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ABSTRACT

This aim of this report is to present a simplified but relevant model for predicting
the vibro-acoustic response of an aircraft panel excited by a turbulent boundary layer.
This analytical model provides an insight into the physical properties of the TBL-excited
panel and enables the performance limitations to be derived for various idealised active
control systems.

This report is divided into three main parts. The first part (sections 1-3) justifies
the simplifving assumptions of the flat plate model for an aircraft panel. Furthermore, it
describes how the spectral densities of the panel response can be obtained from an
analysis of the system response to a harmonic deterministic excitation and a statistical
model for the turbulent boundary layer.

The second part (sections 4-5) focuses on the modal formulation used to solve the
flow-structure interaction problem in the frequency domain; criteria are discussed under
which the cross-modal coupling of the structural modes can be neglected when excited by
a turbulent boundary layer. Section 5 describes the modelling of the pressure field
induced by the turbulent boundary layer which acts as a distributed random excitation
field on the structure.

The third part (section 6) presents simulation results in which the verification of
the approximations and the influence of the main physical parameters are discussed,
together with a comparison between experimental and predicted results. The way in .
which the structural modes and the radiation modes of the plate contribute to the vibro-
acoustic response are also examined. One important conclusion is that for subsonic
turbulent flows, each structural mode radiates sound independently. A suitable strategy
for the active structural acoustic control of the sound power transmitted through the
panel would thus be independent feedback control of each siructural mode in the low-
frequency domain. It is also shown, however, that independent control of the panel’s
radiation modes is also possible, and that this could provide a more efficient control
strategy, since a smaller number of radiation modes than structural modes needs to be
controlled for a given level of performance.

ix






1. INTRODUCTION

Noise and vibration pollution is a pervasive feature of many aspects of
everyday life, such as vibration and sound transmission inside vehicles, engines and
flow-noise in aeroplanes, and noise radiated by heavy fluids in pipes. Economic and
quality-of-life costs are enormous, affecting vehicle design and efficiency.

In the aeronautical domain, the extensive use of propeller driven aircraft has
motivated the study of the prediction and the control of the deterministic tonal noise
induced, inside the cabin, by the propeller blades rotating through the air. The
continual development of jet aircraft has also driven an increasing number of studies
concerning the sound and the vibration generated in the cabin by the airflow
developed over the fuselage under cruise conditions. More recently, the boundary
layer noise induced in aircraft has received an increasing attention since the
contribution of other noise sources, such as the sound radiated by jet engines, has now
been significantly reduced by the use of high-bypass jet engines which are, also, more
fuel efficient. Since flow-induced noise increases more rapidly with respect to the
velocity than other noise sources, TBL (Turbulent Boundary Layer)-induced noise is a
particularly critical problem in transsonic aircrafts.

Hence, as the flow-induced sound becomes a non-negligible part of the noise
into high-speed aircraft, there is an important economic interest in reducing TBL-
induced noise. This problem has to be addressed at the design stage and requires a
simple model, as analytic as possible, in order to save the most computational effort
and provide the best physical insight. This model should allow:

¢ an understanding of the mechanisms by which a turbulent boundary layer

induces the vibration of a structure;

¢ a formulation of design criteria for the fuselage through parametric studies

including different flight conditions (landing, take off and cruise);

¢ the investigation of possible strategies for the Active Structural Acoustic

Control (ASAC) of the sound power radiated inwards the aircraft by the
fuselage panels excited by the flow noise. This active control device could
perhaps complement the passive reduction strategies which can exhibit poor
performance at low frequencies.

Strategies of Active Structural Acoustic Control (ASAC)

The vibro-acoustic model should be formulated so that active control can be
implemented through a feedback control architecture. Boundary layer noise is a
random process and, thus, cannot be controlled by a feedforward control system since
no suitable reference signal is generally available.

Many authors have investigated the use of feedforward techniques (Active
Noise Control {1,2], Active Vibration Control [3,4]) to control the transmission of
propeller noise through a fuselage, but less numerous studies have addressed the
active structural acoustic control of a broadband disturbance. In order to reduce the
sound power radiated by a plate excited by a turbulent boundary layer, Thomas and
Nelson [5] have generalised the approach developed by Baumann et al [6] for a
random excitation of a panel and formulated a stochastic linear regulator problem for
a random excitation of the system. Another study [7] also followed this approach
including aeroelastic coupling. The above mentioned feedback control strategies use a
set of “coupled excitation filters”, the output of which being the generalised forces
exciting each structural mode of the plate.



In our approach, we formulate physical criteria for which the generalised
forces are uncorrelated and so the amplitude of each structural mode is independent of
the amplitude of any other structural mode, i.e. the modes are not correlated either by
the excitation or by the fluid-loading. Hence, a suitable strategy for the Active
Structural Acoustic Control of the sound power radiated inwards by the panel would
be independent feedback control of each structural mode of the system in the low-
frequency domain. This strategy has to be compared with the attenuations given by
the active control of the sound power using radiation mode cancellation, i.e. the
cancellation of velocity distributions which radiate sound independently [8,9].

Characteristics of the physical model

Most of the limited number of models describing the vibro-acoustic response
of aircraft structures excited by turbulent boundary layers [5,10] have divided the
fuselage skin into an array of uncorrelated simply-supported panels vibrating
individually. The vertical and horizontal dimensions of these panels correspond to the
distance between two adjacent frames and two adjacent stringers respectively. The
validity of this model has been confirmed as representative by extensive flight test
measurements carried out on the rear structure on an airplane fuselage [11,12]. These
data have shown that, from 400 Hz to 5 kHz, the boundary layer noise excites the
fuselage in such a way that the flow-induced vibrations are only correlated over a
single fuselage bay in the streamwise direction. This is not the case for the jet noise,
which produces highly correlated vibrations across several bays in the streamwise and
in the spanwise direction at frequencies below about 300 Hz.

A second point concerns the geometry of the modelled subsystem. The
adjacent bays are set in a cylindrical fuselage and the effects of curvature have to be
considered. A recent analytical study [13] has shown that, for subsonic applications,
the influence of the panel curvature on the interior sound field can be neglected only
if the surrounding inner surface is sufficiently hard to appear as a baffle, but, at the
same time, sufficiently absorbing to neglect the returned sound waves due to the
curvature. These competing effects seem, a priori, difficult to achieve in aeronautical
applications but the influence of curvature still appears to be negligible when
compared with the influence of in-plane stresses acting on the boundaries of the panel
[10]. These membrane tensions are due to the cabin pressurisation and lead to an
increase of the typical fundamental resonance frequency of each bay by a factor of
about 7. Hence, the main physical characteristics of our problem are retained by
considering the simplified, but relevant model of a simply-supported flat plate
stressed by tension forces.

The third point is related to the modelling of the structural damping effects.
We will introduce an equivalent damping ratio ¢ which accounts for several effects
[14]: the internal or hysteretic damping, the boundary damping due to the friction in
the joint edges or due to the energy lost by the panel through its elastic boundaries,
the friction damping for multilayered composite panels, etc...We will consider in our
simulations two characteristic cases: an aluminium panel which accounts both for the
hysteretic damping and the energy losses through its boundaries (g= 0.01) and a
panel which accounts for the damping effect of a “trimmed” panel [15,16], ie. the
dissipation due to the insulating material placed between the interior and the exterior
stringed frame (¢ = 0.05). However, we keep in mind that a more rigorous modelling
for the trimmed panel should address the problem of a vibrating panel radiating inside
a shallow cavity whose walls are covered by absorbing materials.



Previous investigations for the prediction of flow-induced structural vibration
and sound radiation

One of the first investigations is due to Davies [17], who considered the case
of a simply supported plate in contact with a gas and used a modal representation for
the displacement and the radiated sound field of the panel. Davies simplified this
representation by neglecting both the acoustic and the excitation coupling between the
structural modes. Recently, a more complete investigation of this modal approach has
been proposed by Robert [18] and Bano et al. [19]. However, these models use a
space-frequency formulation for the turbulent excitation. Other authors {20,21] have
shown the efficiency and the suitability of a wavenumber-frequency approach for
asymptotics and analytical approximations of the vibro-acoustic response of a simply-
supported plate randomly excited. This representation enables efficient parametric
studies in the frequency range of interest, i.e. between about 200 Hz and 5kHz.

Furthermore, recent investigations [7,22] have accounted for aeroelastic
structural acoustic coupling, i.e. the influence of the mean flow on both the acoustic
propagation and the fluid-structure interaction at subsonic Mach numbers. These
studies have pointed out a beneficial aerodynamic damping effect, leading to a
decrease in the flow-induced noise transmission by the fuselage when the Mach
number is increase. However, this effect is compensated to a certain extent by an
increase in the levels of the sound power radiated in the cabin due to surface effects
on the boundary layer pressure distribution generated over the fuselage skin, such as
structural inhomogeneities and ring-stiffeners {23], the wall roughness [24] and step-
like discontinuities [25].

We finally note that flow-structure interaction studies are a rather complicated
subject since the difficulties of fluid dynamics (the random excitation field) add to
those of structural vibrations. However, a guideline to solve this problem is to know
the required precision for the modelling of the excitation field in order to describe the
vibro-acoustic response of the structure with a sufficient accuracy. A significant
number of publications [20,21,26,27,28] have been focussed on the choice of the
modelling of the wall-pressure fluctuations with respect to the frequency range or the
Mach number of interest. Section 5 of this report will discuss the influence of this
choice of models of the wall-pressure field in our configurations, i.e. for high
subsonic Mach number applications.

Contents of the report

This report will be organised as follows. Section 2 presents the assumptions
and the governing equations of the problem. In section 3, we propose an analytic
model for the vibro-acoustic response of a fluid-loaded plate under a random
excitation. In this section, we define two functions: a wave-vector transfer function
describing the filtering effect of the plate and a wave-vector density function
quantifying the response of the plate to a stochastic excitation in terms of excitation
filters. Moreover, it will be established that the statistical properties of the panel
response depend on the statistics of the excitation through the response of the fluid-
loaded panel to a harmonic excitation scaled on each contributing wavevector. A
modal method will then be used to solve the corresponding harmonic problems.

Section 4 is devoted to the modal representation of the solution and criteria are
formulated under which we can neglect both the acoustic and the excitation cross-
modal coupling of the structural modes. Section 5 presents a comprehensive review of



the main turbulence modelling and justifies why a Corcos-like model is most suitable
for the purpose of our analysis. The results of various parametric studies are then
described in section 6. These are designed to check the main hypotheses of the model
and to give a better understanding of the coupling between the dynamic behaviour of
the structure and flow turbulence. Moreover, comparisons between our predictions
and previous experiments are discussed. Finally, the results are presented of an initial
investigation into the active control of sound radiated from a turbulent boundary
layer-excited panel, in which either the structural modes or the radiation modes are
suppressed.



2. STATEMENT OF THE PROBLEM

In the free-space R*, let us consider the Cartesian set of co-ordinates (O,x,y,2).
A thin elastic (or visco-elastic) plate of length @, of width b and of constant thickness
h<<{a,b), occupies the open domain defined by:

[x=(x12):0<x<b0<y<a,-hf2<z<h2}

The plate thickness A is assumed to be small compared with the wavelengths
involved. For simplicity, the plate is assumed to be homogeneous and isotropic. We
model its motion by using Kirchhoff’s thin plate theory. All the structural quantities will

therefore be defined over the mean surface X (z=0) of the plate. Along its boundary
9%, . an external normal vector n can be defined almost everywhere. The complement
>’ of T is defined as being a perfectly rigid baffle.

The mechanical characteristics of the plate are: a bending stiffness
D=Er*/12(1-v°) and a mass per unit area m=ph where £, v and m are the

Young’s modulus of elasticity, the Poisson’s ratio and the density of the material. The
internal damping of the plate is usually modelled by a non-zero imaginary part of the
Young’s modulus. It will be noted 7 and the subsequent complex bending stiffness

D’ =D(1+ jn). We will account for the cabin pressurisation effects through lateral and
longitudinal complex tension terms N, =N, (1+jn) and N =N, (1+jn) acting in the
plane of the undeformed middle surface of the plate.

The baffled plate separates two domains Q' (z>0) and Q (z<0) which both

contain perfect fluids which are characterised by the densities p~ and p~ with the

corresponding sound velocities ¢* and ¢”. As sketched in Figure 2.1, the fluid in the
domain Q" is moving in the positive y-direction with the constant speed U . A turbulent
boundary layer develops at the interface between the fluid and the system plate-baffle.
The wall-pressure fluctuations due to this turbulent boundary layer induce a vibration of
the plate and an acoustic radiation in both fluid domains.

2.1 Hypothesis

(a) The model describing the interaction between the vibrating structure and the
turbulent flow assumes a one-way interaction, i.e. the wall-pressure fluctuations are not
modified by the vibrations of the plate. This hypothesis enables us to model the excitation
term for the elastic panel in contact with a turbulent boundary layer as the wall-pressure
fluctuations that would be observed on a smooth rigid wall, also called the blocked

pressure p, .

(b) The turbulent boundary layer is assumed fully developed when exciting the
plate.



