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Abstract

Spatial viscous instability modes for an incompressible round jet have

been computed. The incompressible linear stability equations are de-

rived from the Navier Stokes equations in cylindrical polar coordi-

nates. The instability modes are obtained by solving the two point

boundary eigenvalue problem. The boundary conditions are obtained

by using asymptotic analytical solutions for large and small (near the

jet axis) r. In order to avoid the regular singularity at r = 0, power-

series expansions for small values of r are derived. The governing

equations are integrated by a fifth-order variable step Runge-Kutta

method. Gram-Schmidt orthonormalisation is used to maintain the

linear independence of solutions. The numerical method is validated

against the results available in the literature.

∗Visiting undergraduate student, Indian Institute of Technology Madras
†Rolls-Royce Lecturer, ISVR
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1 Introduction

The main objective of the present summer project was to develop a C++

computer programme to obtain the viscous linear instability modes of an

incompressible round jet. This required a numerical integration of the sixth

order incompressible Orr-Sommerfeld equations in cylindrical polar coordi-

nates. The starting point is the incompressible Navier-Stokes Equations.

These equations are written in cylindrical coordinates and then linearized.

Each of the linearized dependent variables (radial velocity - V , angular ve-

locity - W , streamwise velocity - U) are separated into a mean, θ̄, and a

fluctuating value, θ̂, where these fluctuations are modeled as: θ̂(r, φ, z, t) =

θ(r)ei(αz−ωt+nφ). This results in a system of six ordinary differential equations

Y′(r) = AY(r)

where Y is the vector of dependent variables, r is the independent variable,

and A is a matrix that is a function of ω, α and r and Reynolds number

R. Being a sixth order ordinary differential equation (ODE) we need six

boundary conditions for the problem to be well posed. We specify three

boundary conditions at a large value of r. These three boundary conditions

lead to three solutions which satisfy the governing equations independently.

The three independent solution vectors are then integrated integrated using a

fifth-order variable step Runge-Kutta method from a large value of r to small

value of r. But since this is a stiff ODE, the vectors become contaminated

with computational round-off errors in the integration process. To preserve

the linear independence of the solutions we need to orthonormalise the solu-
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tion vectors at several steps in the integration. This is done by performing

Gram-Schmidt orthonormalisation on the solutions. Thus, at the end of the

integration process we obtain three independent solutions. The other three

of the six boundary conditions are then specified using power-series for small

values of r close to the axis of the jet. The power-series solution is neces-

sary because the jet axis, r = 0, is a regular singular point of the governing

equations in cylindrical polar coordinates. The linear combination of the

integrated vectors is equated to the linear combination of the boundary con-

ditions at small r, which gives a system of six algebraic equations. These

equations represent an eigenvalue problem because, for any given value of

ω only discrete α satisfy the equations for the spatial stability problem and

vice-versa for the temporal stability problem. The eigenvalues are obtained

by a shooting method for various values of frequency ω and Reynolds number

R, for a fully developed velocity profile Ū . Although only the spatial insta-

bility modes have been calculated in the present report, the same method

applies to temporal modes as well.

The following sections detail each step of the derivation, including the

numerical approach to solve the system and obtain the eigenvalues. A com-

parison for the critical Reynolds number obtained is also made with the

values quoted in the literature.

In section 2 we derive the governing equations to be used in the numerical

scheme. The numerical scheme is described in section 3. In section 4 we

discuss some results and section 5 provides a summary.
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2 Theory

In this section we develop the relevant equations to be used in the numerical

scheme. To begin with, we start with the governing equations and then

proceed to the relevant details of the derivation.

