window and
Hanning window contaminate first half of true impulse response. Zero padding on x doesn't affect
the first half of the true impulse response. As zero padding on y doesn't affect in first half of true
impulse response either, it can be used in this purpose.
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Fig. 5.2 the Leak Functions in Estimating Impulse Response depending on the Window Function

6. Comparison of Window Functions

To ascertain above, we compared algorithms using Hanning window and zero padding +
rectangular window on estimating an impulse response by block averaging method as shown in Fig.
6.1. In the estimation the number of sample points of one block was N=512, and the number of
averaging blocks was L=1024 and 8192. The impulse response of the primary path used here is
shown in Fig. 4.2. The input signal was white noise. The lengths of delay located at input signal, that
examined here, were 256 and 512.

Fig. 6.2 shows estimated impulse response of a primary path by block averaging method with
Hanning window and zero padding. The length of delay located at input signal was 256. The number
of averaging was L=1024. An unbiased estimation is expected in the range of 0<n<256. Acausal non-
real images are seen in the range of 256<n<512. Unbiased estimation is obtained in first half part,
when zero padding was applied, while Hanning window provided wrong estimation in first half part.
This result is the same as shown in Fig. 4.3. Both of window functions provided acausal non-real
image in the second half by wrap-around effects, however the shapes were distorted following the

leak function.

x(n) z(n)
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256256 L
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—— * YK
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w(i) wii)
[=cansal part of estimated p(i)] [=causal part of estimated p(i)]
(a) Hanning window (b) zero padding + rectangular window

Fig. 6.1 Comparison of Window Functions
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Fig. 6.2 Estimation of a Primary Path by Block Averaging Method

Fig. 6.3 also shows estimated impulse response of a primary path by block averaging method
with Hanning window and zero padding. The length of delay located at input signal was 512. The
number of averaging was L=8192. An unbiased estimation, that is zero, is expected in the range of
0<n<256. Acausal non-real images are seen in the range of 256<n<512. Unbiased estimation is
obtained in first half part, when zero padding was applied, however, there is noise, that will be
decrease if more averaging blocks are applied. Hanning windows provided the wrong estimation in
first half part. This result is the same as shown in Fig. 4.3. Both of them provided acausal non-real
images by wrap-around effects, however the shapes were distorted following the leak function.

These results illustrate the danger of using the Hanning window or the rectangular one used in
previous work|4].
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7. Application to SISO active control system
7.1 frequency domain filtered-X LMS algorithm
It was proved that using the zeropadding + rectangular window offers unbiased cross spectra

density. The zeropadding + rectangular window was applied to the single input single output active
control system in Fig. 7.1. ‘

_ .| Pprimary path >0 -

4 d ¥
X - "
Control Filters| | plant J
Y : w g fe
Serial/Parallel update\ ~— {ata zeros [Serial/Parallel
Converter C
i onver{er
| data data .
zero | | padding i l
padding AR FFT
data zeros IFFT
FFT A W E
] update
X algorithm

Fig. 7.1 the single input single output active control system

In this system, updating control filter is performed in frequency domain as a background task,
while control filtering is performed in time domain.

InFig.7.1 x,d and e are the input signal, the desired signal and the error signal in time domain
respectively. X, D and E are their frequency domain notation.

In each frequency bin, the error and the cost function are expressed as:
E=D-GWX (7.1)
J= E{E*E} (7.2)

where G is the plant transfer function, W is the transfer function of the control filter. The descent of
the cost function is :
of , ;9% _ _1G'E{XE)

+ am—
aw, * Tow, (7.3)
So the frequency di)rriain filtered-X LMS algorithm is:
Wnew = old+ 0GXE (7.4)

The convergence coefficient for each frequency bin can be normalized so that each bin converges at
the same rate by defining

Opymatices = 0 [ IGF B{X'X}] (7.5)
where o, is an overall convergence factor in equation (7.4).

Therefore renewing ¢, the normalized steepest descent algorithm is expressed as

—& G X'E

EI XX} GG . O<a<l) (7.6)
The Newton's algorithm in frequency domain also becomes the equation (7.6).

E{ng)*X( k)} is estimated by using

E{XX}]=P+ Y, (1.7)
P, =Py B+IXF(1-p 0<f<1 (71.8)

Wne = Wold +

W

12



where P is the power estimation, and the factor 8 is introduced to assure an unbiased estimation, and

¥is a small positive constant, that prevents E{X*X} being zero. X(k)*X(k) is calculated for each
block of data.