(¢) Since the acoustic fluid load mainly depends on the mechanical properties of
the fluid in the immediate neighbourhood of the plate, where the fluid flow velocity is

close to zero, we can reasonably assume that the sound pressure radiated in €27 is not
significantly affected by the fluid flow in Q7. So, for the acoustic wave propagation in
Q7 , we consider that the fluid is at rest.

2.2 Governing equations

In the following, we neglect the in-plane displacements of the panel with respect
to its out-of-plane motions because, under the small deformation hypothesis, the
membrane displacement field is not coupled with the flexural displacement field and so,
does not contribute to the radiated pressure field. Let w(x;¢) be the instantaneous

flexural displacement of the mean surface of the plate at the point x of co-ordinates
(x,7,0) and at the time #; let p*(z;t)and p~(z; ¢)stand for the acoustic pressure fields at
the points z of co-ordinates (x,y,z 2 0) and (x,y,z <) respectively in Q*and Q~ and
at the time ¢, The pressure step p, (X; £) across the plate is defined by:

Ps (X 8) = pg (x, 9,0, 1) = }Lrgl [p*(x, ¥z t)— p(x,y,-2 r)]

The functions w(x;1), p'(z;t) and p~(z:;t) satisfy, for each realisation of the
process, the following system of equations:

i 2 2 2
(D’AZX+N’ 9 —+ N’ J — -+ 0

]w(x;t)z—pb(x; N—ps(x;1), VxeZ, (2.1.a)

“dx? Yy’ ar?
Ao L9 enm0, VzeQ' (2.1b)
2o )P B S
pi%(x;t)+aa—i(x;t)zo, vxeX, (2.1.c)
dp*

—(x; =0, VxeZX, (2.1.d)
dz

Boundary conditions for w onto JZ, (2.1.e)
Outgoing wave conditions for p*, (2.1.1)
Initial conditions for w, p* and p™. (2.1.g)

In the equation of motion (2.1.a), A% is the bilaplacian operator calculated with
respect to the variables x and y. The differential elasticity operator consists of the sum of
two terms: D’A’>  which governs the bending motion of the plate and
(N;&l [0x*+ N 9*/ 8y2), which accounts for inplane motion of the plate due to cabin

pressurisation effects. This equation governs the structural response of the fluid-loaded
plate under membrane tensions and excited by the total acoustic pressure field p, + p;.



consisting of the sum of the turbulent blocked pressure p, and the acoustic pressure step
p, that would be generated by the panel motion in the absence of turbulence.

The equation (2.1.a) is completed by local boundary conditions (2.1.e) satisfied
by w along its entire periphery d¥ . The most classical one corresponds to the case of a
simply supported plate (w=d>w=00ndX) or the case of a clamped plate
(w=2d,w=0o0ndX). But, boundary integral representations of w can take any other
conditions into account [29].

The acoustic pressure fields p* and p~ satisfy the homogeneous d’Alembert
equations (2.1.b), respectively in the fluid domains Qfand Q°, the homogeneous
Neumann boundary condition (2.1.d) on the baffle and the radiation conditions (2.1.) at
infinity. Since the fluid is supposed perfect and at rest, equation (2.1.c) expresses the
continuity condition between the normal acceleration of a point vibrating on the structure
and a fluid particle at its neighbourhood.

The set of equations (2.1.a-2.1.g) governs the vibrating motion of the fluid-loaded
baffled plate stressed by inplane tensions and excited by wall-pressure fluctuations.

2.3 Green’s representation of the displacement of the fluid-loaded plate

Because the random excitation term p, does not possess a time-Fourier

transform, the set of equations (2.1) does not possess a time-Fourier transform [30]. In
order to solve the system (2.1), we introduce y(x,x";w), the Green’s kernel of the
displacement of the fluid-loaded plate as the solution of the following system of
equations, where an ¢’ time dependence is assumed:

2 2
(D'Ai +N! ; ~+ N 0 . —ma)z}y(x,x’;m) =-8.(x)— p; (x,x"; 0),¥(x,x") € Z,(2.2.2)
; e
(A+R)p* 2 X;0) =0, V(ox)eQ'xE, k=, (22.D)

C,

a +
ai(x,x’;a))zpia)z'yw(x,x’), Vix.x)eZX, (2.2.0
z

dp”
T(X,X’;a)) =0, V(x,x)elX/, (22.d)
Z

Boundary conditions for y(x,x";@) when x € dx, (2.2.¢e)

Sommerfeld conditions for p; and p;. (2.2.1)

where p*(z,x’;w) is the sound pressure radiated at the point z in QF due to a harmonic
point force & .(x) ¢’ acting normally on the plate at the point X, §.(x)=8.(x)6,(»)
being the Dirac delta function at the point x” of co-ordinates (x',¥.,0); p(x.X";0) is
the pressure step across the plate at the point x on X and y(x,x";) represents the
flexural response, i.e. the out-of-plane displacement, at the point x on X, of a finite



elastic plate coupled to two semi-infinite fluid domains Q* and excited by the harmonic
point force previously described. @ is the angular frequency and k. is the acoustic
wavenumber for each fluid domain. It can be shown that y(x,x";®) only depends on the
separation distance between x and x”: it will then be denoted y(x — X' @).

Now, we can define the time-dependent Green’s kernel y(x—x';f) of the
displacement of the fluid-loaded plate as the inverse Fourier transform of the Green’s
kernel y(x—x";o):

yx—x"1) = 2—1- jy(x —-xw) e’ do, V(x,x)eZ, Vi (2.3)
n —on

Therefore, the Green’s kernel y(x —x";t) leads to an integral representation of

the displacement of the fluid-loaded plate excited by the turbulent boundary layer in
terms of the random excitation p, , as follows:

wix;=(y * pix;t)= J ” y(x-x"1-7) p,(x";T)dT d%’, VxeX, Vi (24)
(x".1)

oo R

where ¥ denotes a convolution product with respect to space and time variables.
(x'.0)



3. VIBRO-ACOUSTIC RESPONSE OF AN ELASTIC PANEL TO A SPACE AND
TIME STOCHASTIC EXCITATION

3.1. Derivation of a wavevector integration model for the power spectral
densities associated to the vibro-acoustic response of the panel.

The excitation term p,(X;?) modelling the wall pressure fluctnations due to a

turbulent boundary layer is a stochastic field stationary up to order 2 with respect to the
space and time variables. Consequently, the cross-correlation function R of the

PPy

turbulent excitation p, is defined as follows [31]:
R,, (x:)=E[p,(x":t) py(x’ +X:1' +D)], VxeZ, Vz (3.1)

where 7~ denotes the conjugate of the complex number z. The function R = admits a

Poly

space-time Fourier transform, denoted § which is called the wavenumber-frequency

PPy ’

cross spectrum of the excitation pressure p, . It is given by the following expressions:

S, Ko)= H S, X=x;0)e”* 7 P(x-x), VkeR’, Vo. (324
z

(123

Sy (X 0) = [R,, (x:0)e7 dt, VX, Vo (3.2.b)

Py

where k= (k,k,) is the wavenumber in the x and y directions and §_, (x—x"; @) is the

Pots
space-frequency cross spectrum defined in (3.2.a) as the inverse space-Fourier transform
of the wavenumber-frequency power spectrum S, . (K; @) .

It can also be shown that the displacement given by (2.4) is a stochastic field,
which is stationary up to order 2 with respect to the time, but not stationary with respect

to the space. This allows us to define the cross-correlation function R, of the plate
displacement as follows:

R, (x,x;t)= E[w(x’; yw (xt’ + r)], V(x,xYeIxXZ, V¢ (3.3)

Introducing the Green’s representation (2.4) of the displacement w into the
definition (3.3) leads to an integral representation of the cross-correlation function R,

+ootoa

Ry ox0= [ [ [ [Jrx=x"1-0R,, & -x"7-1)
—oomoo T E

xy (x'-x"t—1)d°B, V(x,x)eExZ, V.

34

where d*f is the elementary “volume” of integration equal to d°x” d*x” dt dt’.



Since the Green’s kernel y and the auto-correlation function K, admit a time-

Fourier transform, the function R admit a time-Fourier transform S

i > Which is called
the space-frequency cross-spectrum of the displacement of the plate. Performing the

time-Fourier transform of the expression (3.4) then yields:

Sww (X X ) CU) = JJ J-[ Y(X — X”;m) Sl,,bpb (X” _ X”’; CU) ’}/*(X’ _ X”’;G)) dZX” dZX.w (35)
I =

where y(x—x";@) is the time-Fourier transform of the Green’s kemel y(x— x”;1) (see
eq. 2.3); it is also the harmonic solution of the set of equations (2.2.a-f). The expression
(3.5) has been proposed by Davies [17] and used more recently by Robert [18], Bano et
al. [19] and Thomas et gl. [5] to predict the vibro-acoustic response of a panel excited by
a turbulent boundary layer.

More recent advances in the modelling of turbulence have provided expressions
of the wall-pressure fluctuations given in the form of a wavenumber-frequency power
spectrum [20,32] as presented in formula (3.2.a). In order to account for this form of
modelling in the calculation of the response of the plate, it is necessary to perform an
inverse Fourier transform of the expression (3.2.a) with respect to the wavenumbers
(k.,k.) and then to substitute this inverse Fourier transform in the integral (3.5).

However, this procedure involves a lot of computational effort.
A few initial considerations can reduce this large amount of calculation.

According to (3.2.a), the space-frequency spectrum S, (x —x’; @) can be expressed in

terms of the wavenumber-frequency spectrum §, , (k; @) as:

Pplp

+osdco

7. {x~x") 2
oy X=X 00) = 2 )2 :[__[:SP!PIS (k; ) e™ d’k. (3.6)

When substituted in (3.5), we can then define a function T, (x; k) as given by:

I (x;k)= _” y(x—-x;0) e d°x’, VkeR®, Vo
z

Hence, expression (3.5) for the plate displacement can be written in purely wavenumber
terms as:

(6 @) T (x5 k) d’k (3.7

W (2 )

where the cross-spectrum of the displacement of the fluid-loaded plate is now written
under the form of an integral over the wavevector k, and the wavenumber- domain
Green’s functionI’ (x; k) is the displacement at position x on the fluid- loaded plate,

calculated at the angular frequency @, when the excitation pressure p, scales on the

10



contribution of a boundary layer “eddy” of wavevector k. I,(x;k) is therefore
determined by the following system of equations:
32 82

D'A* + N’ + N2 me® T (x; k) =—e

[Pk - paxk)] VxeZ, (38.9)
(A+k ;K =0, VzeQ", (38.b)

M(X; k)=p, 0T, (x;k), VxeZ, (38.¢)
Z .

J
3ap5(x;k)=o, vkeX, (3.8.d)
Z

Boundary conditions for T (x; k) whenx € dZ, (3.8.¢)

Sommerfeld radiation conditions for p; and p,. (3.8.1)

In the next section, we will present three appropriate methods to calculate
I (x; k) either analytically or numerically.

I et us note that expression (3.7) for the frequency cross-spectrum formulated in
the space-frequency domain, is equivalent to the expression (3.5) formulated in the
wavenumber-frequency domain. A synoptic diagram has been plotted in Figure 3.1 in
order to give an overview of the methodology we have considered together with
equivalent representations of the solution.

The frequency cross-spectrum S

Pepe

(z,z"; @) of the acoustic pressure fields

radiated in the fluid domains Q7 is given by the following expression, which is formally
similar to (3.7):

’ ]- i + +k ’ +
S BT 0) = s [[ptws,, ko) pl @0k V@), Yo

(3.9)

The radiated sound pressures p;(x;k), appearing in formula (3.9), can be computed by
using their integral representation carried out by applying the Green’s formula to p.

Thus, p, take the form:

pi(z; k)= Fp.o° H Giz-x)T,(x k) d’x’, VzeQ*, Vke R*. (3.10)
z

. are the Green’s functions of the Helmholtz equation for acoustic propagation in each

half-space Q* or Q, which satisfy the homogeneous Neumann condition on (z =10) as
well as the Sommerfeld condition at infinity.

11



They are given by:

—jkriz,z —jkyr(z,z
jhor(z,2) e}j(ZZ)

, V(z,2)e Q" xQ° (3.1

Go(z—12")=

+
47 r(z,2") 4nm r(z,z’)

where the co-ordinates of the points z' and z’ are respectively (x’,y",z") and
(x’,y',—z"). r(z,z") denotes the distance between z and z’.

