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[1] Whilst there is a considerable body of work in the
literature on the theory of acoustic propagation in marine
sediments, the incorporation of gas bubbles into such
theories is done with the inclusion of assumptions which
severely limit the applicability of those models to practical
gas-laden marine sediments. This paper provides a theory
which does not assume that the bubble dynamics are linear,
steady-state and monochromatic. Such assumptions would
be incompatible with many of the practical acoustic fields
with which sediments are insonified today. These fields are
necessarily high amplitude to provide adequate signal-to-
noise ratios, given the high attenuation in gassy marine
sediments; and often they utilise short pulses to obtain
range resolution. This paper provides a theory appropriate
for predicting the acoustically-driven non-stationary
nonlinear dynamics of spherical gas bubbles embedded in
a lossy elastic solid, and discusses how this could be
incorporated into a nonlinear, time-dependent propagation
model. Citation: Leighton, T. G. (2007), Theory for acoustic

propagation in marine sediment containing gas bubbles which

may pulsate in a non-stationary nonlinear manner, Geophys. Res.

Lett., 34, L17607, doi:10.1029/2007GL030803.

1. Introduction

[2] Marine sediments containing gas bubbles occur at
many locations [Judd and Hovland, 1992; Fleischer et al.,
2001]. They are important, first, because of the impact those
bubbles have on the structural integrity and load-bearing
capabilities of the sediment [Wheeler and Gardiner, 1989;
Sills et al., 1991]; second, because the presence of bubbles
can be indicative of a range of biological, chemical or
geophysical processes (such as the climatologically-important
flux of methane from the seabed to the atmosphere [Judd,
2003]); and third, because of the impact which the bubbles
have on any acoustic systems used to characterise the
sediment [Robb et al., 2006].
[3] When driven by an acoustic field, a gas bubble

surrounded by a suitable host material acts as a nonlinear
oscillator (which tends to linear dynamics at low pulsation
amplitudes). It exhibits a pronounced breathing-mode reso-
nance such that, when driven at frequencies much less than
this resonance, its response is stiffness-controlled, and the
presence of bubble reduces the sound speed (tending to
quasi-static conditions at very low driving frequencies).
When driven at frequencies much greater than resonance,
the bubble’s response is inertia-controlled, and the presence

of bubbles tends to increase the sound speed, the effect
decreasing with increasing frequency [Leighton, 1994].
[4] Whilst there is a considerable body of work in the

literature on the theory of acoustic propagation in marine
sediments, the incorporation of gas bubbles into such
theories is done with the inclusion of assumptions which
severely limit the applicability of those models to practical
gas-laden marine sediments. As a result, such theories are
limited in terms of which components of the above behav-
iour they can describe [Leighton et al., 2004]. The theories
most frequently used include modified versions of the Biot-
Stoll Theory [Biot, 1956a, 1956b; Stoll, 1974] and an
approach developed by Anderson and Hampton [1980a,
1980b]. The Biot model assumes that the bubble does not
affect the sediment structure (i.e. it only affects the pore
fluid properties). Most manifestations of the Biot model
assume quasi-static bubble responses [Domenico, 1976,
1977; Andreassen et al., 1997; Hawkins and Bedford,
1992; Gregory, 1976; Herskowitz et al., 2000; Minshull et
al., 1994; Smeulders and Van Dongen, 1997]. The assump-
tion of quasi-static gas dynamics limits the applicability of
the resulting theory to cases where the frequency of inso-
nification is very much less than the resonances of any
bubbles present. It also eliminates from the model all
bubble resonance effects, which often of are overwhelming
practical importance when marine bubble populations are
insonified. This limitation becomes more severe as gas-
laden marine sediments are probed with ever-increasing
frequencies.
[5] Some versions of the Biot model include a simple

harmonic oscillator term for the compressibility of the fluid,
which incorporates the inertia, stiffness and damping terms
relevant to the bubbles [Biot, 1962; Stoll and Bautista,
1998]. The acoustic theory of Anderson and Hampton
[1980a, 1980b] similarly assumes that only linear, steady
state bubble pulsations occur. As a result, neither class of
theory is applicable to the propagation of fields which are
sufficiently high amplitude: the ubiquitous assumption of
linear bubble pulsations becomes increasingly questionable
as acoustic fields of greater amplitudes are used to over-
come the high attenuations, and the resulting poor-signal-to-
noise ratios, that are often encountered in marine sediments.
Furthermore the assumption of monochromatic steady-state
bubble dynamics is inconsistent with the use of short
acoustic pulses to obtain range resolution.
[6] This report outlines a theory which does not require