7.2 simulations

The frequency domain and time domain filtered-X algorithms are simulated in two situations.
One has simple delay plant g, the other has simple delay + resonance plant g. In each situation, both
white noise reference and coloured(pink) noise reference are supplied.

Simulation 1

The primary path is assumed as shown Fig. 7.2(a), that has several resonances. The plant path is
assumed as shown Fig. 7.2(b), that is a simple delay. The length of control filter coefficients is 256,
therefore in frequency domain the block size of samples is 512. The reference signals supplied in the
simulation are white one and coloured one as shown in Fig. 7.3.

The simulation result is shown in Fig. 7.4. In the simulation with white noise reference, the
convergence curves of both the time domain and frequency domain algorithms are almost same. But
in the simulation with coloured(pink) noise reference, the frequency domain algorithm shows better
convergence than the time domain one. This is because the convergence of the time domain filtered-X
algorithm is limited by the eigenvalue spread of the autocorrelation matrix of the reference signal.

L5 g repere e

1] 32 654 95 128 160 192 234 256 0 32 64 o6 128 160 197 224 254

time domain time domain
(a) assumed primary path impulse response (b) assumed plant impulse response

Fig. 7.2 impulse responses in the simulation

DOWET
speciral : :
density [ ! white noise

1 s :
f\f\’\w\m colored noise

0.1 oo

o L
0 64 128 192 256

frequency (k)

Fig. 7.3 white reference signal and coloured reference signal
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Fig. 7.4 Power of Error in Frequency and Time Domain Filtered-X LMS Algorithms,
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Simulation 2

The primary path is assumed as shown Fig. 7.2(a), that has several resonances. The plant path is
assumed as shown Fig. 7.5, that has single resonance. The length of control filter coefficients is 256,
therefore in frequency domain the block size of samples is 512. The reference signals supplied in the
simulation are white one and coloured one as shown in Fig. 7.3.

The simulation result is shown in Fig. 7.6. In the both simulations with white or coloured(pink)
noise reference, the frequency domain algorithm shows guick convergence than the time domain one.
This is because the convergence of the time domain filtered-X algorithm is limited by the eigenvalue
spread of the autocorrelation matrix of the reference signal filtered by the plant, which is resonant,
rather than that of the reference signal itself.

The frequency domain algorithm shows less reduction when it converged. This is because as in

some frequency bins 1/(G*G) has large value, an apparent convergence constant o¢ looks like a large
value at that frequency.

300 rertepepeoregr o T T T T

200 E : : .

o E

R

-100

JFOUSN U R DU U TN DU BN DO
0 32 64 96 128 160 192 224 256
{ime domain

Fig. 7.5 assumed plant impulse response
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Fig. 7.6 Power of Error in Frequency and Time Domain Filtered-X LMS Algorithms,
in the case when plant g has resonance

In these two simulations, when the reference is white noise and the plant is a simple delay, both
the time domain algorithm and frequency domain algorithm converge with the same convergence
curve. If either the reference is coloured noise or the plant is not a simple delay but has resonances,
there is the eigenvalue spread of the autocorrelation matrix of the reference signal filtered by the plant,
which is resonant, or/fand that of the reference signal itself, and the frequency domain algorithm
converges much faster than the time domain one.

7.3 converged control filter

To clarify if the frequency domain algorithm lets the control filter converges to the optimum one,
a simple simulation was taken place. The impulse responses of the primary path and plant used here is
shown in Fig. 7.7, and the causal part of unconstrained filter suitable to this situation that is not
always an optimum filter, however, is also shown in Fig 7.8.

In the case when the reference is white noise, both the time domain and frequency domain LMS
algorithm converges to the causal part of unconstrained filter that is the optimum one in this case. In
the case when the reference is pink noise, the time domain LMS algorithm converges to the optimum
filter, and the frequency domain LMS algorithm described in equation 7.4 also converges to the
optimum filter, but the frequency domain LMS with Newton's algorithm described in equation 7.6
doesn't converge to either the optimum filter or the causal part of unconstrained filter, as shown in
Fig. 7.9.
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(a) primary path (b) plant
Fig.7.7 The impulse responses of the simulation model
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Fig.7.9 coefficients of the converged control filters

8. Application to MIMO active controle system
8.1 frequency domain filtered-X LMS algorithm

It was proved that using the zeropadding + rectangular window offers unbiased cross specira
density. The zeropadding + rectangular window was applied to the multi-input multi-output active
control system in Fig. 8.1.