3.2. Derivation of the spectral densities involved in the power balance
equation and radiation efficiency of the panel.

A natural way to obtain the expressions for the spectra associated to the power
quantities of interest (boundary-layer input, radiated acoustic power and structural
dissipated power) is to establish a power balance equation based upon the system (2.1.a-
g) governing the vibro-acoustic response of a fluid-loaded baffled panel excited by a
turbulent boundary layer. Multiplying the pressures in (2.1.a) by the out-of-plane velocity

a Vl/'=k .k . . .
a_(x’; t—7) (denoted w ) and evaluating the mathematical expectations (or ensemble
t

averaging) leads to the following relation between several cross-correlation functions, the
full expressions for which are given in appendix A:

(x,x’;7)
+ Rpw(x,x’;r) - Rp_w(x,x’; T)=R

Py W

(1+ jn)R_/:,,(w)\;,(X’ x 7Y+ mR

it

(X,X;7) (3.12)

where £,(w) is the thin plate differential operator associated to the structural potential
energy. It is given by:

82 32 2 32 82
=022 2] n Ty T

The correlation functions involved in (3.12) are defined as:

R

’ Pyt aW* ’
zp(w)w(x’x 1T)= E[i’p(w)(x it )—ét“(X;r +T)}

’ a?.w L BW* ’
Ry (%,x ;’C)=E|: 37 (x ) > (x;t +fc)}
R. (x,x";7)=E lim{pi(x’ y’ +z"t’)}——aw* (x,y,0i" +T)
P A 20" P A i 4 af [ L]

(x;t"+ r)}

*

, rory W
R{};,W(X3x ’T): Eliph (X ’I ) at

12



Performing the time-Fourier transform of (3.12) then yields to the following
relation between the corresponding frequency spectral densities:

(1 +jn)S_,‘,p(w)w(x;co)—ma)zSW(x;a)) 313
+ Sp+w(x;a)) - SP_W (x;0)Y=5_ _(x;m) (3.13)

l'),, w

The total power balance is then obtained by integrating (3.13) over the surface of
the panel and equating the real parts of each quantity involved, yielding:

S () + SE+ {w)— Sﬂ_ (w)=S,(w) (3.14)

where Sy, S, and §, are respectively the structural dissipated power, the acoustic

power radiated in QF and the boundary-layer input power. They are given by the
expressions:

Sy () = 29{” S‘,‘,P(W)W(x;a))dzle,

S (@==%[[s

I

iw(x;a))dzx} (3.15)

ER{J Spbw(x;a))dzx].

with:

Hootoo

1 .
S 60V = 77 5 [ [4@)xKs,, kol,xkdk

—om—en

1 +oates

®o)=—7 | [ PAxWS,, ko)T,xkdk,

> @y

f3
W
—oamoo

feaden

. — 1 tkx . * . 2
Sp;,w (x;w) = '(27)2 :[o__[oe SP;,P:, (k,enT, (x;k)d k.

The corresponding total powers can be deduced by integrating the spectral

densities (3.15) over frequency.
A quantity of interest is the radiation efficiency o(w) defined as the ratio

between the acoustic power radiated inwards S __(@) and the temporal and spatial

average velocity of the panel.

13



o(w) can be also expressed in terms of the kinetic energy of the plate S, (@) as follows:

e G (3.16)
 pcS, (@) '
where:
S, (@ )_—mjjsww(x w)d’x.

3.3. The advantages of a wavenumber-frequency approach

The advantages of a wavenumber-integration modelling (Eq. 3.7) are now
discussed with respect to a more classical spatial integration modelling (Eq. 3.5):

+ The first advantage concerns the fact that a direct physical interpretation
of the results can be obtained: the wavevector integration modelling (3.7-3.9) enables the
plate to be represented as a wavevector filter.

Indeed, Eq. (3.7) can also be written as:

S, (X ) = (2 e _”SM (k; 0) T, , (k) d’k

where:
T, . K)=T,x:Kk I, (x;k)

is the transfer function of the displacement of the plate at the point x and at the
frequency ; it describes the wavevector filtering effect of the plate
We can then define a wavevector density function D, for the displacement of

the plate at the point x as a measure of the response of the plate at the point x to one
wavevector k. It is given by:

D ,k)=T,x;k)S,  (kw)[,(x;k)

Poly
Thus:

D (K=T,,Kk)S

PuPy (k’ w)
that is, for each angular frequency  and for each point x € 2, the vibrating response of
the plate excited by a turbulent boundary layer can be interpreted as a shaped signal

S, ., (K@) passed through a wavevector filter characterised by the transfer function

14



T, (k). Notice that a similar representation can be given on the basis of the expression
(3.5), but the interpretation in terms of spatial filters is less obvious.

+ The second advantage of the wavector approach is that recent models
for turbulence are mainly formulated through a wavenumber-frequency power spectrum
and this mathematical form can easily be taken into account in the expression (3.7).

¢ The third advantage of such an approach is a computational one: the
calculation using the spatial-frequency approach requires a quadruple integration of a
function, whose oscillations increase when the frequency increases in the expression
(3.5). Hence, the numerical evaluation of the integral (3.5) may be computationally time
consuming. In the wavevector approach, the formula (3.7) shows that, in this case, we
have to compute a double infinite integral of a function monotonically decreasing with
@ . However, it is important to notice that the wavevector density function is maximum at
the origin (k .k )= (0, 0) and drops very quickly when the components of the wavector

increase (Figures 3.2 and 3.3). Because of this property, the major contribution to the
displacement of the plate at the point x comes from the low-wavenumber region of the
tarbulent wall-pressure fluctuations spectrum. Thus, the infinite integral (3.7) converges
rapidly when approximated by a finite integral defined over an increasing bounded
domain centered on the origin.

All these reasons justify our choice of a wavector-frequency formulation for the
response of the fluid-loaded plate.

The modelling stage of this study has thus led us to the following conclusions.
The governing equations of the problem are given by the set of equations (2.1). Becanse
the excitation is non-deterministic, the unknowns of the problem are the cross-power
spectral density of the displacement of the plate, given by (3.7), together with the cross-
power spectral densities of the sound pressure radiated in the fluid domains, and given by
(3.9). The main result shown is that these spectral densities are obtained from the
response of the system to a harmonic deterministic excitation; this latter being calculated
by solving the system (3.8) of differential equations. In reference [33], the authors have
solved the corresponding 1-D problem using a finite-difference method compared with a
Boundary Element Method to describe the behaviour of the plate coupled to the fluid. In
the next section, we will describe, as an alternative, the use of a modal representation for
the unknowns of the harmonic problem.
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4 MODAL REPRESENTATION OF THE HARMONIC SOLUTION AND THE
DIAGONAL APPROXIMATION

Two methods can be used to solve the fluid-structure interaction problem outlined
above and summarised in equation (3.8):

i. An expansion of the harmonic response of the fluid-loaded panel as a series of
its in-vacuo eigenmodes (modal method). The details of this method will be given in this
section using both a matrix and scalar formalism. We will show that an explicit
formulation for the expansion coefficients is available only if the acoustic cross-coupling
of the modes is neglected.

ii, An expansion of the harmonic response of the fluid-loaded panel as series of
the resonance modes of the plate coupled to the fluid. It has been shown [29] that, if the
serjies is developed in term of a small fluid-loading parameter ( p,/m), the zero-order
term is exactly the modal series defined in the previous method. Higher order terms are
only significant in the case of heavy fluid-loading, and so no further details will be given
about this general approach since it is not the aim of this report.

4.1 Weak-coupling hypothesis

In our problem (flow-induced noise radiated inside an aircraft), the structure
radiates into a light fluid. The influence of the surrounding fluid is then a small
perturbating factor and so, the dynamic response of the fluid-loaded structure is very
close to the corresponding in-vacuo one. As a consequence, it appears reasonable, as a
first approximation, to assume a weak-coupling between the plate and the surrounding
fluid, i.e. the dynamic behaviour of the panel is not affected by the acoustic pressures
generated by the plate motion in the absence of turbulence. In paragraph 6.1.3.b, it will be
verified that the acoustic pressures are negligible with respect to the turbulence
fluctuating pressures.

This hypothesis is closely linked to the assumption that the vibration has no effect
on the boundary layer, as stated in section 2.1, which is a standard one and has been
shown to work well in a wide range of cases [10]. It is based upon the fact that the
turbulence structures contributing to the wall-pressure fluctuations are almost unaffected
by the acoustic motions. But this may not be correct for supersonic flows [20]. However,
since we are concerned with subsonic flows, we will neglect, in equation (2.1.a), the
acoustic pressure steps with respect to the turbulence pressures p, .

4.2 Modal representation of the solution

In order to simplify rigorously the model, we will first establish the modal
representation of the solution without any weak-coupling hypothesis. Second, we will
sive quantitative criteria which allow us to neglect either the acoustic coupling or the
excitation coupling between the modes of the panel. Third, we will obtain simplified
expressions for the modal expansion of the vibro-acoustic response of the plate.
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4.2.1 Modal analysis

The function T',(x; k), which appears in the definition (3.7) of the wavevector-

frequency cross-spectrum of the displacement, can be expressed [34] in terms of the in-
vacuo eigenmodes @, (x) of the elastic plate:

ma

4oo oo

r,xk)=Y > we ko, (x) @1

m=1 n=l|

The eigenmodes @ _(x) and the corresponding eigenvalues A’ are defined by

o

the following relation:

AN, x)=1 @, (x) (4.2)

m mn

(x) and A*

mn

In the case of a simply-supported panel, @ are given by exact

m#

o) (2]
" b a (4.3)

@, (xy) = sin(m’; x) sin(”’; 4 ] =® (x)®,(y).

analytical expressions:

For a simply-supported tensioned plate, according to [35], the eigenmodes are not
modified but the eigenvalues are given by:

2 272 2 2
N
;L?m:|i(mﬂj +(n7r)] +Nx (m?r] W (mr] @.4)
b a Db D\ a

where N, and N, are the lateral and longitudinal plate tensions.

#

In the case of a panel with four edges either clamped or free, analytical
approximations of A* and @, _ (x) have been derived by Warburton [36]. In this case,

mt

the eigenmodes of the plate are given by the product of the eigenmodes of a clamped-
clamped or free-free beam along each direction parallel to the edge. A summary of these
expressions can be found in [37]. However, it is clear that Warburton’s method breaks
down in the case of a plate whose geometrical characteristics are such that the Kirchhoff
operator is not separable in the natural coordinate system of the plate.

We note that the set of eigenmodes {@ (x)} is a basis of the Hilbert space which

the response of the plate belongs to, and so, the expansion (4.1) of the plate response as a
series of its eigenmodes is convergent.

mn
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The trace on X of the sound fields p® radiated in ©* can also be expressed in
terms of the eigenmodes of the structure:

pr(x k) = ZZ p-ko)®, (x), xel. (4.5)
with: T
pr, (k) = H pa(x:K) @), (%) d*x (4.6)

The contribution of the (p,q) modal displacement wy, (k) to the (m,n) modal

pressure pfm (k; ) is derived from the set of equations (3.8.b-d, 3.8.f). Indeed, if we take
the (x,y)} spatial Fourier transform of these equations, we obtain, in the k" wavenumber

domain, a set of equations the solution of which can easily be found.

Then if we apply an inverse spatial Fourier transform, we can derive an
expression for the radiated sound field in terms of the spatial Fourier transform of the
plate displacement T (k";k) , yielding:

2 Feates F ki kr k ~fk’z
pE (k) = £ 1L J]-5 ( e dkdi!, zeQF. (4.7)
et oLl \/ki—k_:z—k;z :
with:
T,k K=Y > w (kS K. (4.8)

p=1 g=l

The shape functions S, (k") are the spatial Fourier transform of the plate eigenmodes.

They are given in a separable form for a rectangular plate as follows:

e Pq

S, (k)= (M @, ()= [[@, )™ d*x =5,k S, (k) (4.9)
x
where:
S, (k)= [ @, (x) o™ dx,
0

b
S, (k)= j@q () ™ dy.
o
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For a simply-supported panel, the shape functions are explicitly given by:

(k,a)k, D1~ (~Dre e 1- (-nre™]
[(k,@)* - (k,a)* [ICk,b)" — (kb
for (k!,k)=(k,.k,) withka=pr and kb=gr.

S, (kK k) =2Jab

Py , for (k:’ k;) > (kf” k‘f),
~ab
2

S, (kL k)=~

P4

(4.10)

They can be interpreted as the wavenumber sensitivity functions of the panel. Using this
convenient formalism, an analysis has been performed by Hwang and Maidanik [21] to
determine the relative contribution to the coupling between a structural mode and the
turbulent excitation for different wavenumber regions.

Finally, by substituting the expression (4.7) and (4.8) into (4.6), the (m,n) modal

pressure p. (k;®) can be expressed in terms of each (p,q) modal displacement as
follows:

tee oo

pE o)y =tjop,.c. D > Zn, (@)w, (K) 4.11)

p=l y=1

with:

z, ()= ki TT S’;” (kx’ k.!‘ )Spq (kx ) k",)
mnpy (27[)2 L \/k; — ks = k\z

dk,dk,. (#.12)

The corresponding impedance matrix is denoted 7.

