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Equations for the nonaxisymmetric modes that are axially and circumferentially propagating in a

liquid-filled tube with elastic walls surrounded by air/vacuum are presented using exact elasticity

theory. Dispersion curves for the axially propagating modes are obtained and verified through com-

parison with measurements. The resulting theory is applied to the circumferential modes, and the

pressures and the stresses in the liquid-filled pipe are calculated under external forced oscillation by

an acoustic source. This provides the theoretical foundation for the narrow band acoustic bubble de-

tector that was subsequently deployed at the Target Test Facility (TTF) of the Spallation Neutron

Source (SNS) at Oak Ridge National Laboratory (ORNL), TN.
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I. INTRODUCTION

Since Lord Rayleigh’s pioneered work on wave propaga-

tion in a semi-infinite elastic half space,1 many acoustic wave-

guide theories have been developed in different geometries

(plane, rectangular, circular, etc.) and for various combina-

tions of materials (vacuum, liquid, elastic solid, etc.). In circu-

lar pipes with finite thickness, several authors have studied the

propagation of elastic waves in the liquid inside the tubes.

However these analyses depend on assuming that the acoustic

waves in the liquid and pipe materials2,3 are uncoupled, or by

use of a thin-wall approximation.4–6 Del Grosso7 calculated

the dispersion relation for the phase speed of propagating

modes inside the tube filled with inviscid liquid using exact

elasticity equations which can be applied to any frequency

and thickness of the tube. His predictions were experimentally

verified by Lafleur and Shields8 in the low frequency regime

for a fluid-filled elastic tube. Sinha et al.9 and Plona et al.10

undertook both theoretical and experimental investigations for

various configurations of vacuum, liquid, and tube (e.g., vac-

uum inside and liquid outside, or liquid both inside and out-

side of the tube, etc.). In very lossy pipe materials, the phase

speeds and attenuations of propagating modes in the liquid-

filled tube were theoretically and experimentally obtained.11,12

However these investigations4–12 were only limited to the axi-

symmetric modes. The propagation of nonaxisymmetric

modes in a hollow pipe was theoretically described by

Gazis.13 Fuller and Fahy described nonaxisymmetric modes in

a thin-walled cylindrical shell filled with fluid using the thin-

walled shell equation.14 Greenspon and Singer15 calculated

the dispersion curve of nonaxisymmetric modes in a fluid that

was contained within thick viscoelastic cylinder that was used

as a liner inside a rigid pipe. Although commercial software

packages support simulations of the dispersion relation of

nonaxisymmetric modes in a fluid-filled pipe,16,17 analytic

expressions for this scenario, with an accompanying compari-

son with measurements, are not available.

When wave motion in the tube is not propagating along

the axis but is confined to the cross-sectional plane of the

tube, cross-sectional motion of the tube generates purely cir-

cumferential modes. The dispersion curves of circumferen-

tial waves for liquid-filled pipes have been discussed and

calculated.18,19 Circumferential modes can be obtained by

letting the axial wave number, kz, tend to zero in the general

characteristic equation for nonaxisymmetric modes. The cur-

rent requirement to characterize the circumferential modes

in such pipes arose from the need to design a narrow band

acoustic sensor for bubble detection for the Target Test Fa-

cility (TTF) of the Spallation Neutron Source (SNS) at Oak

Ridge National Laboratory (ORNL), TN.20 The acoustic

sensor-pair for bubble detection are installed on the wall of

the liquid-filled pipe, and they detect the bubble-induced

pressure changes, which is closely related to the dispersion

of the purely circumferential modes. The dispersion relation-

ship represents the possible eigen modes that propagate non-

axisymmetrically for a given frequency. Therefore a

summation of these modes determines the pressure on the

surface of the liquid-filled pipe where the pressure trans-

ducers that are key to the bubble detector will be mounted. A

change in the bubble population that is present within the

liquid changes the characteristics of the dispersion, which

subsequently modifies the pressure on the liquid-filled pipe.

Detection of this pressure variation forms the basis of the

bubble monitoring system. That system has to be narrow-

band because budget restrictions following the 2008 global

financial crash forced dramatic reductions in the bandwidth

of the transducers in the original bubble detector design.21

Bubble sensors are required so that the correct population

of helium bubbles can be added to the �20 tons of liquid
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mercury that are pumped through stainless steel pipelines in

the SNS.22 The correct population will reduce erosion and

extend the lifetime of the vessel that contains the mer-

cury.23,24 Each replacement of the vessel might cost around

$12M if interruption of the facility user program is taken into

account (B. Riemer, personal communication, 2012). If, as the

beam power of the facility approaches its design value,

replacement of the vessel were to be more frequent (as a result

of cavitation erosion) than that allowed for in the business plan

(when the vessel replacement schedule was based on the

embrittlement of the steel as a result of radiation damage), this

would incur significant costs not built into the original plan.

The present study firstly shows the correct and explicit

matrix elements of nonaxisymmetric modes in a liquid-filled

tube, and displays the dispersion curves in phase speed and

attenuation in Sec. II. Section III discusses the circumferen-

tial modes of the liquid-filled tube and compares the predic-

tions with those of a Finite Element simulation. In order to

lay the theoretical foundation of the narrow band acoustic

sensor that will be installed on the pipeline in SNS TTF at

ORNL, the pressure fields in the liquid-filled tube associated

with circumferential modes are investigated under a given

cross-sectional forced excitation in Sec. IV.