In this system, updating control filter is performed in frequency domain as a background task,
while control filtering is performed in time domain as well as SISO system.

In Fig.8.1 x,d and e are the input signal vector, the desired signal vector and the error signal
vector in time domain respectively. x,d and e are their frequency domain notation.
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X = (XX, Xe)" (8.6)
In each frequency bin, the error and the cost function are expressed as:
e=4-GWx &7
J =E{G"G} 88)

where G is the plant transfer function, W is the transfer function of the control filter. The descent of
the cost function is : :
aJ . .dJ ~2E{G" e x")

aw, " aw, 8.9)
So the frequency domam ﬁltered -XLMS algorlthm is:
W, =W,+aG" e x" (8.10)
A normalized steepest descent algorithm is implemented as:
W..=Wuta —‘1—"_ G" £ lHE[L lH]_l

lEmZ G (8.11)

, which is for comparing work.
The Newton's algorithm 13[6]

W =W,+x[G'G]'G"e x"Elx "] (©O<a<]) (8.12)
To eliminate divergence of control filter, the Newton's algonthm is modified as:
W =W,+a[G'G+vI]'G" e x"Hx x"]" ©O<a<l) (8.13)
where
y= { 0 A Ay>r

Ar A TA ST (8.14)

where A1, 4 (A4;<Ay) are min and max eigenvalues of GHG, and 7 is a threshold value. In the

case when y= 0, equation (8.13) is the pure Newton's Algorithm, and when ¥is large the equation is
similar to steepest descent, therefore equation (8.13) is considered as an intermediate form between
the pure Newton's and the Stcepest Descent algorithms[7].

In these simulations, Blx 2" was calculated in the same way as single channel simulation.
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As [676+71176™ 5 calculated once at the beginning of the adaptation, the real time computation

requirements of the two algorithms are comparable.
The effects of the plant coupling and the autocorrelation structure of the reference signals can be
accounted for in a frequency domain version of Newton's algorithm.

8.2 simulation of one reference two sources two error sensors system

The frequency domain and time domain filtered-X algorithms are simulated in two arrangements
with two kinds of transfer function g;,,. One arrangement has an ilt conditioned frequency bin, while

the other has no ill conditioned frequency bins, shown in Fig. 8.2. The transfer functions employed
in one configuration are simple delays, while ones in the other configration have resonances, whose
impulse response is shown in Fig. 7.5.

The error in the one reference-two sources-two error sensors system is expressed as;
(€, €, (e, ~ e,)=10-ar)ald+1-ai) "l 8.15)

H —
G'Gg,=4.4, (8.16)

M
W = a
o :?;1 n L (8.17)

where A and g are the eigenvalue and eigenvector of GHG respectively.

2
This means that power of error is decomposed into modes @, 4, , and the power in each mode

2n
decreases with its descent (1-ai,) . If the eigenvalue of the mode is small, the power of the mode
decrease slowly.
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Serial/Parallel w .
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in first half E
!_FFT
X
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noise K error noise

1 sensors

1
plane | [ 2 plane
wave d‘ wave
sources
arrangement A arrangement B
with an ill conditioned frequency bin without ill conditioned frequency bins

Fig. 8.2 arrangements of one reference two sources two cIror Sensors systems
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8.3 results of the simulation

The primary paths are the same as shown in Fig. 7.2(a), but have different delays. In the case
when plant transfer function g, has resonance, the impulse response of the plant is shown in Fig.

7.5, but has different delay. The reference signals are the same as shown in Fig. 7.3. The step gain

0=0.001 and the threshold =0.1 are used in each simulation.

The results are shown in Fig. 8.3 - 8.6. These reunlts show followings.

In the case when the reference signal is white or plants g are simple delays, both the time domain
filtered-X LMS and the frequency domain filtered-X LMS algorithm using the steepest descent
algorithm work comparably, and the frequency domain filtered-X LMS using Newton's Algorithm
works much better than them, even if arrangement of secondary sources and error sensors has an ill
conditioned frequency bin or the plants g have resonances.

In the case when the reference signal is coloured and plants g have resonances, the frequency
domain filtered-X LMS algorithm using the steepest descent algorithm works better than the time
domain one, and the frequency domain filtered-X LMS using Newton's Algorithm works much better
than them, even if arrangement of secondary sources and error sensors has an ill conditioned
frequency bin or the plants g have resonances.