2.1 Governing Equations

To derive the linearized equations in polar coordinates we start with the

incompressible Navier-Stokes Equations written in vector form:

∇ · u∗ = 0, (2.1)

∂u∗

∂t
+ (u∗ · ∇)u∗ = −

∇p∗

ρ∗
+ ν∇2u∗, (2.2)

where ∗ denotes a dimensional variable and u∗ = {U∗
z , V ∗

r ,W ∗
φ}. These equa-

tions are non-dimensionalised with respect to a length scale L∗
c , a velocity

scale U∗
c and the ambient density ρ∗

o to give vector form of the incompressible

dimensionless Navier-Stokes Equations:

∇ · u = 0, (2.3)

∂u

∂t
+ (u · ∇)u = −

∇p

ρ
+

1

R
∇2u (2.4)

where R = L∗
cU

∗
c /ν∗

o is the Reynolds Number. In cylindrical polar co-

ordinates, these equations become 1:

1The details of the vector relations in cylindrical polar coordinates can be found in
Appendix A
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Continuity Equation

∂V

∂r
+

V

r
+

1

r

∂W

∂φ
+

∂U

∂z
= 0 (2.5)

r - Momentum Equation

∂V

∂t
+ V

∂V

∂r
+

W

r

∂V

∂φ
+ U

∂V

∂z
−

W 2

r
= −

1

ρ

∂p

∂r
+

1

R

[1

r

∂

∂r
(r

∂V

∂r
) +

1

r2

∂2V

∂φ2
+

∂2V

∂z2
−

V

r2
−

2

r2

∂W

∂φ

]

(2.6)

φ - Momentum Equation

∂W

∂t
+ V

∂W

∂r
+

W

r

∂W

∂φ
+ U

∂W

∂z
+

V W

r
= −

1

ρr

∂p

∂φ
+

1

R

[1

r

∂

∂r
(r

∂W

∂r
) +

1

r2

∂2W

∂φ2
+

∂2W

∂z2
−

W

r2
+

2

r2

∂V

∂φ

]

(2.7)

z - Momentum Equation

∂U

∂t
+ V

∂U

∂r
+

W

r

∂U

∂φ
+ U

∂U

∂z
= −

1

ρ

∂p

∂z
+

1

R

[1

r

∂

∂r
(r

∂U

∂r
) +

1

r2

∂2U

∂φ2
+

∂2U

∂z2

]

(2.8)

where V = Vr, U = Uz and W = Wφ
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2.2 Linearized Navier-Stokes Equations

In order to linearise the equations we have to make the following assump-

tions: 1) all variables have the form: θ = θ̄ + θ̂; 2) products of fluctuating

quantities are negligible; 3) V̄r = V̄φ = 0 (parallel mean flow assumption);

4)ρ̄ and Ū are functions of r only. On making these substitutions for each

variable, expanding and then subtracting the base flow equations from the

new equations, we get the linearized equations:

Continuity Equation

∂v̂

∂r
+

v̂

r
+

1

r

∂ŵ

∂φ
+

∂û

∂z
= 0 (2.9)

r - Momentum Equation

∂v̂

∂t
+ Ū

∂v̂

∂z
= −

1

ρ̄

∂p̂

∂r
+

1

R

[1

r

∂v̂

∂r
+

∂2v̂

∂r2
+

1

r2

∂2v̂

∂φ2
+

∂2v̂

∂z2
−

v̂

r2
− 2

∂ŵ

∂φ

]

(2.10)

φ - Momentum Equation

∂ŵ

∂t
+Ū

∂ŵ

∂z
=

1

ρ̄

1

r

∂p̂

∂φ
+

1

R

[1

r

∂ŵ

∂r
+

∂2ŵ

∂r2
+

1

r2

∂2ŵ

∂φ2
+

∂2ŵ

∂z2
+

2

r2

∂ŵ

∂φ
−

ŵ

r2

]

(2.11)

z - Momentum Equation

∂û

∂t
+ v̂

∂Ū

∂r
+ Ū

∂u

∂z
= −

1

ρ̄

∂p̂

∂z
+

1

R

[∂û

∂r
+

∂2û

∂r2
+

1

r2

∂2û

∂φ2
+

∂2û

∂z2

]

