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ABSTRACT

The aim of this work was to investigate the use of the Linear Quadratic
Guassian (LQG) technique for the design of feedback controllers in sound
and vibration control problems. A polynomial approach to the solution of
the LQG problem is examined. The solution of ‘Diophantine equations’ is
found to be a major part of this approach and these have been examined
extensively. Computer simulations comparing the performance of the
LQG controller to that of the, more common, filtered-x LMS controller
were then performed with simulated plant and disturbance dynamics. In
the case where a second order plant and disturbance were simulated, the
performance of the LQG controller was found to compare very favourably
with that of the LMS controller. A plant was also chosen which the LMS
controller found difficult to invert. It was expected that the LQG method
would work under these conditions and this was found to be the case.
The results of these simulations are presented.
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1. Introduction.

Feedback control systems may have to be used rather than feedforward
control systems when no detection of a disturbance signal is possible
prior to its arrival at the ouput of the plant to be considered. Additional
reference signals, which may be difficult to obtain in practice, are
required for feedforward control [1]. Thus, in applications where no
reference signal is available and the disturbance is broadband (as
opposed to periodic}, feedforward control cannot be used and feedback
control methods must be employed instead.

There are various methods of designing feedback contollers which have
previously been employed successfully. These methods include the
frequency domain (Nyquist) method and the conventional sampled-time
domain approach. Another method using Intermal Model Control (IMC})
has been developed recently in which the feedback problem can be
reformulated into a standard feedforward problem which can be solved
using the filtered-x LMS (Least Mean Square) method. For a summary of
the analysis and design of some of these feedback control systems, the
reader is referred to Elliott [1] and Nelson and Elliott [2].

At the ISVR, some preliminary investigations have been made into
possible alternative methods of feedback control and, more specifically,
into a polynomial approach to the solution of the feedback control
problem which falls within the framework of the Linear, Quadratic,
Guassian (LQG)} design technique for discrete controllers [3, 4]. The
controller can be designed using the LQG technique under the following
conditions

- A cost funiction is minimised
- The disturbance can be represented by a filtered white noise sequence

- Closed loop stability is required

The LQG technique has been widely employed previously for several
different applications (see, for example, [5}). However, this method had
not previously been applied to the active control of sound and vibrations
until recently when Thomas and Nelson conducted some initial
investigations [3, 4, 6]. The aim of the work undertaken during this four
month study and described in this report has been to further these initial
investigations into the use of LQG techniques for feedback control.

This report is divided into three sections. In section 2, the polynomial
solution to the L@G method is introduced. It is shown that the solution
of ‘Diophantine equations’ is a fundamental task which must be



undertaken in order to obtain the optimal filter coefficients. These
equations and their solutions are discussed in detail. In section 3, the
computer implementation of the LQG technique is discussed. The LQG
technique is then compared to the filtered-x LMS method through the
use of computer simulations. At the outset it had been suggested that,
when the transfer function of the plant to be controlled had zeros close to
the unit circle in the z-plane, the LMS method may not work as well as
the LQG method. This is examined in more detail. Finally, section 4
summarises the results of the work carried out in the project and
suggests some directions for future work.



2. Theory.

2.1. Background to 1.QG methods.

The basic LQG problem arises from the need to determine a closed-
loop controller which minimises a cost function composed of the sum
of the squared outputs of a system plus a weighted control effort. In
the case of broadband signals this is equivalent to the minimisation of
the sum of the system output variances plus the weighted sum of the
system input variances. This optimum must be achieved whilst
minimising the effects of process and measurement noise, and subject
to the constraint of closed-loop stability [5].

The LQG problem has been extensively dealt with in the literature on
control theory and has been applied in several practical applications
but its application to the active control of sound and vibrations is
relatively recent. There are thus several methods commonly used for
the design of LQG control systems. The most fully developed of these
use state-space representations of the plant and disturbance
dynamics and are solved in the time domain using the ‘separation
principle’ outlined by Thomas and Nelson [3]. The main disadvantage
of this particular method is that delays in the plant dynamics are not
represented by state-space models. However, significant delays may
occur in a ‘practical’ plant. Another commonly used method is that of
Youla and Kicera in which the solution is found in the frequency
domain and spectral factorisation and parameterisation of stabilising
controllers methods are used [4]. A polynomial approach has also
been applied to the solution of the LQG problem [6]. This arises
through the discrete time formulation of the Wiener-Hopf equation
and has the benefit of taking into account delays in plant dynamics.
The resulting controllers are found to be stable when causality of time
domain operators is taken into account. Nelson and Thomas have
further shown that the polynomial method of solution could in
principle be extended to deal with problems in which the control effect
sought is not simply at the directly measurable output of the plant to
be controlled but when the output to be controlled is the far field
acoustic radiation as monitored by a number of error sensors [6].