This means that the frequency domain filtered-X LMS using Newton's Algorithm overcomes the
convergence difficulty caused by the eigenvalue spread of the autocorrelation matrix of the reference
signal filtered by the plant, which is resonant, or/and that of the reference signal itself and by the
potentially slow convergence mode due to the spatial arrangement of secondary sources and error
SEnsors.
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(b} white noise reference (c) pink noise reference

Fig. 8.3 Simulation result in the case when an arrangement of secondary sources and error sensors
causes an ill conditioned frequency bin, and transfer functions g, s are simple delays.
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Fig. 8.4 Simulation result in the case when an arrangement of secondary sources and error sensors
causes an ill conditioned frequency bin, and transfer functions g;,s have resonances.
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Fig. 8.5 Simulation result in the case when an arrangement of secondary sources and error sensors
causes no ill conditioned frequency bins, and transfer functions g; s are simple delays.
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Fig. 8.6 Simulation result in the case when an arrangement of secondary sources and error sensors
causes no ill conditioned frequency bins, and transfer functions g s have resonances.

8.4. convergence of the frequency domain filtered-X LMS using Newton's

Algorithm in MIMO system

The time domain filtered-X LMS converges to the optimal solution. The frequency domain
filtered-X LMS with steepest descent algorithm converges close to the optimal solution. The
frequency domain filtered-X LMS with pure Newton's algorithm does not converges to optimal
solution, because it converges to optimal solution in the case when all of signals and transfer
functions are expressed in frequency domain and causality is ignored. This causes divergence of filier
coefficients when the eigenvalues of GHG spread in ill conditioned frequency bin. To avoid this a
small positive constant is added to the diagonal elements of GHG before inversion to give [GHG] ! in
the frequency bins which have the cigenvalue spread. The threshold to introduce this small positive
constant effects the converged error shown in Fig. 8.7. Higher threshold offers small residual error
and slow convergence speed, while lower threshold offers big residual error and quick convergence

speed.
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9. Conclusions

The Frequency Domain LMS involves the estimation of a cross spectral density. There is a
problem in choosing the correct window function, that is applied before FFT calculation, to obtain an
unbiased estimation and to eliminate wrap-around effects.

This report shows the effect of the window functions in estimating the impulse response of a
primary path. The effect appeared both as a modifier of the estimation and as eliminator of wrap-
around effects. Both are obtained as the equations. Then some effects of window functions, that are
the rectangular window, Hanning window and zero padding in output signal + rectangular window
and zero padding in input signal + rectangular window, were shown in figures. These figures show
the efficiency of zero padding in input signal + rectangular window, in the estimation of the impulse
response of a primary path. This made clear that zero padding in input signal + rectangular window is
suitable for estimation of impulse response using cross spectral density. It will be also suggested
rectangular window + zero padding in output signal is suitable for estimation of cross spectral
density.

Using zero padding in input signal + rectangular window the simulation of frequency domain
filtered-X algorithm was examined. In the Frequency Domain Filtered-X LMS Algorithm used in this
report, the updating of the control filter is performed in the frequency domain as a background task,
while control filtering is performed in the time domain, thus minimizing the delay in the controller.

In single input single output system, the frequency domain filtered-X algorithm is compared with
the time domain filtlered-X algorithm. As the convergence of the time domain filtered-X algorithm is
limited by the eigenvalue spread of the autocorrelation matrix of the reference signal filtered by the
plant, which is resonant, rather than that of the reference signal itself, the frequency domain filtered-X
algorithm converged more rapidly than a time domain LMS implementation even for a white noise
reference signal.

In single input multi output system, the frequency domain filtered-X algorithm is compared with
the time domain filtered-X algorithm. As the convergence of the time domain filtered-X algorithm is
limited by the eigenvalue spread of the autocorrelation matrix of the reference signal filtered by the
plant, which is resonant, rather than that of the reference signal itself and the frequency domain
filtered-X with Newton's algorithm overcomes this problem as well as the case of SISO system. The
frequency domain filtered-X with Newton's algorithm also overcomes the eigenvalue spread due to
the spatial location of the transducers, the frequency domain filtered-X algorithm converged more
rapidly than a ime domain LMS implementation even for a white noise reference signal.
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