(2.12)

Once the linearized equations are derived, the next task is to transform them

into the stability equations by substituting for the variables with their normal

mode forms, which will be detailed in the next subsection.
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2.3 Stability Equations

The fluctuating variables are assumed to Fourier decompose into complex

components typically of the form

θ̂(r, φ, z, t) = Re[θ(r)ei(αz−ωt+nφ)]

where α is the complex wavenumber, ω is the real radian frequency (spatial

stability analysis) and n is the azimuthal mode number. Substitution for the

variables û, v̂, ŵ and p̂ gives:

Continuity Equation

iαu + v′ +
v

r
+ in

w

r
= 0, (2.13)

r - Momentum Equation

iα(Ū − c)v + p′ =
1

R

[

v′′ +
v′

r
−

{

α2 +
(n2 + 1)

r2

}

v − i
2n

r2
w

]

, (2.14)

φ - Momentum Equation

iα(Ū − c)w +
in

r
p =

1

R

[

w′′ +
w′

r
−

{

α2 +
(n2 + 1)

r2

}

w + i
2n

r2
v
]

(2.15)

z - Momentum Equation

iα(Ū − c)u + Ū ′v + iαp =
1

R

[

u′′ +
u′

r
−

(

α2 +
n2

r2

)

u
]

(2.16)

where c = ω/α and primes denote differentiation with respect to r.

7



In order to solve the linear system we must define the boundary condi-

tions. According to Morris[3] these boundary conditions at the centreline of

the jet depend on the mode n. Also, in the far field, the boundary conditions

are that θ → 0 when r → ∞. In particular for each mode we must imple-

ment the following boundary conditions once our system has been defined

and before the eigenvalue problem is solved.

u(0) = p(0) = 0, n 6= 0,

v(0) = w(0) = 0, n 6= 1,

v(0) + iw(0) = 0, n = 1.















































(2.17)
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2.4 Final form of the equations used in the program

It is now more convenient to write the set (2.13) - (2.16) in the form of a set

of first-order equations. This is done simply by defining two new variables –

u′ and w′

Y′ = A(r)Y (2.18)

where

Y =

















u
v
w
p
u′

w′

















A =





































0 0 0 0 1 0

(iα) (1
r
) ( in

r
) 0 0 0

0 0 0 0 0 1

0 (2α2 − β2 + n2

r2 ) ( in
r2 ) 0 (iα) ( in

r
)

(β2 − 2α2 + n2

r2 ) (Ū ′R) 0 (iαR) (−1
r
) 0

0 (2in
r2 ) (β2 + n2+1

r2 ) ( inR
r

) 0 −(1
r
)





































where β = [α2 + iαR(Ū − c)]
1

2 . Because these equations are singular at

r = 0, in order to develop a numerical technique to solve these equations it

is necessary to find the form of the solution close to the axis of symmetry.

Also, because the numerical integration cannot be carried out to infinity,

boundary conditions are sought in the nearly undisturbed fluid surrounding

the jet. These asymptotic solutions will be developed in the next subsection.
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2.5 Asymptotic solutions of the stability equations

2.5.1 Near the axis of the jet (r → 0)

For small values of r, Lessen and Singh[2] and Garg and Rouleau[1] obtained

the solution to the disturbance equations by expanding the velocity and

pressure fluctuations in a power-series in r. The recurrence relations for the

coefficients in the power-series expansion are given by Garg and Rouleau[1].

These recurrence relations are used to derive the eigenfunctions near r = 0.

It is simpler to develop the series expansions of the eigenfunctions v(r)

and w(r) in terms of the combinations

f(r) = v(r) + iw(r),

g(r) = v(r) − iw(r).
(2.19)

Once f(r) and g(r) are known, it is simple to calculate v(r) and w(r). The

transformed equations in terms of f, g, u, p are easily obtained by substituting

for v and w in the stability equations. Also, the boundary conditions follow

directly from (2.17).