By substituting the expansion (4.1) and (4.5) into the equation of motion (3.8.a),
we are lead to solve an infinite linear algebraic system:

Wm (k){D/lz - ﬂ’t(!)z + ja)[p+c+zr:nnzn (a)) + p-C—Z”—i“m”(a))]}

mn it

03 [0, 78 (@) 4 p € Ty (@)]w2(R) = =S,,, (&), Vim)
r=1 s=l
rEm sFn

(4.13}

If we neglect the cross-terms due to the acoustic coupling between the modes in the
previous system, then ZZ_ (@) = Z,,,,,,(®) 8, &) and the fully populated system becomes

mnsin

diagonal.
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In this case, an explicit solution is given by:

o ( ) — Smn (k) — F;nn (k)
" D"m (CO) I:wim (1 + Jn) - a)z + -]a) (S+Z;;nmn (a)) + S—Zn—mnm (a)))]
) £, () (19
[G)ilﬂ - a)2 + ja) (Zga)mn + €+Z;I’UHH (a)) + E—Z;nmn (a)))]
S (k 1 ;
where an k)= ——?ﬂl—(—-l = ———(e]k'x, (O (X)), A, = mNmn, and ¢ = By so that
Amn Amn 2 w

¢(w,,}=n/2 for cach cigenfrequency ,,. ¢ is then taken to be independent of

frequency and for each eigenmode is equal to 17/2 . N, stands for the squared norm of

the eigenmodes @, (x), that is: N :N(I) :

i

F_  represents the normalised

mh i

contribution of the plane-wave excitation e’** to the response of the plate eigenmode
&, (x) of order (m,n). €, and &_ are both fluid-loading parameters defined by

i

g, =p.c./m.

w>, and @” can be expressed in terms of the flexural wavenumbers of, respectively, the

pitisd

finite plate A° and the infinite plate A* as follows:

ma

2 _ Dﬂ’tm
mnn m ? 4 1 5
a)z Dlél- ( )
m

Let us note that the modal series (4.1) is finite for all @ since the damping of the
plate (either due to radiation into the fluid or internal relaxation) has been taken into
account.

If we do not neglect the acoustic cross impedance in (4.13), we are left with an
infinite full linear system, the solution of which can only be found numerically.
Nevertheless, we can write a formal expression for the solution as follows:

4o oo

wo K)==->YY (085K (4.16)

r=1 x=1

in which the structural modal mobilities Y

mnrs

() are implicit functions of @. The

corresponding matrix is denoted Y, .
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On using the definition (3.14) for the spectra involved in the power balance
equation (3.13) and expressing the pressure and displacement as modal sums (4.5, 4.1),
we find:

SZ(UJ) == %TT[CE Yw\}‘w Yaij ]a C): (ms n,p, Q) = Dn}":inaﬂlaj’

Sﬂt(co)=é9{{Tr[C;qu(Ym‘Pwa)]}, CE(m,m, p,q) = jop,c, 5787, (4.17)

S, (@) = %%{Tr[‘l’m Y2k

in which the superscript ¥ denotes the Hermitian (complex conjugate transpose) and
Tr[A] is the trace of the matrix A (the sum of its diagonal elements). In (4.17), the

element W (@) of the modal excitation matrix ?m are defined in terms of the

wavenumber-frequency power spectrum of the turbulent pressure §, | (k; @) as follows:

ol

nn Py

(@) = []$,.K S, & o) S, () d’k (4.18)

On using Parseval’s formula, the modal excitation term “Y¥/!(w) can be

mit

expressed, in the spatial domain, as:

mn Py

P = (4n°)[[ [[ @,,(0) 8, (x-X; 0) B, () d*xd’)" (4.19)
PO

In order to save some computational cost, it would be convenient if the cross-
terms could be neglected in expression (4.17).

4.2.2 Conditions under which the coupling can be neglected

In the expression (4.17) for the spectra of the power quantities, two coupling
terms may be neglected: the acoustic cross-coupling terms  (then,

ZE (@y=Z. ()87 87) and the excitation cross-coupling terms (then,

R numa

W (@) =W (@) 8], 87).

From the system (4.13), it appears clearly that, if the acoustic cross-coupling
terms are neglected, then the cross structural mobilities can be neglected, i.e.

Y (w)=Y, (©)8" 8. However, some authors [17,38] neglect the cross structural

ninpg
mobilities without neglecting the acoustic cross-coupling terms in the radiated sound
power Sy (4.17). This situation may arise only for the cases of light fluid-loaded
structures with a high modal density for which the acoustic cross-coupling terms are of
the same order as the acoustic self-coupling terms Z; (@), but both terms are

negligible with respect to the structural coefficients that appear in the system (4.13). In
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this case, only the neglect of the excitation cross-coupling terms can lead to a simplified
expression for S.

Before performing the diagonal approximations on the expression (4.17), it is
recommended to know for which frequency ranges these simplifications are valid.

4.2.2.a Conditions under which the acoustic cross-coupling terms can be
neglected

Leppington et al. [39] have shown that these terms could be reasonably neglected
for frequencies above the critical frequency of the modes contributing to the plate
response, the radiation efficiency of these modes being largely independent of their order.
When the inefficient modes contribute also to the system response in the very low
frequency domain, Mkhitarov [40] has derived a quantitative criteria for which the
acoustic coupling may be negligible. It is based on an iterative method starting from the
solution obtained with the diagonal approximation and is given by (N,ne/e, >>1)

where N; =k, (a2 + b2). More restrictive conditions have been obtained by Graham [41]
through investigating the plate response when only two inefficient modes interact, giving

(N2nw?®/e? >>1). The last condition provides a minimum frequency ®,, above which
t + P q ac

the acoustic cross-coupling terms may be neglected.
This frequency depends on the fluid-loading parameter ¢, , the structural damping

n and fhe size of the plate (a, b) as follows:

H

i
W, = (Lm] (4.20)

mmva® +b°

The underlying idea is that the fluid-loading terms can be neglected in the
governing modal equation (4.13) with respect to the structural terms above this critical
frequency and thus, the system (4.13) becomes diagonal. It is well known, indeed, that,
when the frequency increases, the structural properties dominate the dynamic of a system
with respect to its acoustic interaction with the surrounding fluid. Though the fluid-
loading terms cannot be neglected with respect to the structural terms in the low-
frequency domain, the weak modal overlapping between the resonance allows the cross-
coupling terms to be neglected with respect to the self-coupling terms and thus the
diagonal approximation still applies.

4.2.2.b Conditions under which the excitation cross-coupling terms can be
neglected :

In the previous paragraph, we have formulated criteria to neglect the acoustic
coupling between the modes: these are general criteria related to any fluid-structure
interaction problem. Further simplifications can be obtained in the case of a structure
excited by wall-pressure fluctuations.

Dyer [42] and Davies [17] have derived similar criteria to neglect the coupling
between the modes by a turbulent forcing field. From the expression (4.19) of the modal
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excitation terms written in the spatial domain, Davies has shown that, if the correlation
lengths in both the streamwise and the spanwise directions are largely much smaller than
the dimensions of the plate in the respective directions, then the spatial-frequency
spectrum of the turbulent excitation §,  (x—x"; @) almost becomes a Dirac function

Puly
d,(x") and the integral (4.19) then expresses the orthogonality relationship between the
eigenmodes of the plate. The correlation lengths L, and L, of the turbulent excitations

in both directions will be introduced in the next section. They are formally given by:

{Lx =U [o.w
(4.21)

L =U/jaw

where UU_ is the convection velocity and (o, ¢ ) are empirical constants. They represent
¢ y X ) p y P

the spatial decay in both directions due to the changes of the pressure eddy patterns when
they are convected from one point to another.
Hence, Davies suggests a lower limit @, of the frequency for which the excitation

cross-coupling terms can be neglected:

If w>>m,, then ¥ (w)<< ¥ (@) YV{mn)#(p,q)

MR

(4.22)
where: @, = Max(U, /e,a.U, [c,b)

Let us notice that, even if there exist a strong coupling between the modes by the
forcing field below this frequency, the excitation cross-coupling terms may stll be
neglected if the resonance frequencies are widely separated as it is the case for the lightly
damped structures. However, this point is rigorously true at the first resonance or for a
third-octave analysis over a frequency band with a low modal density, mainly influenced
by the levels at the peak resonance. Otherwise, it has to be checked with attention on each
special case before performing a diagonal simplification for the excitation.

Having pointed out for which values of the physical parameters can be neglected
the acoustic or the excitation coupling between the modes, reduced expressions for the
spectral densities of the displacement, the radiated pressure field and the power quantities
can then be derived.

4.2.3 The diagonal approximation

We first aim to compute the spectral densities (3.7, 3.9, 3.14) within a frequency
range over which the acoustic coupling can be neglected. On substituting the modal series
(4.1) with the explicit coefficient (4.14) into the cross-power spectrum of the
displacement (3.7), the cross-spectrum of the plate displacement becomes:

| Eoos¥i(me,, xo,x)
) = s = it vVix,x)eZxX (423
S“’W(X’x ’ a)) (271.)2 2222 D (a))D* (a)) 4 (X X )E X ( )

m=1 n=1 p=1 g=1 mn Py
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An expression similar to (4.23) for the cross-spectrum of the acoustic pressure
fields radiated in both domains Q7 is easily obtained when substituting the modal series
(4.5) into the formula (3.9). With a wavenumber representation of the pressure fields, it is
found;

, WPl E B E S P07, (@), (@) D, (X) D), (X))
S, (XX ;m)=—(2’7’r-)2—2222 SRSTIAS z (4.24)
m=l n=1 p=1 4=l mn Py

or, with a spatial representation of the pressure fields:

b i e PP -
”“XXw*Yz)mM1wrl%£$£mMﬂ?“xXﬂ@““hd J
. (4.25)
x[” GEx -x") D, (x") d*x J
In the case of far-field pressure, (4.25) simpzlifies into:
plo’ P LAY
S X = 00T T
—~ - - YMw
22220 (g)(D:q(w) (3:26)

xSmn(k sinf, cosQ,,k, sinf,sin@,)
" (k. sin 6, cos@, k. sinf, sing,)

PCI

sin@, sing_,|x| cos®,) in the rectangular

in which x is described by (x| sin8, cosg,,

co-ordinate system of the plate (0,x,y,z) and by {x],0,,¢,) in the associated spherical
co-ordinate system. The corresponding co-ordinates of x* are then easily deduced.

Quantities of interest are the spectra of the powers defined by (3.15). Under the
acoustic diagonal approximation, the expressions (4.17) simplify into:

NES DX g
(a)) leH ( )
;; Dmn( )|
58 RZmn @)

Cop+ mnmn
S . = , 4.27
(@)= 22 D] () (4.27)
S,(w)= Y ().
@323 (Dm< ]

The radiation efficiency o(@) of the plate has been defined at the end of the
previous section (3.16) and has been expressed in terms of both the radiated acoustic
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power Sy () and the kinetic energy S (@) . Thus, a simplified expression of o(@) can

also be deduced.
Let us notice that further simplifications can be obtained for the cross-spectra of
both the displacement (4.23) and the radiated pressure fields (4.24-26) if, moreover, we

" () for (m,n)#(p,q), i.e. the excitation cross-coupling between the modes.

ML

neglect ¥

However, no further simplifications will appear if we apply this hypothesis to the power
spectra (4.27).
Hence, the cross-power spectrum of the displacement (4.23) reduces to:

(4.28)

: I QY (@), P, (x)
. < _ mn n fiill
W (X X a)) (271')2 mzlg |Dmﬂ (a))|2

The cross-power spectrum (4.24) for the acoustic pressure fields radiated in
QF simplifies into:

+ 2 * ’
Py § § T @) Zp (@) @,,(0) @}, (x)
Pepy (271;)2

S (xxiw)= 3
m=1 n=1 |Dmn (CU)|

(4.29)

4.2.4 Methodology for the choice of the useful eigenmodes

The modal excitation terms 2 (@), defined by (4.19), appear in the expressions
(4.23-26). They correspond to the projection of the excitation field on the eigenmodes.
The self-modal excitation terms ¥ (w) of the first structural modes of the plate have

mn

been plotted on Figures 4.1 and 4.2. At a given frequency, the contribution of a mode to
the panel response is all the more important that the modal excitation term is high. This
will occur, in the wavenumber domain, for frequencies for which the maximum peak of
the modal shape function nearly coincides with the convection peak of the turbulent
pressure field (hydrodynamic coincidence effect). Hence, for each frequency, we can
deduce from the plots 4.1 and 4.2 the number of modes that will contribute significantly
in the modal representation of the solution because the choice of the eigenmodes to be
accounted for is governed by the bandwidth of the excitation.

Indeed, it is a priori obvious that the useful eigenmodes are those which are
necessary for an accurate expansion of the excitation, i.e. of the function S5, (X;@), an

expansion of which is given, under the diagonal approximation, by:

4oo  Foo

SI’1>Pb (X’ w) = 2 Z \y:: (a))|q)mn (X)|2 (430)

m=1 n=l

The eigenmodes which have a negligible contribution in the excitation
representation (4.30) will have a negligible contribution in the system response (4.23-29).
This property provides a methodology for the choice of the useful eigenmodes to be
accounted for since the expansion (4.30) is easy to compute once a model has been
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chosen for the excitation. Let us note that this methodology can be applied whatever the
nature of the excitation.

For the panel of interest (described at section 6), all the modes up to order 7 and
11 respectively in the spanwise and streamwise directions were required to describe with
a good accuracy the power spectral density of the displacement of the plate. It can be
verified on Figures 4.3 and 4.4. The figure 4.3 represents the power spectral density of
the kinetic energy of the panel when increasing the number of structural modes accounted
for. The figure 4.4 compares, for an increasing number of modes, the evolution of the
normalised quantities corresponding to the panel kinetic energy and to the excitation
pressure field. These quantities have been normalised in order to provide the same scale
[0,1] for the comparison.