Some initial investigations into the use of LQG feedback control in
sound and vibration problems have been made recently by Nelson and
Thomas in an attempt to find the ‘most appropriate method for the
design of discrete time feedback controllers for use in broadband
active control’ [4]. The purpose of this work has been to investigate the
polynomial approach to the LQG problem more thoroughly and
compare it to the filtered-x LMS method of control, especially in
applications where controllers obtained through the latter design
method may not work well.



2.2 LQG feedback control problems.

The general block diagram of the feedback control problem is shown
in figure 1. In this figure, W,(g') represents the ‘plant’ (physical
system) to be controlled and W, (g') the ‘disturbance’ i.e. the signal
produced at a given point by the primary field'. The disturbance
sequence dft} is assumed to be generated by driving W, with a white
noise sequence w(t). If the delay operators ¢' in the polynomials
representing the plant and disturbance dynamics in figure 1 are
replaced by z’ (the unit sample delay, thus z" implies a delay of k
samples}, then the plant and disturbance have the polynomial
representations

A
WP(Z ): AP(Zfl)

-1 Ba’(z_l) (1)
Wd(z ): Ad(z-;)

where B, and A, are assumed to be relatively prime meaning that they
do not have any common roots (and similarly for the disturbance

polynomials).
It is also clear from figure 1 that
) = W, (q‘l )u(t)-i—‘/l’:,(q*l)w(t) (2}

which, after substituion of the z-transform polynomial representation
in (1), can be written

A‘n(z"1 A, (27 )y() = 7B, (z)A,(z")ult)+ B,(z" )Ap(z'l)w(t) (3)

which is more commonly expressed in the ARMAX (Auto Regressive
Moving Average with eXogonous variable) form

Alz" W) =7 Bz uls)+ c(z ™ wle) 4)
where
)= 4,)E) .
B(z")=B,(z")A,(z™")
and

!t denotes a discrete time index and q'l is the delay operator



cz)=4,(z")A,(z) 5c)

This ARMAX representation is commonly used in System
Identification (SI) methods [7] which would be required in a practical
application using feedback controllers.

Recalling that the cost function to be minimised penalises the sum of
squared outputs and weighted control inputs, and restricting
ourselves to the single input, single output (SISO) case, we choose for
a cost function

J = E[y*(£) + bu®(1)] (6)

where P is the weighting factor on the control input and y() and w(t)
represent the system input and control output respectively which are
assumed to be stationary random sequences.

The optimal compensator is then assumed to take the form

__ H{
1+H(z" W ()

P

Go(zil) (7)

as shown in figure 2. For a discussion of this choice for the form of
controller, the reader is referred to Elliott [1].

The compensator can be implemented in practice by identifying a
model for the plant Wp(z") with SI methods and using this within the
model shown in figure 2. This controller design is called ‘Internal
Model Control’ (IMC) and has been discussed in some detail [1]. One
important point which arises from this particular controller
implementation is that the feedback problem can be redrawn as the
feedforward problem shown in figure 3 which allows easy comparison
with the filtered-x LMS method which has the same block diagram.

In the method which follows, the controller is not actually
implemented as shown in figure 2. Instead, the ‘controller
parameterisation’ shown in figure 3 is used and the filter, H(z"), which
minimises the cost function (10} is used to determine the optimal
compensator. This method ensures that the closed-loop system is
always stable provided that the plant Wp(z") is stable.

The filter H(z"}) is found by the solution of a discrete-time Wiener-Hopf
equation. This solution is described in detail in appendices 1-3 of
Nelson and Thomas [6].



(8)

Hy(z")= AL )A(z_l){ 2* Bz2)C(z)C{z ™) }

D(z")D,(z") | DD, (DA(z") )

The result is expressed in terms of the polynomials Afz'), B(z'} and
C(z') in the ARMAX model, as defined above, and the ‘spectral factors’
D,(z') and D(z’) (see below). Q =E[W’()] is the variance of the white
noise signal w(f) and the notation { }, implies that the causal part of
the polynomial function of z should be taken.