The series expansions take the form:

Sj = raj(S1j + S2jr
2 + S3jr

4 + ... + Sljr
2(l−1) + ...) (j = 1, 2, 3, 4). (2.20)

where

{a1, a2, a3, a4} = {(n + 1), (n − 1), n, n}, (2.21)

Sj = (F,G, U, P ), Sij = (Fi, Gi, Ui, Pi), F,G, U, P are the series expansions
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for f, g, u, p and Fi, Gi, Ui, Pi are the coefficients of powers of r in the series

expansions. We use only the first 2 terms of the power series as the value of

r chosen is sufficiently small. The coefficients used are:

F1, G1, U1, P1, F2, G2, U2, P2

Only three of the first four constants F1, G1, U1 and P1 are independent owing

to the relation

F1 =
1

n + 1

(B1

4n
G1 −

R

2
P1 − iαU1

)

(2.22)

where B1 = −α2 − R(iαC1 − iω) and C1 is the first coefficient in the series

expansion of Ū when Ū = C1 + C2r
2 + C3r

4 + · · ·

Taking G1, U1 and P1 to be independent, all of the other five coefficients

can be expressed in terms of them. This enables any eigenfunction to be ex-

pressed as a sum of three terms; for example, the axial velocity eigenfunction

u(r) may be written as

u(r) = u1(r)G1 + u2(r)U1 + u3(r)P1.

This results in three independent sets of solutions (u1, v1, w1, p1), (u2, v2, w2, p2)

and (u3, v3, w3, p3). The set (2.13) - (2.16) is thus equivalent to three sets

since each of the three sets of solutions must satisfy (2.13) - (2.16) indepen-

dently. The power-series used for each of the variables u, v, w, p are given in

Appendix B.
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2.5.2 Far away from the axis of the jet (large r)

Far from the axis of the jet, most jets have a constant mean velocity. Ac-

cording to Morris[3], the form of solutions for the velocity and pressure fluc-

tuations is conveniently derived if the vorticity equations are considered. By

making use of the relationship between the vorticity and velocity components

and using the z-momentum equation to obtain the pressure fluctuation, the

asymptotic form, for large radii of the velocity and pressure disturbances can

be shown to be

u = A1,2H
(1),(2)
n (iαr) + A3,4H

(1),(2)
n (iβr) (2.23)

v = −A1,2
i

α
H ′(1),(2)

n (iαr) − A3,4
α

β2
H ′(1),(2)

n (iβr) − A5,6
n

r
H(1),(2)

n (iβr) (2.24)

w = A1,2
n

αr
H(1),(2)

n (iαr) + A3,4
nα

β2r
H(1),(2)

n (iβr) + A5,6H
′(1),(2)
n (iβr) (2.25)

p = A1,2(c − Ū)H(1),(2)
n (iαr) (2.26)

A Hankel function of the first or second kind is chosen, depending on the

phase of the argument. The above solutions represent the form of the solu-

tions in any region where the mean velocity is constant.

Note that the equations reported by Morris[3] are incorrect as they do

not satisfy (2.13) - (2.16).
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2.6 Mean velocity profile in the jet

Before performing the numerical integration of the stability equations, it is

necessary to specify the mean velocity profile. Although the mean flow is

diverging, the solutions presented here are based on the assumptions that

the flow is locally parallel.

The streamwise velocity profile of the fully developed jet used in references[2],

[3] and [4] is given by the following analytical equation:

Ū =
1

(1 + r2)2
(2.27)

This particular choice for the mean velocity profile has been made because

numerical results for it are available in literature.

The expansions and analytic solutions derived in the present section will

form the basis of the numerical scheme described in the next section.
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3 Numerical Scheme

The equations derived in the previous section represent a two-point boundary

eigenvalue problem. However the equations need to be integrated first. We

found that the numerical scheme was more robust if the numerical integration

was carried out in the reverse direction from a large value, say r = a, to a

small value r = rs near the jet axis. The form of the solutions far away

from the axis (at r = a) being known from (2.5.2), is taken as the initial

condition for the integration process. The vectors are integrated using a fifth

order variable step Runge-Kutta integration method from r = a to r = rs.