the above assumptions. Some assumptions are still main-
tained, notably that the bubbles in question interact with the
sound field through volumetric pulsation. Whilst this does
not necessarily mean that the bubbles should be spherical at
all times, it is through this assumption that the theory
encompasses the volumetric pulsations. It is well-known
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that there are classes of bubbles in sediment which do not
behave in this way (e.g. those which bear a closer resem-
blance of ‘slabs of gas’ and ‘gas-filled cracks’, than they do
to gas-filled spheres [Hill et al., 1992; Anderson et al.,
1998; Reed et al., 2005]). The assumption is also main-
tained that the sediment outside of each individual bubble
may be treated as incompressible. Whilst this greatly eases
the analysis, the extent to which it is correct will depend on
the characteristics of the sediment. The result of this
assumption is that acoustic radiation damping is neglected.
Furthermore the sediment outside of the bubble is assumed
to be a lossy elastic solid, and no bubble-bubble interactions
are assumed to occur. It should be noted that this analysis is
also relevant to acoustic propagation through tissue, pro-
vided that the latter can be treated as an incompressible
lossy elastic solid. Church [1995] pioneered the develop-
ment of models of the dynamics of gas-filled biomedical
contrast agent bubbles surrounded by a shell which can
support stress [Alekseev and Rybak, 1999; Allen and Roy,
2000a, 2000b; Morgan et al., 2000; Zabolotskaya et al.,
2005; Qin et al., 2006]. The current paper adapts the
approach of Church [1995] to the problem of acoustic
propagation in marine sediments.

2. Dynamics of Gas Bubbles in an Incompressible
Lossy Elastic Solid

[7] Consider a bubble of radius R(t) which oscillates
about some equilibrium radius R0 with bubble wall velocity
_R(t) and radial wall displacement Re. In this preliminary
analysis, it is assumed that the sediment outside the bubble
(which will probably contain solid, liquid and gaseous
phases) can be treated as an incompressible elastic solid
(refinements to this assumption are discussed later). In the
following derivation, the use of the dot notation in this, and
the subsequent equations of motion, indicates the use of the
material derivative, i.e.:

D
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where u
*

is the particle velocity in the host medium (the
material outside of the bubble wall). If the bubbles are
assumed to be spherical at all times with their centres fixed
in space, and the bubble population density is not too great,
then the convective term can be neglected [Foldy, 1945].
Following Church [1995], if the flow is irrotational, the
viscous effects appear only through the boundary condi-
tions, all body forces are negligible, and the bubble remains
spherical at all times, then the equation for the conservation
of momentum for the pulsation of a single gas bubble in an
incompressible lossy elastic solid reduces to:
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where rs and us are, respectively, the bulk density and the
particle velocity in the marine sediment outside of the
bubble wall (which is modelled as an elastic solid with
equivalent bulk properties). Because the trace of the stress
tensor is zero in elastic solids (as it also is in Newtonian

liquids), its respective components (Trr, Tqq and Tff) are
related through:

Trr ¼ � Tqq þ Tff
� �

: ð3Þ

[8] In an adaptation of the approach employed for bio-
medical contrast agents [Church, 1995], equation (2) will
now be integrated through the solid (from R to r = 1),
using the assumption of liquid incompressibility [Leighton,
1994], which implies that:

us r; tð Þ ¼ R2 tð Þ
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[9] Integration of (2) from R to r = 1 gives:
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noting that for this case, Trr (r = 1, t) can be taken to equal
zero, giving
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[10] The bracketed term on the right of equation (6) can
readily be found using the boundary condition at the bubble
wall (r = R):

ps R; tð Þ � Trr R; tð Þ ¼ pg �
2s
R

� @s
@R

ð7Þ

where s is the surface tension, and @s/@R represents a radial
force which results from the variation in the concentration
of surface active molecules on the bubble wall as the bubble
pulsates, although this is normally assumed to be zero
[Leighton, 1994; Church, 1995]. Substitution of (7) into (5)
gives:
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which can be readily evaluated to form time histories of the
bubble response using the techniques familiar for gas
bubbles in liquids, provided that it is possible to determine
Trr, the radial component of the stress tensor in the
sediment.
[11] Taking both the elastic and lossy characteristics of

the solid together [Church, 1995], the radial component of
the stress tensor is:

Trr ¼ � 4R2

r3
GsRe þ hs _R
� �

ð9Þ

where Gs is the modulus of rigidity (the shear modulus, or
second Lamé constant) and hs is the shear viscosity of the
material outside of the bubble wall. Given the complexity of
the problem, it may be necessary to progress towards the
correct values for these for a nonlinear non-stationary gassy
marine sediment using an iterative scheme. The integral for
the solid in equation (8) can be evaluated:
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[12] Equation (8) can now be expressed with the integrals
evaluated using (10):
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3. Discussion and Conclusions

[13] Equation (11) forms the basis of predicting the
dynamics of a single bubble in a lossy elastic solid. The
assumption that the host medium is incompressible means
that bubble-mediated acoustic radiation losses are
neglected. Incorporation of these would require the intro-
duction of appropriate terms [Vorkurka, 1986; Morgan et
al., 2000; Zabolotskaya et al., 2005]. If the gas pressure pg
is calculated using a polytropic index k which is constant
throughout the oscillatory cycle (i.e. assuming pg (4pR

3/3)k =
constant), then there will be no bubble-mediated thermal
dissipation, since such a technique only adjusts the stiffness
of the bubble gas for reversible heat flux across the bubble
wall [Leighton et al., 2004]. Rather than including thermal
dissipation by artificially increasing the viscosity [Chapman
and Plesset, 1971] (which at best assumes linear condi-
tions), thermal dissipation would more properly be included
by combining the continuity and energy relations for a
perfect gas with spatially uniform pressure to provide
an exact expression for the velocity field in terms of
the temperature gradient [Prosperetti and Hao, 1999].
This would preserve the nonlinear character of the bubble
dynamics so that it could be incorporated into a nonlinear
acoustic propagation scheme. In such a scheme, if the
bubble dynamics are considered in the space plane formed
by plotting the driving pressure against the bubble volume
response, the attenuation is given by the area mapped out,
and the sound speed by the gradient of the spine of the locus

of points mapped out by the bubble oscillation [Leighton
et al., 2004; Leighton, 2004, 2007].
[14] The next stages of this work will be to use

equation (11) to predict the attenuation and sound speed in
gassy marine sediments, using the route outlined in the above
paragraph to incorporate thermal and radiation damping.
This will require values for Gs and hs to use in equation (11)
and, as outlined after (9), these may not be simple to come
by. Given that the propagation method considers, through
equation (11), the nonlinear dynamics of each bubble in turn
[Leighton et al., 2004], the issue is to what extent the effect
of the ‘neighbouring bubbles’ (i.e. those in the sediment
beyond the wall of the bubble in question) contribute to the
values of Gs and hs. The zeroth order solution would be to
set Gs equal to zero, and set hs equal to the value for bubble-
free water. In such a case, the equations would reduce to
modelling nonlinear bubble pulsations in water, and the
method for predicting the attenuation and sound speed
would be no different to that already accomplished by
Leighton et al. [2004]. It would of course be an improve-
ment to use Gs and hs values that pertain to a bubble-free
saturated sediment. However the true first-order solution
would be to assign to Gs and hs values which include the
effect of the neighbouring bubbles derived from the dynam-
ics of bubble pulsating in the quasi-static fashion (i.e. driven
at frequencies much less than resonance), as described in the
Introduction. A more sophisticated approach would be to
include the resonator properties of these neighbouring
bubbles to derive frequency-dependent values for Gs and
hs (either from the Biot or Anderson-Hampton approach,
again as described in the Introduction). In such a circum-
stances, whilst the propagation would be based on a
consideration of the nonlinearly dynamics of each bubble
in turn [Leighton et al., 2004], the material outside of the
bubble wall would be characterized by values of Gs and hs
that are derived from linear bubble dynamics. This is the
reason why the iterative approach discussed after equation
(9) might be necessary to ensure that the nonlinear pulsa-
tions of the bubbles involved in the calculation of sound
speed and attenuation, are themselves modified by a gassy
sediment in which the bubbles can pulsate nonlinearly.
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