First, we notice that the modal expansion for the power spectral density of the
plate kinetic energy is a convergent series (Figs. 4.3-4.4). Second, below the convergence
limit, increasing streamwise mode numbers has a significant effect on the spectrum levels
over a wide frequency range whereas increasing spanwise mode numbers has a reduced
effect (Fig. 4.3). This can be understood through the Figure 4.2. Third, the Figure 4.4
confirms our methodology for the choice of the useful eigenmodes. The discontinuities
for the convergence curves are only due to our choice for “ordering” the modal numbers.

4,3 Conclusions

The first conclusion which can be drawn is that when the plate is excited by a
turbulent boundary layer, the sound power radiated by the plate above the frequency o,
can be expressed as a sum of uncorrelated structural modes. This is an important
statement for active control, since we are certain to reduce the sound power radiated by
the plate if we manage to reduce the amplitude of any structural mode provided the
amplitudes of the other structural modes are not affected. A priori, this would not be the
case for a general harmonic excitation.

A second conclusion can be formulated from the expression of Sni(co) that 1s

given in the set of equation (4.27). It can then be seen that the contribution of a given
mode (#,n) to the sound power radiated depends on several conditions:

2
- whether it is resonant or not ({D_, (a) )’ minimum, if resonant);

- whether it is highly excited or not (V"' (@) maximum at the hydrodynamic

biits

coincidence);
- whether it radiates efficiently (‘R(annmn(w) / pici) asymptotes to one when the
frequency is above the acoustic coincidence frequency (Fig. 6.11)) or not.

Because of these competing effects, it is a priori difficult to determine which kind
of mode will be preponderant in the system response: resonant and highly excited but
inefficient modes or resonant and efficient, but weakly excited by the turbulent field. To
answer this question, a detailed study of the modal distribution of the structure together
with the behaviour of the wall-pressure ficld both in the convective and in the
subconvective region are required. This latter point will be discussed in section 6.
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5. MODELS FOR TURBULENT WALL-PRESSURE FLUCTUATIONS

Numerical predictions (Direct Numerical Simulations) of TBL pressure
fluctuations are limited to low Reynolds number simple flows and, in any other case one
has to rely on semi-empirical models fitted to experimental data. A large number of these
models have been developed to describe the wall-pressure fluctuations on a rigid plane
wall due to a turbulent boundary layer. A comprehensive review of the most classical
models may be found in [20]. In the following, we mainly focus our attention on Corcos
and Chase models. But, as a prelude to this discussion, some general comments are made
about the “typical evolution” of the wavenumber-frequency power spectrum of the wall-
pressure fluctuations on a rigid surface. The thin curve in Figure 5.1, which corresponds
to the Chase model for compressible fluids as explained below, is characterised by two
main peaks:

¢ The higher peak, corresponding to the convective ridge, occurs for
streamwise wavenumbers of order @/U, , where U, is the eddy convection velocity, and

for spanwise wavenumbers k. near 0. It separates the low-wavenumber region
(k,U. /o < 1) from the high-wavenumber region (k.U /@ >1).
¢ The second peak, not described by the Corcos model, is located in the

low-wavenumber region for a modulus of k= (k,,k,) near the acoustic wavenumber

k, =w/c, . When k tends to 0, the power spectrum becomes a wavenumber-white
spectrum, about 40 dB lower than the level at the convective peak.

5.1 The Corcos model

5.1.1 Formulation in the space-frequency domain

One of the first model has been introduced by Corcos [43] to discuss problems of
spatial resolution for pressure transducers at high frequency. First, Corcos assumes that

the cross-correlation function of the wall-pressure fluctuations can be expressed in a
separable form:

S, (€, 0) =) C(E,;0) C,(E,; @) 5.1)

where £ =x—x" and & =y-y denote the spanwise and the streamwise distance
coordinates, respectively along the x and y directions. ®,(®) is the point-power

spectrum defined as:
1 footeo
o) = G L LS”"”” (k. ks 0)dk,dk,

where §, (kx,k_‘,;a)) is the spatial Fourier transform of S, (c‘,‘_r, },;a)) and has been

defined in (3.2.a).
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Different non-dimensional models of the point-power spectrum @ (@) are plotted in
Figure 5.2. For which the Chase model (dash-dotted) is given by:

D, (@) =a,(1+7)p3U; o™

where p, is the mass density of the flow. The values of the constants are: a, = 0.766,
y = 0.389. The friction velocity U, is simply related to the free-stream speed U_ of the
fluid flow by U_ = 0.03U_ . More sophisticated expressions are provided in the literature

for larger band expressions [32,44]. We have noticed that the semi-empirical model (bold
line in Fig. 5.2) proposed by Cousin [45] achieved an excellent fit with measured data.
Nevertheless, we have chosen for the simulations presented in section 6 the Efimtsov
model (thin line in Fig. 5.2) valid up to high Reynolds number (U/_ = 306 m/s) and given

[27] as a function of the Strouhal number Sk = wd/U_ by:

7.0 00lx T
(DO ((1)) =X TN UT = |
U, (1+0.0251™") p.

where § is the boundary layer thickness and 7, is the mean wall shear stress. We notice
[46] that the point-power spectrum not only depends on U/_ via the Strouhal number, but
also via ¢ and 7, (Fig. 6.10).

At this step, the unknown spanwise and streamwise correlation functions C, and
C, are to be determined from experimental data and are approximated, in terms of their
corresponding coherence lengths L =U /o, and L, =U, /e @, by an exponential

behaviour, as follows:

c) = o Fel@ &/
{ CGm=e 52)

C (6 . CU) — e‘a_\-lw‘ix-/%f e-jwé‘./U‘.
A

where ¢, and ¢« are constants derived from experiments. Various values for these
constants are reported in the literature, but most authors [20,46] provide values of o,
scattering around 0.1-0.3 and o, =~ 7 . It is clear that the most reliable values for o,
and ¢, can only be derived from the most extensive series of measurements on aircraft
boundary layers. For this reason we have chosen those values suggested by Blake (&, =
0.1 and o _=0.7) [46].

In the expression (5.2} for the correlation functions, the eddy convection velocity
U_is introduced. U, is usually expressed in terms of the free-stream velocity U through

the ratio U, /U_ which depends, a priori, on the angular frequency @ and on the

streamwise distance co-ordinate & . Indeed, measurements [47] have shown that:
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¢ For all & fixed, the convection velocity decreases slightly with
frequency. It means that the convection velocity of larger eddies, associated with the low-
frequency domain and developed near the free-stream, is higher than the smaller eddies,
corresponding to the high-frequency domain and developed near the wall. This drop in
the velocity profile when the distance to the wall tends to zero is due to the fact that, for a
turbulent flow, the convection velocity of the smaller eddies is more and more restrained
by the fluid viscosity when approaching the wall.

¢ For a fixed frequency, the ratio U, /U_ increases as & increases. It is

explained by the fact that, if we increase the spacing between two pressure transducers
measuring the convection velocity, we will increase the filtering effect on the
contribution of the smaller eddy structures since they will vanish rapidly. We will then
measure a convection velocity mainly governed by large eddies which are convected at a
greater speed than smaller structures.

Nevertheless, there is not a great scattering for the values of the ratio U /U

which is usually found to be between 0.7 and 0.8. In this report, the convection velocity
U. is taken to be equal to 0.7U .

5.1.2 Formulation in the wavenumber-frequency domain

If we take the spatial-Fourier transform of the expression (5.1), we obtain the
Corcos wavenumber-frequency power spectrum, expressed as follows:

., - (Uk.
S, (k;co)=<D0(aJ)(U“] q(kax]c\( ] (5.3)
b W ) U w

with:

The wavenumber-frequency power spectrum given by (5.3) is plotted in Figure
5.1 (bold). By comparisons with measurements, Blake [46] has shown that the Corcos
model provided a good estimate of the power spectrum of flow-noise near the convective
ridge. This model is particularly useful for high flow speeds applications like aircraft
boundary layers since, in this case, the convective wavenumber @/U, nearly coincides

with the first modal wavenumbers of the plate. This is the hydrodynamic coincidence
effect. An accurate modelling of the convective domain will be required for aeronautical
applications because it will mainly contribute to the excitation of the radiating supersonic
components of the panel.
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The second advantage of the Corcos model, as it will be shown below, is that it is
simple enough to provide closed-form analytical expressions for the modal excitation

term W (w) either in the space-frequency domain [17,18] or in the wavenumber-

frequency domain [10]. Thus, extensive parametric studies can easily be handled over a
wide frequency range without a lot of computational effort.

5.1.3 Limitations of the Corcos model

The major limitations of the Corcos model are the following:
+ First, it is assumed that the coherence lengths L, and L, do not depend

on the boundary layer displacement thickness & , which is only true for small values of
the separation coordinates &, and &,. On the other cases, the Corcos model

underestimates dramatically the width of the convective peak and &" -corrections for
streamwise and spanwise correlation lengths must be taken into account. For this

purpose, empirical expressions for L (6 ") and L, (67) have been proposed by Efimtsov

[27] for different ranges of Mach numbers.

¢ Second, the Corcos model presents a white low-wavenumber behaviour
and, thus, fails to exhibit the theoretically required [k|® dependency when [k|<<1/8"
(the Phillips-Kraichnan theorem). However, instcad of proposing a new theoretical
formulation including this property and leading to new unknown constants, Hwang et al.
[21] have modified the empirical Corcos model so as to satisfy the [k|* constraint
(together with an integral normalisation condition). Although the Corcos model has thus
been improved, it always suffers from its lack of dependence on the boundary layer
thickness, for which the similarity variable is given by the Strouhal number Sk .

¢ The last inconvenient for the Corcos model is closely related to the
previous one: it concerns the overestimation of the low-wavenumber levels for the power
spectrum which, then, exhibits a white wavenumber spectrum from 20 to 40 dB above the
measured spectrum in the subconvective region down to the compressible (or acoustic)
domain (see Figure 5.1). Unfortunately, in most low Mach number applications, such as
underwater acoustics, for which the structural wavenumbers are usually much lower than
the convective wavenumber, large eddy scales of turbulence contribute as a major part to
the vibro-acoustic response of the structure and, hence, require a more rigorous model
than the Corcos description for the low-wavenumber region.

5.2 The Chase model

In 1980, Chase derived a theoretical model for an incompressible fluid [44],
introducing new parameters which would enable, if suitably chosen, the correct
prediction of levels for the wall-pressure fluctuations spectrum in the low-wavenumber

frequency domain (@/c, <k, <@/U,) (see Figure 5.1, dash-dotted). Moreover, the jk!’

dependency of the spectral density is taken into account in this model when {kj << /6.

For this purpose, in 1987, Chase reformulated his model [32] to include the effect
of compressibility and, thus, to describe spectral elements of the flow noise down to and
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near the acoustic wavenumber (see Figure 5.1, thin). The Chase wavenumber-frequency
power spectrum is given as follows:

Sphpb (k; w) = S.;:.:Pb (k; a)) + S.:’.’:pb (k; a)) (5 '4)
where S, represents the contribution of the mean-shear to the wall-pressure
fluctuations spectrum:

" C,pivaky
S Pals (k. k;-; W)= > * 2
(- kU.) , 1
ol L B aapety:
( mv*) (bma )

and S'  concerns the contribution of the pure turbulence to the wall-pressure

Puity

fluctuations spectrum:

Cplvl k|2

S:"b."h (k* ’ k\’ O)) = 512
(CO - kac) 2 1

o K+

(hv.) (58 )2

The parameters recommended by Chase are:

C, =3na,/2nh, C,=(C +r,)/n.
h,=u,U jv., h=pU/ v,
r,=0389, r, =061l
a, =0.766, u, =p, =0.176,
b, =0.756, b, =0378.

Blake [46] has shown that both semi-theoretical formulations proposed by Chase
reasonably agreed with measured data within a wide range of subconvective

wavenumbers down to k, = 0.4/8" .

The main limitations of the Chase model are discussed below. However, for the
purposes of this report, these are minor limitations:
¢ First, the Strouhal number dependency of the power spectrum has been
recently contested by Witting [48] and is not yet clearly established.
¢ Secondly, the Chase model does not take into account the spectral
elements of the flow noise with a supersonic speed (k, < @/c. ), whose behaviour is

dominated by compressible effects. This last point is of particular interest when studying
the acoustic contamination of an incoming signal by the sound generated by supersonic
turbulent structures in marine applications.
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5.3 Choice of the excitation model

In summary, the Chase and Corcos models are complementary. The Corcos
power spectrum of the excitation provides a good estimation for the levels of the wall-
pressure fluctuations near and at the convective peak which is of fundamental importance
for aircraft boundary layers. On the other hand, the Chase power spectrum agrees
reasonably well with experimental data for the subconvective domain down to the
acoustic wavenumber. It is therefore more suitable for low-speed flow applications where
the strongest flow-structure interaction occurs in the low-wavenumber region. For the
case considered in section 6, with a Mach number of 0.7, it is thus the Corcos model
which is the most suitable.