In order to preserve the linear independence of the three solutions, a Gram-

Schmidt orthonormalisation process is performed at a number of steps within

the range of the numerical integration.

The numerical solutions thus obtained after the integration process are

of the form

u(rs) = G1u1(rs) + U1u2(rs) + P1u3(rs) (3.1)

Equating the integrated numerical solution at rs with the power-series so-

lution written at r = rs we get a set of six equations for the six variables

involved {u, v, w, p, u′, w′}. These equations can be written as

F(α, ω,R)[A1,2, A3,4, A5,6, G1, U1, P1]
T = 0, (3.2)

where F(α, ω,R) is a 6 x 6 matrix:
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F =







































Hn(iαr) Hn(iβr) 0 u1 u2 u3

− i
α
H ′

n(iαr) − iα
β2 H

′
n(iβr) − in

r
Hn(iβr) v1 v2 v3

n
αr

Hn(iαr) nα
β2r

Hn(iβr) H ′
n(iβr) w1 w2 w3

(c − Ū)Hn(iαr) 0 0 p1 p2 p3

H ′
n(iαr) Hn(iβr) 0 u′

1 u′
2 u′

3

n
α

{

Hn(iαr)
r

}′
nα
β2

{

Hn(iβr)
r

}′

H ′′
n(iβr) w′

1 w′
2 w′

3







































(3.3)

where the Hankel functions and the last three columns are evaluated at r = rs

The eigenvalues can then be determined by satisfying the condition

detF = 0. (3.4)

For a given ω, the eigenvalues α take on discrete values such that (3.4) is

satisfied. To calculate the eigenvalues we need the values of the Hankel func-

tions present in the determinant. The SLATEC[5] mathematical subroutine

library has been used for this purpose. The values given by SLATEC show

good agreement with those from Mathematica[6]. In order to calculate the

eigenvalues using an iterative scheme it is helpful and important to find the

approximate location of the eigenvalues because good initial guesses to start

the iteration allow for fast convergence. For any given values of the Reynolds

number and frequency there will be a discrete spectrum of eigenvalues. In

order to locate the eigenvalues a shooting method is used. In the shooting

method we guess the value for α to start with, then integrate from r = a

15



to r = rs, compute detF at rs and finally iterate using Newton-Raphson

method to find α that satisfies (3.4). For the root finding algorithm we need

to specify an initial guess for the eigenvalue. The method is found to be

extremely sensitive to the initial guess. In our calculations we are solving

the spatial problem wherein, a value of α is sought for a given value of ω and

Reynolds Number R.

We have also computed the value for the critical Reynolds number. The

critical Reynolds number is the Reynolds number below which the jet is stable

for every value of frequency ω. To find the critical Reynolds number several

graphs were plotted covering the region near the maxima of the amplification

factor. These plots give the value of critical Reynolds number as will be

discussed in a subsequent section.
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4 Results

4.1 Phase velocity and amplification factor

In stability analysis the most important eigenvalue is the one that is the most

unstable (or least stable). For the present framework, this corresponds to the

eigenvalue with the least imaginary part. In particular, as can be inferred

from the expressions, the flow will be spatially unstable if the imaginary part

of the complex wavenumber α is negative, that is if there are eigenvalues ly-

ing in the fourth quadrant of the complex-α plane. This region of the α plane

is therefore explored for possible eigenvalues by the technique described in

section 3. The results in the present section have been obtained by paramet-

rically varying the Reynolds number and frequency ω for an azimuthal wave

number n of 1.