2.3. Calculating the optimal compensator.

The controller which arises from the solution of the LQG problem is
given in equation (8). The derivation for this optimal controller can be
broken down into 4 distinct parts which are discussed in greater
detail below.

1) System Identification in order to give the ARMAX representation of
the system.

2) Spectral factorisation.

3) Solution of Dichantine equations.

4) Calculation of the optimal filter.

2.3.1. SI and ARMAX representation.

In a practical application, SI would be the first step in the calculation
of the controller given by equation (8). The plant and disturbance
dynamics could be obtained through several well established methods
which are discussed in detail for example, by Séderstrom and Stoica
{71.

The ARMAX representation is then a straightforward matter of
converting equations of the form of (1) to the form of equation (5).

2.3.2. Spectral factorisation.

Spectral factorisation usually refers to the process of splitting a
rational power spectral density into a causal, stable part and an anti-
causal stable part such that

s (Y =x(z")x(2) (%))

where X(z'} is causal and stable and its inverse 1/X(z’) is also causal
and stable. X(z') also has the property of being unique to within a



costant multiplier and exists because a power spectrum is a real,
even, non-negative function of frequency.

In these calculations, the spectral factors are defined by

D (D (z7")= B(2)B(z™") +pA() A(z™")

o)
(20, () = 0.0+ 0 ADA(E) 1o

where Q =E[v’(t)] is the variance of the (measurement) noise signal uv(t).
The right hand side of the equations (10} are similarly real, even and
non-negative polynomials in z".

2.3.3. Diophantine equations and calculation of the optimal controller.

The solution of Diophantine equations has been the major task in this
study. Their relevance in the LQG technique is to find the casual part
of the term in brackets in equation (8) that is given by;

2Bz }
{Dc(z)Df(z)A(z“l) ) (11)

The use of the Diophantine equation to obtain the causal part of this
term (11) can be shown by substitution of the spectral factors (10)
which, after rearranging becomes

{z"B(z)C(z)C(z")} 1 {ZkB(Z)Df(Z_I) QWB(Z)A(Z)}

D,D,@Al)| ~0.| p.@al") DD, (12

=0

The second term here is entirely non-casual and, by using the
Diophantine equation,

D.(G{z ")+ # F(z)A(z ") = Z*B(z)D, (z™) (13)
we find

Z*B(z)D,(z™") _ Gz ) . 28 F(z”") (14)

DDaA(z")  Alz")  D.U(2)

When g and the order of F(z') are then chosen appropriately, the
second termm again becomes non-causal leaving only the term

G(z')JA(Z'). i.e.



{zka(z)c(z)(:(z“)} 1 6(z”) (15)

D,(D,@A")] ~ 0, Al

When this result, for the causal part of {11) is substituted info the
equation for the optimal compensator, it is found that

e

and the feedback controller

Alz)6(z™)

= Z_kB(Z_l)G(z"l)-— DU(Z_I)Df (zﬁl) {17)

GG(ZWI)

2.4. Solutions of the Diophantine equations.

Having obtained the spectral factors D(z') and Dfz'), the only step
required to obtain the optimal compensator is to obtain the
polynomial G{z'} which arises through the solution of Diophantine
equations. These polynomial equations, for the LQG problem, are
found to take the form of (13) where D.[(z), A(z'), B(z) and D/(z') are
defined above and represent transfer functions in terms of z-
transforms, k is a known integer corresponding to a pure delay of k
samples in the plant, G(z') and F(z') are unknown (required)
polynomials and g is an unknown integer.

The solution required is the ‘minimal degree solution’ corresponding to
the smallest number of terms in the polynomials G(z') and F(z") for
which a unique solution can be found.

We now define the orders of the polynomials D,(z), D{z"), A(Z'), B(z),
G{z') and F(z') by n,. n,, n, n,, n and n respectively. For example,

Az =(a, -;—alz_l + azz"2+ ....... + anuz_"” ) (18)
When written out in full, equation (13) thus becomes
(dc_e t+d 2 +d, 2" v xd,, 2 )(go gzt +gr A, 2 )

+z* (fo + flzil +f22—2+~-+fn, " )(ao 'i”alzul +a2Z_2+“'+an“Z—”u) (19)

ok 1 2 y, -1 —2 i
=z (b0+blz +b,z" . b, z ')(df0+df1z +d,z7 +Ady, 2 )

which can be rewritten as



anc (dc”dc +"‘+dc2z(2_nds) + ddzfl“ﬂdc) + d’coz‘"dr )(go + g]ZHl + gzZ—Q +...+gn,,z—ng )
+z* (f[} +fet LA S, )(% raz vay e va, ) (20)