32



6. RESULTS FOR THE PREDICTION AND THE CONTROL OF THE VIBRO-
ACOUSTIC RESPONSE OF A TBL-EXCITED PANEL

In this section, simulation results are presented for the response of an aircraft
panel to the excitation by a turbulent boundary layer. We will first give some general
comments about the main hypothesis underlying our simplified model. In a second part,
we will examine the influence of the main physical parameters on the vibro-acoustic
response of a TBL-excited plate: the structural dissipation, the hydrodynamic coincidence
effects and the radiation efficiency, as it has been pointed out at the end of section 4. In a
third part, comparisons will be presented between numerical predictions and
experimental results. In a final part, a suitable strategy will be discussed for the active
structural acoustic control of the sound power transmitted through an aircraft panel.

For a typical aircraft panel and otherwise stated, the geometrical and mechanical
parameters are given in the Table 6.1.

Table 6.1 Geometrical and physical parameters for a typical aircraft panel

Parameters Value
Free-stream velocity U,=225m/s
Convection velocity U =070,
Boundary layer thickness 6=01m
Panel thickness h=0.00l m
Panel Young’s modulus E=724%10" Pa
Panel longitudinal tension N, =29300N/m
Panel lateral tension N, =62100N/m
Panel Poisson’s ratio v=033
Panel mass density p,=2800kg/ m?
¢ =001
Panel damping ratio or ¢ =0.05
Panel dimensions a=0414m, b=0314m
Sound speed in fluid External fluid:c, =300m/s
Internal fluid:c_ =340 m/s
Fluid density External: p, = 044 kg/m’
Internal : p_ =142kg/ m’

6.1. General considerations

The eigenfrequencies of the flat panel without membrane effects are given in the
Table 6.2 (third column), together with the corresponding critical frequencies (sixth
column), for which the structural wavelength equals to the acoustic wavelength. In the
fourth column, the eigenfrequencies of the aircraft panel described by the parameters
given in Table 6.1, i.e. the flat tensioned plate, have been reported and the fifth column
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shows the eigenfrequencies of a panel with transverse curvature, such as that due to the
cylindrical geometry of the fuselage in the spanwise direction.

Table 6.2. Resonance and critical frequencies of the panel

m n Son (Hz) fom (H2) fom (H2) For (Hz)
Flat panel In-plane tensions  Curved +in-plane  Flat panel
1 1 38.7 270.2 3079 679.5
1 2 80.9 351.9 451.0 983.6
2 1 112.2 502.8 505.3 1158.0
l 3 [51.4 465.3 575.8 1345.6
2 2 154.5 556.6 575.9 1359.0
2 3 225.0 642.6 681.9 1640.1
3 1 2347 759.3 759.6 1675.3
1 4 250.1 602.5 704.4 1729.4
3 2 277.1 802.5 806.6 1820.0
2 4 323.7 757.6 808.4 1967.3
3 3 3477 874.2 886.6 2038.5
1 5 377.0 761.6 850.4 21233
4 1 406.3 1039.3 1039.4 2204.2
3 4 446.3 974.4 995.7 2309.9
4 2 448.6 1078.1 1079.2 2316.1
4 3 519.2 1143.1 1147.4 2491.4
1 6 532.2 942.8 1018.8 2522.6

6.1.1. Effect of membrane stresses on the sound power radiated

The influence of in-plane tension on the sound transmission through the panel has
also been considered. Figure 6.1 shows the result of a calculation for the internal sound
power radiated from a flat untensioned panel subject to a TBL excitation, as well as that
calculated taking into account the influence of membrane stresses due to the cabin
pressurisation, for the typical parameters given in Table 6.1. According to the Table 6.2,
these membrane tensions lead to an increase of the fundamental eigenfrequency of the
panel by a factor of about 7. Moreover, the order of the corresponding eigenfrequencies
for the individual modal values (m,n) associated with each structural mode are modified.

The corresponding mode shapes are, however, still the same as the untensioned plate.
Hence, it is clear that we cannot neglect the influence if the in-plane tension even in a

simplified model.

6.1.2 Effect of circumferential curvature on the panel structural properties

The first eigenfrequencies of the curved aircraft panel are reported in the Table
6.2 and have been obtained from analytical approximations given by Blevins [49]. We

have used a typical circumferential radius of 2 m [12]. It can be seen that the curvature
raises the natural frequencies of a curved panel above that of an analogous flat plate of a
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factor of up to about 1.3, but in a non-uniform way. Indeed, it can be noticed, as
expected, that the eigenfrequencies that are weakly raised (less than 1%) are only those
associated to the very first modal order in the streamwise axial direction. Hence, the
influence of curvature on the structural properties of an aircraft panel appears negligible
when compared with the influence of cabin pressurisation. Other investigations have been
carried out to determine the effect of panel curvature on the sound field inwardly radiated
[13] (discussed in section 1) as well as on the wall-pressure fluctuations {50].

6.1.3 Verification of the main simplifications
6.1.3.a Neglection of the cross-excitation terms

In Figures 6.2 and 6.3, a comparison is shown of the prediction of the power
spectral density of the displacement of an aircraft panel between the full solution given
by the expression (4.22) and the approximate one given by the expression (4.27), which
is obtained by neglecting the cross modal excitation terms with respect to the diagonal
terms. It is clearly seen that, for moderate values of the structural damping (¢ = 0.01,
Fig. 6.2), the cross-modal excitation terms can be neglected to predict the vibrating
response of the turbulent excited plate over the frequency range of interest. Indeed, the
geometrical criteria (4.21), proposed by Davies [17], suggests a critical value
corresponding to the frequency above which the coherence lengths of the turbulent
forcing field L, =U, /o, and L =U,/x @ are respectively “negligible” with respect
to the size b and a of the plate (Eq. 4.22), which in our case is above 290 Hz. However,
for the characteristics of our problem, the cross-coupling terms can also be neglected
below 290 Hz because there is not a great modal overlap in this frequency range.

The situation is somewhat different concerning the case when ¢ = 0.05 (Fig. 6.3),
where we account for the damping effect of a trimmed panel: neglecting the excitation
cross-coupling leads to an overestimation of the levels of the structure response over the
whole frequency range.

It seems that, for highly damped structures, a mechanical counterpart of the
geometrical criteria (Eq. 4.22) should be formulated, accounting for the structural
properties of the plate, as follows: find the frequency range and the structural parameter
region for which

Y () W (@)
ma _ << mn v m,n) =\ p.g)
Dnm (a))DM (a)) ;Dmn (w)!z ( ( )

Such a criterion needs to be more thoroughly analysed. It will not affect the main
physical trends we are going to point out, however, because, in the following we will
consider the full solution for the case when ¢ = 0.05.

6.1.3.b Neglection of the radiation damping effects

In Figures 6.4 and 6.5 the sound power inwardly radiated by the panel has been
plotted for ¢ = 0.01 and ¢ =0.05, with or without the radiation damping terms which
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appear in expression (4.14) for the frequency response D, (@) of mode (m,n). First,

only the levels at the very first resonance are modified by the radiation damping terms:
they decrease when the higher damping ratio is used. The effect is dramatically
diminished with increasing frequency and structural damping. This is due to the fact that,
in these cases, the radiation damping effect becomes less and less important with respect
to the structural damping effect. Thus, we will neglect the radiation damping effect in the
following analysis for both ¢ =0.01 and ¢ =0.05.

6.2. Effects of the mechanical and/or geometrical parameters on the vibro-acoustic
response of the panel.

6.2.1 Effects of the structural damping

¢ In Figures 6.6 and 6.7, power quantities involved in the balance energy
equation (3.14) are shown for ¢ =0.001 and ¢ =0.05. First, we notice that, in all cases,
only a small fraction of the power input by the TBL contributes to the radiated sound
power, most of the boundary layer input power being either dissipated within the
structure or transmitted through the boundaries. Second, this effect becomes more
significant with increasing frequency, since the radiation damping decreases with
frequency so that, above 1 kHz (Fig. 6.6), the structural dissipation becomes the
dominant effect. Third, this effect is obviously accentuated for ¢ = 0.05 (Tig. 6.7) with a

significantly higher structural damping.

¢ In Figure 6.8, the effect of changing the structural damping ratio from 1% to
5% has been considered on the sound power inwardly radiated by the aircraft panel. As
expected, it is the levels at the resonant peaks that are mainly affected and a reduction of
about 10 dB has been achieved in the overall total sound power radiated by increasing the
structural damping from 1% to 5%. Moreover, we notice that the influence of the
structural damping increases with frequency. Hence, the accurate prediction of the panel
response will require a more precise model of structural dissipation as the analysis
frequency increases. Although the increase in damping ratio shown in Fig. 6.8 has a
beneficial influence on the sound power radiated, further increases in the damping ratio
(Fig. 6.9) for highly dissipative panels do not seem to affect the radiated sound power
levels to the same degree [16].

6.2.2 Effects of hydrodynamic coincidence

¢ A straightforward influence of the flow velocity on the panel response is that
the levels of sound power inwardly radiated by the plate increase over the whole
frequency range with the flow speed, i.e. the aircraft speed, because of the influence of
the convection velocity on the point power spectrum @ (@) (Fig. 6.10). However, if the
“poundary layer growth” along the flow direction is accounted for as in the Efimtsov
model, this evolution is not uniform over a broad frequency range: the radiated sound

power scales onto U’ in the low-frequency domain whereas it scales onto ;" for

higher frequencies.
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+ A more subtle effect due to flow velocity has been pointed out in Figure 6.11,
where we have plotted the evolution, for three values of the flow velocity, of the sound
power inwardly radiated by the panel and scaled onto independent parameters of the
turbulent flow so that the effect of the term ®,(w) no longer appears. It can be seen that

the bandwidth within which the radiated energy is concentrated increases slightly with
flow velocity. This is not due to the increase of the bandwidth of the turbulent excitation
as, up to 2 kHz, the spectrum of the pressure fluctuations can be considered as essentially
flat (Fig. 6.10). The explanation lies in the hydrodynamic coincidence effect that occurs
when the phase velocity of the excitation (@/k ) matches the flexural phase velocity

(w/A) where 4 is the flexural wave number and is defined by Eq. (4.15). In other words,

it appears when the convective scale of the turbulent excitation, where the main
fluctuating energy lays, coincides with the scale of a structural mode.

This phenomenon can be clearly understood from Figure 6.12. the eigen-
frequencies associated with the first structural modes of the panel are plotted in terms of
the streamwise mode number #n for different spanwise mode numbers m1 together with the
hydrodynamic matching lines /U, = nzx/a for the three Mach numbers considered in

Fig. 6.11. The structural modes located in the neighbourhood of the matching lines will
be highly excited by the TBL: this is what we observe in Fig. 6.11 where, as the flow
velocity increases, the higher order modes are more and more excited since they are
closer to the hydrodynamic line. As illustrated in Fig. 6.12, the low order modes are less
sensitive to changing in the flow velocity.

Finally, it appears that in our configuration and for high-speed subsonic flows,
hydrodynamic coincidence exists up to 1-1.5 kHz. It is thus the convective peak of the
wall-pressure wavenumber-frequency spectrum that determines the levels of sound
radiated over this frequency range. This clearly justifies our choice of a wall-pressure
model that gives correct levels in the convective region.

6.2.3 Modal radiation properties

¢ The third major effect which governs the amplitudes of the resonant peaks for
the sound radiated concerns the radiation efficiency of each structural mode. From Table
6.2, it is clear that most of the modes which contribute to the response of the system are
inefficient radiators at their resonant frequencies. This means that, below their critical
frequency, these modes have large differences in their contribution to the far-field
radiated pressure, the less efficient modes being the even-even modes (Fig. 6.13). Above
their critical frequency, however, these modes radiate sound independently, with an
efficiency that asymptotes to one for all modes (Fig. 6.13). For instance, we notice in
Figure 6.1 that, below 500 Hz for the untensioned panel, the resonant modes with the
highest contribution to the sound power radiated are odd-odd inefficient modes.
However, the (2,2) mode that does not contribute to the sound power radiated by the
untensioned panel at its natural frequency of 154 Hz, because it is so inefficient, begins to
radiate efficiently when the panel is tensioned and its natural frequency is raised to 556
Hz. This evolution is clearly illustrated in Fig. 6.13 where ka =12 at the resonant
frequency of the (2,2) mode for the untensioned plate and ka =43 at the resonant
frequency of this mode for the tensioned plate.
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In order to plot the radiation efficiency of each structural mode as a function of
frequency, we must compute the real part of the modal impedance integrals (4.12), also
named the radiation resistance. Although analytical approximations have been derived for
this quantity [39,41,51], we have used a numerical approach, based upon the Clenshaw-
Curtis adaptive quadrature [52].

¢ An important point is that the sound field radiated by any structural mode
couples with any other structural mode, as illustrated by the thin curve in Fig. 6.13. This

means that a priori the cross-terms of the radiation matrix ‘J{(Z;‘:) are not zero-valued.

However, as presented by Elliott et al. [9], it is possible to define a new basis for the
solution that diagonalize ER(ZE) It is relevant that the corresponding frequency-

dependent eigenvectors or radiation modes do not depend on the mechanical properties
of the plate. Mathematical details about their construction are given in appendix B. The
radiation efficiencies of the radiation modes are proportional to the eigenvalues of the
radiation matrix. The radiation efficiencies of the first four radiation modes are plotted in
Fig. 6.14 as a function of normalised frequency. The mode shapes of the first six
radiation modes are plotted in Fig. 6.15 for two excitation frequencies: 250 Hz and 1000
Hz, which correspond to ka =19 and ka=76.