The phase velocity and the amplification factor as a function of ω and

R for the asymmetric n = 1 mode are shown in figures (4.1) and (4.2)

respectively. The phase velocity gradually approaches the inviscid solution as

R increases. For the n = 1 mode the phase velocity increases monotonically

with frequency. The amplification factor does not behave in such a regular

manner and an unusual phenomenon occurs. Increasing the value of R, the

peak amplification factor increases at low frequencies. For values of R of order

greater than 200 increasing the value of R decreases the peak amplification

factor.

The graphs obtained for both, the amplification factor and the phase

velocity, agree well with those given by Morris[3]. We expect that the values

determined by our method are more accurate than previous calculations. The

17



method converges well for low Reynolds number, while at higher Reynolds

number the initial guess needs to be very close to the actual eigenvalue. This

is because the problem becomes increasingly stiff as the Reynolds number

increases.
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Figure 4.1: Phase Velocity as a function of ω and R for n = 1
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Figure 4.2: Amplification factor as a function of ω and R for n = 1
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4.2 Critical Reynolds Number

To obtain the critical Reynolds number, we have plotted (figure (4.3)) the

amplification factor for some values of R close to the critical Reynolds number

predicted by other researchers. The critical Reynolds number is the point

where the curve −αi(ω) becomes tangent to the αi = 0 line.
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Figure 4.3: Amplification factor as a function of Reynolds number and ω
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From this graph the critical Reynolds number was found to be 37.68. This is

compared with some of the other values reported by researchers in table 1.

Reference Rcritical αr−critical ωcritical

Morris[3] 37.64 0.44 0.1

Lessen and Singh[2] 37.9 0.3989 0.08

Adriana and Sandham[4] 37.8 0.417 0.09

Kulkarni and Agarwal 37.68 0.450481 0.104

Table 1: Comparison of critical Reynolds number for n = 1 mode
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5 Summary

• The linear stability equations were derived in cylindrical polar coordi-

nates.

• Asymptotic forms of the boundary conditions were derived for small

and large r.

• The two point boundary eigenvalue problem was solved by a shooting

method. This yields very accurate results. The average time for calcu-

lating a typical eigenvalue was 2.535 sec on a 1.9 GHz AMD 64 Athlon

X2 machine.

• The numerical integration was performed by a fifth order variable step

Runge-Kutta integration method.

• A computer program was developed in C++ to solve both the spatial

and the temporal eigenvalue problem. Although the present report

quotes the results of only the spatial problem, it works fine for the

temporal problem as well.

• The critical Reynolds number was also computed and shown to be in

good agreement with those reported in the literature.
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Appendix

A Vector Relations in Cylindrical Polar Co-

ordinates

In order to obtain the Navier-Stokes equation in polar coordinates we need

to define the following properties of vectors and scalars.

Gradient of a Scalar, ∇φ

∇φ =
∂φ

∂r
er +

1

r

∂φ

∂θ
eθ +

∂φ

∂z
ez (A.1)

Gradient of a Vector, ∇V

∇V =













∂Vr

∂r

∂Vθ

∂r
∂Vz

∂r

1
r

∂Vr

∂θ
− Vθ

r
1
r

∂Vθ

∂θ
+ Vr

r
1
r

∂Vz

∂θ

∂Vr

∂z

∂Vθ

∂z
∂Vz

∂z













(A.2)

Divergence of a Vector, ∇ · V

∇ · V =
∂Vr

∂r
+

Vr

r
+

1

r

∂Vθ

∂θ
+

∂Vz

∂z
(A.3)

where V = (Vr, Vθ, Vz)

Laplacian of a Scalar, ∇2φ

∇2φ =
∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2

∂2φ

∂θ2
+

∂2φ

∂z2
(A.4)
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Laplacian of a Vector, ∇2V