— ) (2-n,} (1=ny} - -1 -2 -n,
=z (b”h+...+b2z 2 +b,z" 7 +byz “”)(dfodrdﬂz +d,,z e Ad, Z ’f)

where the product of each of the bracketed terms now gives a
polynomial in z'. It is then clear that, in order to solve the equations,
g should be chosen to be the maximum of either n, or n,+k and the
solution of the Diophantine equations then depends on whether g=n,,
or g=n +k. Although the methods for obtaining the solutions in both
cases are similar, they will be dealt with seperately for the sake of
clarity. The final case in which n, =n,+k (=g} will not be discussed as
its solution is a simplified version of case (i) or (ii) below i.e. the
solution is obtained through direct matrix inversion methods.

i n >n+k(g=n,}.

When g is set equal to n,_ equation (20) can be rewritten

(dc% tootd 22+ d T v d )(ge gz gz +‘..+gngz_n")
+(f0 +fz + 27 +..-+fnfzm"" )(ao +az" +az” +...—i—a"”z'"")

_ Anytk-g) (2-n,) (1-hy) -n -1 -2 ~ng
=z (bn;. SRR AL S A N Y A )(dfo tdaz” +d,27 e dy, 2 )
21

On the right hand side of this equation are two polynomials with
coefficients which are known. The product of these polynomials can be
obtained through their convolution or, equivalently, by the matrix
product

€y b"n 0 0 d o
€ b, 0| dsy
) . 0ids,
b, . . . .. . b .
= ’ (22)
b, b, . . . . . . .
by b b,
0 b b,
L e”b"’"df 4 0 0 bO -_df"q _

It then follows that equation (21} can be rewritten



(d, 0 .. Ola 0 . . 0]g&l [ 0]
d,, - - Oj|a a . . 0}1& 0
0 |2, « gy €y
3 - on - a2 al g” €
i 2 — 23
d, d, . . a, | fo e, (23)
c0 d{:l dc2 anu fl
0 ch c dcl ana
L 0 0 - dcﬂ ana __fnf_ _.enh+mb‘_

where the number of zeros preceeding the vector on the right hand
side is given by g-(n,+k} and in this example is chosen to be 2. The
length of the right hand side vector is then n +n +({g-n, k1.

The orders of the polynomials G(z") and F(z") are chosen to be smallest
possible giving a unique solution to (13) and so, n, and n, are, if
possible, chosen such that )

[ng+l]+[nf+1}=[gwk+ndf+1] (24)

It is found that when (n,-1)>(n, k), no unique solution can be found
when the right hand side vector has length

g—k+n, +1 (25)

equation (24) cannot be satisfied and trailing zeros must be added. To
see why, note that the number of rows in the submatrices to the left
and right of the line dividing the matrix in (23) must be less than or
equal to the length of the vector on the right of the equation. i.e.

ng+n, Snge—k+g (26)
and
Ny +0ge S Ngp —k+¢ (27)
or, in this case, as g=n_,
n, <ng ~k (28)
Now, let -
x=n, —1 (29)

and so, from (26) above,

10



n,+x<n, —k+g-1 {30)

For the minimum value of x (as x>n, k),

x=ny, —k+1 (31)

and (30) then becomes

n,<g-2 (32)

which also holds for any other possible value of x.
Combining the inequalities {28) and (32} then shows that

n,+n,+2<g+n, —k+l (33)

and so the equation

n,+n, +2=g+n, —k+1 (34)

which is the desired solution, cannot be satisfied. Trailing zeros thus
have to be added to the vector on the right hand side of (23); for each
trailing zero in this right hand vector, there must be at least two, non-
zero, elements in each of the corresponding rows of the matrix on the
left and so, the condition for a unique minimal degree solution is given

by
n,+g+l=n+n+l=n+n +2 (35)