We notice that the first radiation mode can be considered as a piston-like mode up
to 600 Hz and its amplitude can thus be approximated by the volumetric contribution of
the structure velocity. This uniform shape is slowly transformed into a “dome” shape for
larger values of ka.

By definition, there are no cross-dependent terms and the radiation modes radiate
sound independently. Using this new set of basis functions, the sound power radiated by
the plate can thus be seen as the sum of independent contributions due to each radiation
mode. This means that the sound pressure radiated by the plate vibrating with a surface
velocity proportional to one of the radiation modes will not reexcite the other (radiation)
modes. As we have noticed, this is not the case with the structural modes since the sound
power radiated by each structural mode is partially reabsorbed by the other (structural)
modes.

+ At this stage, an important conclusion for control strategies can be drawn: we
are certain to reduce the total sound power radiated by the plate if we manage to reduce
the amplitude of any radiation mode. Previous studies have, however, shown that under a
general harmonic excitation, reducing the amplitude of a structural mode does not
necessarily guarantee a decrease in the sound power radiated. Nevertheless, when the
plate is excited by a TBL, the sound power radiated by the plate can be expressed as a
sum of uncorrelated structural modes (section 4). In contrast to harmonic excitation,
reducing the amplitude of any structural mode should guarantee an attenuation of the
sound power radiated while also reducing the vibration or near-field pressure levels
provided the amplitudes of the other structural modes have not been affected. This
conclusjon will be checked in section 6.4.

6.3 Comparisons with experimental results

In this section, the predictions from the current model will be compared with
experimental results obtained in the anechoic wind-tunnel of the LMFA (Ecole Centrale
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de Lyon, France) for the vibration of a flat plate excited by a turbulent boundary layer
[18].

A thin (Imm thick) rectangular untensioned plate made of stainless steel is
clamped on the rigid wall of a wind-tunnel test section. Although the measurements have
been realised for a fluid velocity varying from 40 m/s to 130 m/s, we will only present the
results obtained for the highest flow speed. Indeed, the use of a Corcos-like model to
describe the turbulent excitation is relevant to predict the structure response only when
the hydrodynamic coincidence effect occurs and this effect is all the more preponderant
over a broader bandwidth that the flow velocity is high (par. 6.2.2).

The plate is flush-mounted far downstream from a rectangular pipe inlet in order =~

to achieve conditions of homogeneity and stationarity for the airflow when developped
over one side of the plate. The anechoic tunnel has been designed to prevent the effects of
acoustic contamination from the centrifugal blower and the ambient noise. Nevertheless,
the wall-pressure fluctuations usually exhibit an undesirable acoustic component apart
from the turbulent component below 200 Hz: this is due to the contribution of
longitudinal acoustic modes that are excited in the pipe between the inlet and the outlet.
Signal processing methods have been reported to cancel the acoustic component from the
power spectral density of the wall-pressure fluctuations like the temporal substraction
method [53] and the coherent output technique [54]. They are all based on the principle
that the acoustic field is more coherent than the turbulent field in the spanwise direction.
We have to keep in mind that no noise cancellation techniques have been applied for the
measurements herein presented and could lead, to a certain extent, to inaccuracies as for
the measurements below 200 Hz. -

The plate acceleration is measured by very light Brugl and Kjaer accelerometers
attached to the structure. As the surface mass of the plate is high (7.8 kg/m?), the added
mass effect introduced by the accelerometers can be neglected. The geometrical and
mechanical characteristics of the system under study are summarised in the Table 6.3.

Table 6.3. Physical characteristics of the TBL-excited panel

Panel parameters Flow parameters
Dimensions : Boundary layer thickness :
axbhxh=030x0.15%0.001m’ 6=0.03m
Mass density : Mass density :
p,=7800kg/ m’ p,=p_=13kg/m’
Young’s modulus : Sound speed :
E =221GPa c,=c =340m/s
Modal damping ratio : Free stream velocity :
¢ =0.005 U,=130m/s
Poisson’s ratio :
v =103

In the Table 6.4, the first successive measured modal frequencies of the plate are
compared with those calculated from analytical approximations [37] for two values of the
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Young’s modulus. Because of uncertainties concerning the bending rigidity of the
structure, we have first computed the eigenfrequencies of the plate from an estimated
value of the Young’s modulus for steel material: E =221GPa (Table 6.4, middle

column). We notice that the predicted eigenfrequencies are greater than the measured
one. This shift can be corrected by adjusting the Young’s modulus in our medel in order

to get the best fit with the experimental data. This leads to E=200GPa and the

corresponding eigenfrequencies are given in the right column of Table 6.4. The measured
and predicted eigenfrequencies of the clamped plate then agree within a few percent, but
in practice may be due to tensioning.

Table 6.4. Experimental and theoretical eigenfrequencies of the clamped plate.

fow (H2) fom (HZ) S (HZ)

Measured Comp., E=221GPa  Comp., £ =200GPa
240. 280. 267.
340. 364. 346.
480. 512. 487.
700. 725. 695.
740. 313. 774.
880. 952. 906.
960. 999. 950.
1100. 1152. 1097.
1260. 1332. 1268.
1300. 1406. 1338.
1360. 1415. 1347.
1480. 1490. 1418.

In Fig. 6.16, we have plotted the measured and predicted (¢ = 0.005) power
spectral density of the plate velocity at the point Rl with coordinates x=0.08m and
y=0.16m, i.e. near the center of the plate. The numerical results (bold line) have been
obtained with the modal formulation detailed in section 4. The overall levels at the peaks
are correctly described by our model.

The differences concerning the position of the resonant peaks are mainly due to
the errors inherent to the measurements of the mechanical parameters of the plate. Some
small peaks have been detected and predicted above 800 Hz: they correspond to even-
even modes that poorly contribute to the vibrating response of the plate measured at a
centered point (R1).

Measurements have also been performed at another point R2 with coordinates
x=0.09m and y=0.27m, i.e. located near one corer of the plate. In this case, a larger
number of modes are observed (Fig. 6.17) and this is configuration is thus of more
interest in the assessment of our model. In fact, we have a better agreement with these
experimental data than with the previous one, not only concerning the overall levels, but
also when we compare the relative contribution of each peak to the vibrating response.
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In Fig. 6.16 and 6.17, the thin line of the top figure represents predictions
obtained with a Boundary Integral Equation Method developped in the CNRS-LMA
(Marseille, France) [35]: there is also a good agreement with the experimental data, but
the levels at the peaks tend to be overestimated for increasing modal orders. Although the
discrepancies have not been clearly identified, it has been shown that they could not be

explained by the influence of the flow velocity on the acoustic propagation in Q" since
this latter phenomenon involves a “damping” effect on the structure response, but to a
lesser extent.

It is important to notice that our simulations have been carried out within a few
seconds on a Pentium III processor. Such a low computational cost is a consequence of
the analytical model (Eq. 4.28) used to predict the velocity of the plate and simplified

under the diagonal approximation. Although the modal excitation term ‘"' of the

clamped panel chould have been numerically computed, we have kept the exact
analytical expression that has been derived in [41] for a simply-supported panel. Because
the mode shapes of a clamped panel only differ from the mode shapes of a simply-
supported panel in the vicinity of the plate boundaries, there is only a small difference
between the corresponding modal excitation terms as long as the first modes are
considered: our approximation is therefore justified.

A plot similar to Fig. 6.12 would have shown that, in this configuration, the
bandwidth of efficiently excited modes (because of the hydrodynamic coincidence)
extends up to 1000 Hz: this explains the flat evolution for the mean levels of the vibrating
response of the plate over this frequency range in Fig. 6.16 and 6.17.

6.4 Sound power attenuation: structural modes versus radiation modes cancellation

The reduction of the sound power radiated by the plate can be achieved either by
means of passive control techniques (modifying the properties of the radiating sources or
the transmitting paths) or by means of active secondary sources in order to cancel the
contribution due to the primary sources. In the following section, we will focus on the
second method of control, which is expected to be most efficient in the low-frequency
domain. Passive techniques show a poor efficiency over this frequency domain [56)
unless an unrealistic amount of insulating material is used.

In order to define a suitable control strategy, we first examine how the first
structural modes or radiation modes of the plate contribute to the vibro-acoustic response
by cancelling their participation in the modal expression (Eq. 4.27) for the sound power
radiated. Physically, it can be interpreted as an ideal case of feedback control in which a
matched actuator/sensor pair is designed with a sensitivity chosen to detect or control
each kind of mode [57].

Figures 6.18 to 6.23 show the effect of cancelling either the first few structural modes
or the first few radiation modes on the sound power radiated by the lightly-damped
tensioned panel (¢ = 0.01, Figs. 6.18 and 6.19; ¢ = 0.2, Figs. 6.20 and 6.21; ¢ = 0.0005,
Figs. 6.22 and 6.23). The attenuation achieved for the total sound power radiated up to 1
kHz by accounting for the cancellation of a limited number of the higher order structural
or radiation modes is summarised in Figure 6.24 (¢ = 0.01). Figures 6.25 and 6.26 show

the effect of increasing values of the damping ratio on the attenuation achieved for the
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total sound power radiated up to 1 kHz by accounting for the cancellation of a limited
number of the higher order structural or radiation modes.

From Figs. 6.18, 6.20 and 6.22, we verify that each structural mode contributes
independently to the sound power radiated by the TBL-excited panel. Although the
cancellation of any radiation modes ensures a reduction for the total sound power
radiated (Figs 6.19, 6.21 and 6.23), their contribution to the panel response is less
obvious. However, some general trends can be observed. Removing the contribution from
the piston-like radiation mode (dashed line) involves a reduction of the first resonant
peaks associated to the odd-odd structural modes {monopole contributions). Furthermore,
we can notice similar effects between the rocking modes and the first odd-even or even-
odd structural modes (dipole contributions), as well as between the quadrupole-type
mode and the first even-even structural modes. This suggests that the shapes of each
radiation modes can be expressed as a set of structural modes with suitable amplitudes
(see Appendix B and [59]).

From Fig. 6.24, it can be noted that approximately the same level of attenuation
(about 6.5 dB) is observed by cancelling the first radiation mode or structural mode of the
plate. When the higher order modes are cancelled, however, sound power reductions are
achieved more efficiently when suppressing the contribution of the radiation modes
compared with the structural modes. Indeed, cancelling the first three radiation modes
leads to 13 dB of attenuation whereas six structural modes must be cancelled in order to
achieve the same level of attenuation.

In Figs. 6.25 and 6.26, it can be seen that increasing the structural damping from
c=0.0005 to ¢=0.2 does not affect significantly the attenuation of the overall sound

power radiated after cancellation of the first structural or radiation mode. However, we
notice that, as expected, the performances of both strategies are degraded when
increasing the damping ratio, but only to a limited extent. This is related to the fact that
we have assumed in paragraph 4.2.1 a constant value for the modal damping ratio ¢

whatever the modal order.

7. CONCLUSIONS

A simple model has been developed for predicting both the displacement and the
acoustic radiation of a thin baffled plate, simply supported along its boundaries, stressed
by in-plane tensions and excited by a turbulent boundary layer. This simplified modelling
describes reasonably well the dynamic behaviour of the cylindrical part of an aircraft
fuselage as a network of adjacent panels excited by wall-pressure fluctuations under
subsonic cruise conditions and vibrating individually in the frequency range of interest
(up to [ kHz).

The spectral densities of the system response have been expressed, in the
wavenumber-frequency domain, in terms of the spectral density of the turbulent
excitation filtered by the transfer function of the plate, which is deduced from the plate
response to a harmonic excitation. This latter quantity being expanded in terms of the
plate eigenmodes, 2 modal analysis of the spectral densities has been performed and has
lead to a power balance equation between the turbulent, the dissipated and the radiated
power spectra. Physical criteria have been proposed to simplify these expressions. These
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approximations assume the excitation and the acoustic modal coupling to be neglected
over a defined frequency range. They have been checked a posteriori.

Parametric studies have pointed out the influence of the structural dissipation
together with the hydrodynamic coincidence on the sound power inwardly radiated by the
panel. First, increasing the structural damping reduces the levels of noise inwardly
radiated, but only to a limited extent. Second, increasing the flow velocity contributes
significantly to increasing the radiated sound power, but more subtle effects underlie this
phenomenon, t.e. the dominant contribution comes from the highly excited resonant
modes whose structural phase speed matches the turbulent convection velocity, also
called the hydrodynamical coincidence effect.

The important conclusion we have drawn is that the structural modes of each
panel radiate sound independently and a suitable strategy for the active structural acoustic
control of the sound power inwardly radiated by the panels would be independent
feedback control of each structural mode of each panel in the low-frequency domain. We
have shown (Fig. 6.20) that this strategy could provide attenuation of up to 13 dB with
six independent controllers.

As an alternative, a strategy based on the cancellation of the radiation modes has
also been investigated. We have noticed that cancelling the first structural mode or the
first radiation mode provides similar attenuation in the total sound power radiated up to 1
kHz. We have also noted that the cancellation of a limited number of the higher order
radiation modes was more efficient than the cancellation of the same number of structural
modes for the control of the sound power radiated by such panels.