∇2V =













∂2Vr

∂r2 + 1
r

∂Vr

∂r
+ 1

r2

∂2Vr

∂θ2 − Vr

r2 − 2
r2

∂Vθ

∂θ
+ ∂2Vr

∂z2

∂2Vθ

∂r2 + 1
r

∂Vθ

∂r
+ 2

r2

∂Vr

∂θ
+ 1

r2

∂2Vθ

∂θ2 − Vθ

r2 + ∂2Vθ

∂z2

∂2Vz

∂r2 + 1
r

∂Vz

∂r
+ 1

r2

∂2Vz

∂θ2 + ∂2Vz

∂z2













(A.5)
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B Power-series expansions for small r

Recurrence Relations

Reference [1] gives the recurrence relations for the components of variables

F,G, U, P . We use the first two terms in our power series because the value

of rs chosen is sufficiently small. The recurrence relations that we have used

are:

F1 =
1

n + 1

(B1

4n
G1 −

R

2
P1 − iαU1

)

F2 =
1

4(n + 2)
F1B1

G2 =
1

2
(RP1 −

G1B1

2n
)

U2 =
1

4(n + 1)
(iαRP1 − U1B1 + RC2G1)

P2 =
1

R

[

− iαU2 +
1

4

{

F1B1 +
1

(n + 1)
(G2B1 + G1B2)

}

]

Definition of Vectors

Once the components of the variables are defined, the variables are formed:

F = r(n+1)(F1 + F2r
2)

G = r(n−1)(G1 + G2r
2)

U = rn(U1 + U2r
2)

P = rn(P1 + P2r
2)
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From the above expressions for F and G we can derive the expressions for V

and W using

V = (F + G)/2

W = (F + G)/2i

Thus we have the variables, U, V,W, P defined. Taking the partial derivative

of U and W we get a set of 6 variables U, V,W, P, U ′ and W ′. Note that the

expressions for these variables are in terms of G1, P1 and U1.

Components of the final vectors used in the computer

programme

From these expressions we separate the coefficients of G1, P1 and U1. Thus we

get the three independent sets of vectors which satisfy the stability equations

independently. The components of these three independent vectors are given

by2:

Components ui

u1 = −
r3R

4
,

u2 = r
[

1 −
1

8
r2

{

− α2 − (iα − iω)R
}

]

,

u3 =
1

8
iαr3R.

2All the expressions in this section have been derived with Mathematica[6].

28



Components vi

v1 =
1

2

[

1 −
1

8
r2

{

− α2 − (iα − iω)R
}

+
1

96
r4

{

− α2 − (iα − iω)R
}2

]

,

v2 =
1

2

[

−
1

2
iαr2 −

1

24
iαr4

{

− α2 − (iα − iω)R
}

]

,

v3 =
1

2

[1

4
r2R −

1

48
r4R

{

− α2 − (iα − iω)R
}

]

.

Components wi

w1 = −
1

2
i
[

− 1 +
3

8
r2

{

− α2 − (iα − iω)R
}

+
1

96
r4

{

− α2 − (iα − iω)R
}2

]

,

w2 = −
1

2
i
[

−
1

2
iαr2 −

1

24
iαr4

{

− α2 − (iα − iω)R
}

]

,

w3 = −
1

2
i
[

−
3

4
r2R −

1

48
r4R

{

− α2 − (iα − iω)R
}

]

.

Components pi

p1 =
1

2
iαr3,

p2 = 0,

p3 = r
{

1 +
1

8
α2r2

}

.

Components u′
i

u′
1 = −

3

4
r2R,

u′
2 = 1 −

3

8
r2

{

− α2 − (iα − iω)R
}

,

u′
3 =

3

8
iαr2R.
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Components w′
i

w′
1 = −

1

2
i
[3

4
r
{

− α2 − (iα − iω)R
}

+
1

24
r3

{

− α2 − (iα − iω)R
}2

]

,

w′
2 = −

1

2
i
[

− iαr −
1

6
iαr3

{

− α2 − (iα − iω)R
}

]

,

w′
3 = −

1

2
i
[

−
3

2
rR −

1

12
r3R

{

− α2 − (iα − iω)R
}

]

.
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