It is then clear that orders of the unknown polynomials are chosen to
be

ng-——na—l
n,=g-1 (36)
=g

So far, only the case in which (n-1)>(n,k} has been examined and
trailing zeros must be added. In the case where no trailing zeros are
required, either (n +g)=(n,k+g) or (n+nj=(n k+g) depending on which
gives minimal order for G{z') and F(z'). Thus three possible cases
arise:

a) g>n, so (n +g)=(n,k+g) gives the minimal order. In this case,

ngﬁndf—k {37)

i1



and, as the matrix in (23) must be square and (34) is satisfied, we
substitute (37} into (34) to obtain

n,=g-1 (38)

b) g<n_so (n+4n )=(n k+g) gives minimal order. Now,

it

—k+g-mn, (39}

5T
and, following the same argument as above (substitute (39) into (34))

n,=n,—1 (40)

¢/ g=n, and so (n_+g)=(n+nJ=(nk+g). The orders of n, and n, in this
case are given by equations (37) and (39) respectively.

The main difficulty in solving Diophantine equations is in choosing the
orders g, n, and n,. Once these have been chosen, examination of (23)
shows that solutions follow simply through matrix inversion methods
or, equivalently, by the solution of simultaneous equations.

ii) n,+k>n, ie. g=n+k

In this case, {20) is rewritten

Z(ndc_nb_k)(dc”dc -|—_._+dczz(2_"dc) + dclz( ) +dc02_ndc Xgo + g}z_l =+ g22_2 +.-.+gnx Z_ng )
+(f(} + flz_i + f2272 +...+fnfz_nf )(a{) ‘1'6112_1 + azz-'Z +‘”+anu Z—n" )
= (bn:, +othy 227 4 b2 T + by )(dfo + dflz-_l + dfzz_2 +--.+dﬁ’ldcz—n{br )

(41)

The method of solution is similar to that outlined above. The vector on
the right hand side of the equation can again be found through
convolution or by the matrix product given by equation (22). However,
this time, g-n, zeros are added to the top of the left hand side of the
matrix in (23) instead of to the vector on the right hand side. As a
result, the length of the vector on the right hand side is given by

TR, +1 (42)

and so if possible we choose n.and n, such that

n,tn,+2=n, +n, +1 (43)

12



As above, when (n-1)>n, k), trailing zeros must be added to the right
hand side vector. The number of rows in the submatrices to the left
and right of the line dividing the matrix in (23) must be less than or
equal to the length of the vector on the right hand side and so

n.,+n,sn,+n
i u b df

(44)
H,+gsn, +ny

(the second equation arising as the the size of the left hand part of the
maltrix is n +n,+g-n,}). Now substituting (29) into the first of equations
(44),

np+x<n +n, ~1 (45}

and using the argument that the minimum value of x is given by (31},

nfﬁnb-I—k—Z (n, +k=g) . {486)

which holds for any value of x. Combining this inequality with the
second of equations {44) further leads to

n,tn, +2<n, tn, +1 (47)
From which we see that the desired solution,
ng+nf+2=nb+ndf+l (48)

cannot be satisfied.

On examination, it is found that the orders n, and n, required for
minimal degree solutions are the same as those required in section (i)
above.

13



3. COMPUTER SIMULATIONS.

To demonstrate the use of the LQG feedback control technigue, computer
simulations were carried out using MATLAB for a given plant and
disturbance in each case. For each given plant and disturbance, the
filtered-x LMS controller and its performance were compared with those
of the LQG method. The basic signal processing problem is shown in
figure 3 where w(l) represents a white noise sequence which is fed
through the filter W, in order to generate the disturbance sequence d(t).
The disturbance sequence is then fed through the filter W, representing
the plant dynamics and for either type of control, the aim was to
minimise the error sequence y(t. To achieve this, the signal from the
optimal compensator should be as close to dft) as possible. This can be
achieved by making the compensator H an exact inversion of W,

Two different simulations were performed as described below.

It should be noted that in real practical applications, the first step would
in designing a suitable feedback controller using any IMC method would
be to obtain a model of the plant (and disturbance). Established SI
methods are available to do this and the MATLAB SI toolbox contains the
necessary functions [7, 8]. Some work was carried out on SI methods but
was not incorporated into the simulations described below.