Because perfectly matched sensors and actuators have been assumed in this paper,
the performance would not been degraded by any spillover effects. In practice, with
discrete actuators and sensors, these effects will always occur and degrade the results.
However, the object here was to derive the performance limitations due to the physical
properties of the TBL-excited panel, rather than a particular actuator-sensor arrangement,
and so the assumption of idealised matched transducers is justified.
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Figure 2.1 Geometry of the model, a flat panel inserted in an infinite baffle and excited on
one side by a turbulent airflow with the free-stream velocity U_.
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Figure 4.4 The normalised power spectra corresponding to the excitation pressure field (thin)
and the kinetic energy (bold) as a function of the total number of structural modes accounted
Jor in their modal expression.
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Figure 5.2 Different models for the turbulent boundary layer point power spectra DO, (w) in
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(8§=01m) and U_=225m/s; bold: Cousin model (semi-theoretical), dash-dotted:
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Figure 6.1 The sound power inwardly radiated by a tensioned plate (bold) and an
untensioned plate (thin); ¢ =0.01 and when excited by a TBL pressure field.

50



(m2)/Hz)

Power Spectral Density of the displacement {dB rel. 1
4
<
T
“
1

O 1 1 1 1 1 1 |
200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency (Hz)

Figure 6.2 Comparison between the full solution (bold) and the diagonal solution (thin) for
the power spectral density of the displacement of an daircraft panel (¢ = 0.01) at the point

(x,v) = (0.1,0.1).
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Figure 6.3 Comparison between the full solution (bold) and the diagonal solution (thin) for
the power spectral density of the displacement of an aircraft panel (¢ = 0.05) at the point

(x,y)=(01,01).
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Figure 6.4 Fluid-loading effect on the vibrating response of an aircraft panel (¢ =0.01):
power spectral density of the displacement at the point (x, y) =(0.1,01) with fluid-loading
(bold) and without fluid-loading (thin).
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Figure 6.5 Fluid-loading effect on the vibrating response of an aircraft panel (¢ = 0.05):
power spectral density of the displacement at the point (X, y)= (0.1,0.1) with fluid-loading
(bold) and without fluid-loading (thin).
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Figure 6.6 Energy balance of the power spectral quantities for the lightly damped panel
(¢ = 0.001 ): boundary-layer input power (bold), structurally dissipated power (dash-dotted)
and inwardly radiated power (thin).
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Figure 6.7 Energy balance of the power spectral quantities for a more heavily damped panel
(¢ =0.01): boundary-layer input power (bold), structurally dissipated power {dash-dotted)
and inwardly radiated power (thin).
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Figure 6.8 Influence of an increased structural damping on the sound power inwardly
radiated by an aircraft panel: bold (¢ = 0.01 ) and thin (¢ = 0.05 ).

1]
&3]

w
(=]

o
o

[e2]
o

~!
[4)]

-~
(=]

[#2]
[$)]

Total Sound Power Radiated up to 1 kHz (dB rel. 10°(~-12) W)

1 L

1 1 1 1 ] 1
0 002 004 008 0.08 0.1 012 044 016 0.8 G2
Damping ratio

[=2]
(=)

Figure 6.9 Influence of an increased structural damping on the total sound power inwardly
radiated by an aivcraft panel up to 1 kHz.
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Figure 6.10 Evolution with flow velocity (thin, U, =225m/s; dashed, U, =130m/s;
bold, U_ =55m/s) of the point-power spectrum of the wall-pressure fluctuations beneath a
turbulent boundary layer and described by the Efimtsov model.
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Figure 6.11 Influence of an increased flow velocity on the dimensionless sound power
inwardly radiated by an aircraft panel (¢ =0.01): U, =200m/s, bold; U_ = 225m/ s,

dashed; U_=250m/s, thin.
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Figure 6.12 Hydrodynamic matching effect between the modal resonances for spanwise mode
numbers of m=1 (0}, m=2 (x), m=3 (+), m=4 (*) against streamwise mode number and the
hyvdrodynamic matching lines a)/UL_ = mr/a for three flow velocities: U_=200m/s,

bold; U_=225m/s, dashed: U_=250m/s, thin.
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Figure 6.13 The self-radiation efficiencies of the (1.1) (bold), (1,3) (dotted) and (2,2)
(dashed) structural modes of the panel, and the mutual-radiation efficiency between the (1,1)
and the (1,3) structural modes (thin).
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Figure 6.14 The radiation efficiencies of the first four radiation modes of the panel.
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Figure 6.15 The mode shapes of the first six radiation modes of the panel for excitation
frequencies corresponding to ka = 1.9 (left column) and ka = 1.6 (right column).
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Figure 6.16 The power spectral density of the velocity, at the point Rl, of a clamped plate
excited by a TBL: comparisons between measurements by G. Robert (top fig., dashed line)
and predictions obtained either by a Boundary Integral Equation method (top fig., thin line)
or a modal formulation (bottom fig.).
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Figure 6.17 The power spectral density of the velocity, at the point R2, of a clamped plate
excited by a TBL: comparisons between measurements by G. Robert (top fig., dashed line)
and predictions obtained either by a Boundary Integral Equation method (top fig., thin line)
or a modal formulation (bottom fig.).
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Figure 6.18 The sound power inwardly radiated by an aircraft panel (¢ =0.01) before

control (bold) and after cancellation of a number of structural modes: the first mode
(dashed), the two first modes (dash-dotted), the three first modes (dotted) and the four first
modes (thin).
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Figure 6.19 The sound power inwardly radiated by an aircraft panel (¢ =0.01) before

control (bold) and after cancellation of a number of radiation modes: the first mode (dashed),
the two first modes (dash-dotted), the three first modes (dotted) and the four first modes
(thin).
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Figure 6.20 The sound power inwardly radiated by an aircraft panel (¢ =0.2) before

control (bold) and after cancellation of a number of structural modes: the first mode
(dashed), the two first modes (dash-dotted), the three first modes (dotted) and the four first
modes (thin).
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Figure 6.21 The sound power inwardly radiated by an aircraft panel (¢ =0.2) before

control (bold) and after cancellation of a number of radiation modes: the first mode (dashed),
the two first modes (dash-dotted), the three first modes (dotted) and the four first modes
(thin).
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Figure 6.22 The sound power inwardly radiated by an aircraft panel {¢ = 0.0005 ) before

control (bold) and after cancellation of a number of structural modes: the first mode
(dashed), the two first modes (dash-dotted), the three first modes (dotted) and the four first
modes (thin).
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Figure 6.23 The sound power inwardly radiated by an aircraft panel (G = 0.00053) bejore control

(bold) and after cancellation of a number of radiation modes: the first mode (dashed), the two first
modes (dash-dotted), the three first modes (dotted} and the four first modes (thin).
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Figure 6.24 Attenuation in the sound power radiated by an aircraft panel (¢ = 0.01): after

cancellation of the first radiation modes (dash-dotted) and after cancellation of the first
structural modes (dashed).
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Figure 6.25 Attenuation in the sound power radiated by a TBL-excited panel after
cancellation of the first structural modes for different values of the damping ratio:
¢ =0.0005 (bold), ¢ =0.01 (dash-dotted), ¢ =0.05 (dashed) and ¢ = 0.2 (dotted).
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Figure 6.26 Attenuation in the sound power radiated by a TBL-excited panel after

cancellation of the first radiation modes for different values of the damping ratio:
¢ =0.0005 (bold), ¢ =0.01 (dash-dotred), ¢ =0.05 (dashed) and ¢ = 0.2 (dotted).
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Appendix A

Expressions for the cross-correlation functions
involved in the derivation of the power balance equation
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—eo—m f, %

*

% BL(X, _ X”’;T . I”) dﬁﬁ
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Appendix B

Construction of an orthonormal set of velocity patterns that diagonalize the
radiation operator relating the surface velocity and the acoustic pressure field.

B.1 Spatial representation of the acoustic power radiated.

The weak (energetic) form of the governing equations (3.8) together with the
Green’s representation (3.10) of the acoustic pressure field lead to an expression for the
complex surface power the real part of which corresponds to the acoustic power radiated
by the structure in the far-field. It is proportional to the positive form of the radiation
operator given by:

<< R, U,V >>= '[ ” u(x)R[g, (x-x)| v (x)d’xd’x’ (B.1)

Lz

where u and v are surface velocity distributions and ¢, is the Green’s function
introduced in paragraph 3.1. For simplicity, the kernel 9?[%,] of the operator &, will be
denoted R_. We notice that the test functions u and v must be square integrable, i.e.

belong to 1 (=, C} where C stands for the set of complex numbers.

B.2 Properties of the radiation operator.

¢ B.2a: From Eq. (3.11), it can easily be seen that the function
(x,x YR, (x,X’) is bounded over TxX.

¢ B2b: R, eL’(ExX,£(C)), ie. R, belongs to the Hilbert space of the
functions with values in £(C) and square integrable over % x X; £(C) denotes all the

linear applications in C.
[t means that:

2 2 27
A(C}d Xd X <+ea (B.2)

IR o)

that can be proved when expressing (B.2) in a system of cylindrical coordinates. This
property results from the analytical expression (3.11) of R, that satisfies the energy

conservation principle (field of second order).

¢ B.2.c: Finally, from (B.2), it can be shown that the operator &, is continuous
from L*(Z,C) into L*(Z,C).

From the properties (B.2.a-c), it results, by definition, that &, is a Hilbert-

Schmidt Yinear operator and so it is compact [58]. This means that its spectrum is discrete
and countable.
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Moreover, &, is a symmelric operator:
R, VS>=<<u, B, v >> YV (u,v) e L*(X,C) (B.3)

It results from the mathematical form of (B.1) and the fact that R, satisfies the
reciprocity principle. Finally, &, is positive and satisfies, for any @ in R:

<®B,uu>>>0 Vuel’(Z,C) (B.4)

All these properties enable to justify the existence of an orthonormal set of eigenvectors
diagonalizing the radiation operator &, and called the radiation modes.

B.3 Diagonalization of the radiation operator.

Since &, is an Hilbert-Schmidt operator, it admits a discrete and countable set of
eigenvalues {Z,’fm }n and there exists a normalized set of eigenvectors {‘I’; }H of @ that
form a Hilbert basis of 1° (Z,C). Rigorously speaking, each " represents the surface

velocity pattern associated with each radiation mode 2, (‘P;) through the relation:
=, (r)= A (B.5)
or explicitly, through the integral equation:

J.J- R, (x,x )i (x)d’x’ = A1 ¥ (x), VxeX. (B.6)

z

where all the eigenvalues are not only positive (since &, is positive) but they also satisfy
the following property: the series of their squares is convergent (since &, is a Hilbert-
Schmidt operator), i.e:

=3

S(AL) < e

=t

The expression (B.5) requires some comments:

¢ This expression clearly shows why each radiation mode is frequency-dependent
and only depends on the surface geometry of the radiating structure and the mechanical
properties of the acoustic fluid.

Let us denote Vect{q)n} the space generated by the set of the structural

eigenmodes {fbn}, i.e. all the complex functions square integrable together with their
first and second order derivatives over X and satisfying the boundary conditions along
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J% . In addition, Vect{‘{‘;} will stand for the space generated by the set of the radiation

modes {‘P{g} i.e. all the complex functions only square integrable over £ . It can easily

be seen that:
Vect{®, } = Vect{‘{’;}

This means that, unless we manage to exhibit a subset of radiation modes
satisfying the boundary conditions along JX and that generates Vect{‘Pg}, the set of the

radiation modes {‘P;} cannot be expanded into series of the structural eigenmodes

{®,}. As expected, the reciprocal proposition is true.

+ Moreover, if the structure vibrates with a surface velocity proportional to one
of the W, the surface pressure radiated A7V, , i.e. the corresponding radiation mode, is

o Tw?
then in-phase with the velocity distribution. This would not be the case if the surface
velocity distribution was proportional to one of the structural modes. This means that the
radiation modes radiate sound independently. This can be written formerly through the
following orthogonality relation:

<<z, (‘Pm” ) ¥ ss= A 60
in addition to the orthonormality relation:

<YL WY >>=6,

¢ Since &, is an operator from L*(Z,C) into L*(X,C), it can then be expanded
into a series of the new basis functions as follows:

Ru= T AW << W us= Y A, (s @¥;)u, Vuel’(Z.0). (B7)
=l

n=]

where the tensor product v@w of L*(%,C) is defined as:

(v@;w)u =v<<w,u>>,, V(uv,w) e(Lz(Z,C))3
L
The expression (B.7) can be rewritten in terms of operators as:

R, =2 X, ¥, Q¥ (B.8)

n=1
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(B.8) is equivalent to (B.5). This shows that the diagonalization of <<Z u,v >>, for
any functions u and v in L*(Z,C) is equivalent to the application of a Singular Value

Decomposition to the radiation operator 2, the {/l';} being the singular values of %, .

Several authors [9,59,60] have already performed an eigen-analysis on the real
part of the impedance matrix in order to exhibit real radiation modes and so, providing an
acoustic modal basis on which the radiated field can be decomposed. Moreover, this
approach has been extended [61,62] to the SVD analysis of the impedance matrix to
exhibit complex radiation modes for submerged bodies.
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