3.1. Polynomial input.

A note should be made regarding the method of representing polynomials
using MATLAB as the signal processing and control systems toolboxes
use different conventions for storing polynomials {9, 10]. In the signal
processing toolbox, polynomials are represented in ascending powers of
z! such that

oy 22704773
w7 =" - 49
P(Z ) =z 41 (49)
is represented
Wpnum=1-3102] , Wpden=[10 -11] (50)

This convention follows the derivations above. In the control systems
toolbox, polynomials are represented in descending powers of z. To store
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a polynomial such as (49} it must first be turned into its counterpart with
positive powers of z such that

- 2472 =37
Wiz )= 51

This polynomial can then be stored as in (50) above.
In chapter 2 it was shown that polynomials with positive powers of z were

assumed to be anti-causal. The solution for representing anti-casual
poynomials in MATLAB is to ‘flip’ the polynomials. Thus,

220+ =3
W, ()= 52
7 (Z) Z3 _ Z’Z +1 ( ]
Is represented
Wonumi =[201 -31 ,  Wpdeni=[1 -101] " (53)

3.2. Description of computer simulations.

At the outset, it had been suggested that the LMS method should work
well in controlling plants with poles close to the unit circle but, it was
expected that this would not be the case in controlling plants with zeros
close to the unit circle (in the z-plane). This can be explained by looking
again at figure 3. The aim of the controller is to invert the plant and
therefore, also its poles and zeros. A plant with zeros close to the unit
circle will then give rise to a controller with poles in these same positions
and a recursive, infinite impulse response. As the LMS method gives rise
to recursive, finite impulse response (FIR) filters, it cannot approximate
the required controller. In contrast, the LQG method results in a
recursive, infinite impulse repsonse (IIR} filter and an approximation to
the required controller can be achieved with relatively few filter
coefficients.

MATLAB functions have been created to carry out the simulations
described below. After creating the plant and disturbance transfer
functions by inputting the poles and zeros, giving rise to a polynomial
representation, the LMS algorithm is called with a given number of filter
coefficients and convergence coefficient. The filtered-x LMS method has a
simple algorithm and has been examined closely {11]. The program then
solves the Diophantine equation and uses the results to obtain the LQG
controller.

15



Recall the steps involved in the solution of the Diophantine equation;

1) Identification of plant and disturbance dynamics. Assume this has
already been achieved (using the MATLAB SI toolbox for instance).

2) Obtain ARMAX representation through convolution of the relevant
plant and disturbance numerators and denominators.

3) Spectral Factorisation through convolution, also taking care how
causal and non-causal polynomials are represented (see 3.1.).

4) Solution of Diophantine equations using the equations derived in 2.4.
followed by matrix inversion.

5) Calculation of the optimal filter using convolution of polynomials.

Two simulations were carried out and were designed to find out under
which circumstances LQG controllers might perform better than LMS
based controllers:

1) Plant and disturbance designed to have two zeros at the origin of the z-
plane and two poles close to the unit circle (figures 4 and 5).

Representing simple second order systems. The inverse filter should have
zeros close to the unit circle which can be easily ‘recreated’ by either the
LMS (FIR) or LQG (IIR) controllers. It was expected that in this case, the
LMS method should work as well as the LQG method.

2) Plani and disturbance designed to have poles close to origin and zeros
close to the unit circle (figures 6 and 7).

The advantages of the LQG method were expected to be seen in this
problem where the LMS method has difficulty inverting the plant due to

its FIR nature.

3.3. Results of computer simulations.

3.3.1. Plant with poles close to the unit circle.

The plant and disturbance are shown in figure 3 and their pole-zero
maps in figure 4. The transfer function of a second order system. can be

written [2]
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(54)

w.(z")= 1
’ 1-2rcos{@,T)z ™ + ¥z

where r is related to the damping of the system, and o,T to the resonant
frequency. In this case, a lightly damped plant and disturbance were
chosen with

r, =098,  oT,=%

(55)
r, =096, T, ="%

giving rise to the polynomial representations

Wi =11001, W ., =11 -1.3859 0.9604]
(56}
W, =000, W, =[1-1553309216]

The frequency response and impulse response of the plant, LMS
compensator and LQG compensator are shown in figures 8 and 9. The
LMS filter used three coefficients and it is clear from figure 8 that both
methods provide a close approximation to the inverse of the plant. Proof
that the LMS coefficients have converged to their final values is given by
figure 10. However, when four (or more} filter coefficients were used, the
LMS controller did not converge (figure 11) but remained stable and still
gave satisfactory results. This is an example of an underdetermined set
of equations with an infinite number of solutions; there are more filter
coefficients than there are degrees of freedom. Note also that the LMS
method works slightly better at high frequencies than the LQG method
and that the the impulse response of the LQG contoller remains slightly
fluctuating showing its IIR nature. The resuits obtained confirm the
theory at the outset of the project, that the LMS and LQG controllers
should have similar performances for these plant dynamics.

3.3.2. Plant with zeros close to the unit circle.

Further simulations were performed in order to contrast simulation
3.3.1. and show an application where the LQG controller clearly
outperforms the LMS-based control system with a lmited number of
coefficients.

The new plant and disturbance are shown in figure 6 and their pole-zero
maps in figure 7. This time, the plant and disturbance were chosen to be
‘inverse’ second-order systems with the polynomial representations
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=[1-1.8098), W, =[1-001001]
(57)

deumid = []' -1.3 07]: %denid - [1 -0.01 0. 1]

W

prumid

Figures 12 and 13 show the frequency responses and impulse responses
of the compensators. This time, the LMS filter has six coefficients. It is
clear that, in this application, the LQG method can still invert the plant
and the LMS method cannot, as expected. The IIR nature of the LQG
coniroller is seen very clearly in graph 13. However, it may be that the
LMS controller has not had time to converge sufficiently or that a larger
number of coefficients are required.

Finally, graphs 14 and 15 show the results of the same simulation where
the LMS controller has more coefficients. It is again evident that the LMS
method cannot give rise to a good controller for these plant dynamics.
Implementing LMS controllers with a large number of filter coefficients is
a time-consuming, computationally intensive method and the LQG
method is more attractive under these conditions. )
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4) Conclusions and suggestions for future work.

A polynomial approach to the design of LQG feedback controllers has
been examined. This approach may have advantages over state-space
solutions as it takes infto account delays in the plant dynamics. The
solution of Diophantine equations have been examined in some detail
and an algorithm designed for their solutions has been implemented in
MATLAB. These form a fundamental part of the calculation of the filter
coefficients for the optimal controller.

Computer simulations were carried out in order to give an indication of
possible applications for LQG feedback controllers. In particular, it was
anticipated that for certain plant dynamics, the LQG method might work
considerably better than other IMC methods, particularly the filtered-x
LMS method. For example, when the plant transfer function has zeros
close to the unit circle which cannot be inverted easily using the LMS
method, due to its FIR nature. Simulations were performed comparing
the LMS and LQG methods, in the first case on a second order system
where the performance of the LQG controller compared favourably with
that of the LMS controller. In the second case, where a plant was chosen
with zeros close to the unit circle, the LQG controller was indeed found to
perform considerably better than the LMS method due to its IIR nature.
However, it is possible that more LMS filter coefficients were required or
that the LMS controller needed longer to converge.

The programs developed are now available to perform simnilar simulations
for other plant and disturbance dynamics.

The LQG method of designing feedback contollers is clearly an atiractive
one and should be investigated further. There are a number of directions
in which work could be continued:

1) The computer simulations could be extended to deal with more
complex systems and used to compare the performance of different
controller design methods further.

2) On an experimental side, a test rig has been built which is also
expected to behave as a two-degree of freedom system (i.e. as sinulation
1, above). This rig could be used to see how computer simnulations and
experimental results compare and also if the method works well in
practical applications. Some investigations into system identification
methods, an essential part of any practical system, have also been
investigated.
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3) It has been suggested that, of the several cases of Diophantine
equations discussed in chapter 2.2., only some will occur in practice [12].
The MATLAB files which are, at present, relatively slow (but can solve
any type of Diophantine equation) could be simplified accordingly.

4) The theory of the LQG method has been widely extended to deal with
vibrations from flexible surfaces and multi-channel feedback control [6].
the latter requiring the solution of a second set of Diophantine equations.
It would be fairly straightforward to implement computer simulations of

these.

In summary, LQG feedback controllers hold some promise for use in the
active control of sound and vibration.
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Figure 2: Form or optimal compensator used for IMC or
LQG feedback control.
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Figure 3: (a) Feedforward representation of figure 2.

(b) Redrawn to show definition of filtered reference signal r(t).
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Figure 4: Transfer function of plant and disturbance dynamics with two zeros close to origin and two poles

close to unit circle.
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poles close to unit circle.
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Figure 8: Frequency respense of plant {dotted), LMS controller (dashed) and LQG controiler (solid) for
simulation 1. (LMS filter has 3 coefficients).
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b) Impulse response of LQG controlier for sitnulation 2.
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simulation 2. {I.MS filter has 49 coefticients).
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b} Impulse response of LQG controller for simulation 2.
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