II. AXIALLY PROPAGATING NONAXISYMMETRIC
MODES

A. Displacement vector

Consider a system comprising of the elastic pipe filled

with water that is shown in Fig. 1. In an elastic tube that is

filled with an inviscid liquid and surrounded on the outside

of the tube by vacuum, a displacement vector ~u can be

expressed in terms of the scalar potential, /, and the vector

potential, ~w, as ~u ¼ r/þr�~w. The general solutions to

the scalar and vector potentials which satisfy the Helmholtz

equation in cylindrical coordinates are

/ðr; h; zÞ ¼ /01nðqcrÞcos nheiðkzz�xtÞ; (1a)

wrðr; h; zÞ ¼ �C2nnþ1ðqsrÞsin nheiðkzz�xtÞ; (1b)

whðr; h; zÞ ¼ C2nnþ1ðqsrÞcos nheiðkzz�xtÞ; (1c)

wzðr; h; zÞ ¼ C3nnðqsrÞsin nheiðkzz�xtÞ ; (1d)

where q2
c ¼ k2

c � k2
z and q2

s ¼ k2
s � k2

z . The wave numbers,

kc and ks are related to the circular frequency x as kc

¼ x=cc and ks ¼ x=cs, respectively, and cc and cs are the

longitudinal and shear speeds of sound in an elastic mate-

rial. The axial wave number along the axis of the cylinder

is kz.

Equations (1a)–(1d) are simplified notations of the sum-

mation of the infinite series with respect to n from n¼ 0 to

n¼1 terms. The coefficients /0, C2, and C3 are unknowns

associated with 1n and nn representing the Bessel functions

of the order n which are associated with qc (longitudinal)

and qs (shear), respectively. Since the term exp½iðkzz� xtÞ�
is common in every equation above, this is omitted for sim-

plicity, but this term is important in the calculation of the

displacement and stress tensors. The displacement vectors in

an inviscid liquid (subscripted as l) and in an elastic solid

(subscripted as e) are expressed as follows:

~ul ¼ r̂ �qlAJnþ1ðqlrÞ þ
n

r
AJnðqlrÞ

h i
cos nh

þĥ � n

r
AJnðqlrÞ

h i
sin nh þ ẑ½ikzAJnðqlrÞ�cos nh;

(2a)

~ue ¼ r̂ �qc½CJnþ1ðqcrÞ þ DYnþ1ðqcrÞ� þ n

r
½CJnðqcrÞ þ DYnðqcrÞ��ikz½EJnþ1ðqsrÞ þ FYnþ1ðqsrÞ�

n

þ n

r
½GJnðqsrÞ þ HYnðqsrÞ�

o
cos nhþ ĥ � n

r
½CJnðqcrÞ þ DYnðqcrÞ� � ikz½EJnþ1ðqsrÞ þ FYnþ1ðqsrÞ�

n

þqz½GJnþ1ðqsrÞ þ HYnþ1ðqsrÞ� �
n

r
½GJnðqsrÞ þ HYnðqsrÞ�

o
sin nhþẑfikz½CJnðqcrÞ þ DYnðqcrÞ�

þqs½EJnðqsrÞ þ FYnðqsrÞ�gcos nh; (2b)

where q2
l ¼ k2

1 � k2
z , k1 ¼ x=c1, c1 is the intrinsic sound

speed in liquid, and J and Y represent Bessel functions

of first and second kinds, respectively. During the deriva-

tion, the relationships f0nðxÞ ¼ �1nþ1ðxÞ þ ðn=xÞ1nðxÞ and

n0nþ1ðxÞ ¼ nnðxÞ � ðnþ 1Þ=xnnþ1ðxÞ are used.25 The above

result is reduced to the displacement vectors for the axi-

symmetric modes when n¼ 0 is substituted. The unknown

coefficients, A, C, D, E, F, G, and H are found from the

FIG. 1. Geometry of infinite liquid cylinder. The inner and outer radii are b
and d, respectively.
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boundary conditions. In the liquid, only Bessel functions of

first kind are considered since Yn diverges at the center

(r ¼ 0) of the tube.

B. Stress tensor

The stress tensor elements of srr, srh, and srz in cylindri-

cal coordinates can be obtained from following equations:

srr ¼ k
@ur

@r
þ ur

r
þ 1

r

@uh

@h
þ @uz

@z

� �
þ 2l

@ur

@r
; (3a)

srh ¼ l
1

r

@ur

@h
þ @uh

@r
� uh

r

� �
; (3b)

srz ¼ l
@ur

@z
þ @uz

@r

� �
; (3c)

where k and l are Lam�e constants. Substituting elements of

the displacement vector into the above equation, the stress

tensor elements in liquid and in an elastic solid are as

follows:

srrl ¼ �q1x
2AJnðqlrÞcos nh; (4a)

srhl ¼ srzl ¼ 0; (4b)

srre ¼
�
�keðq2

c þ k2
z Þ½CJnðqcrÞ þ DYnðqcrÞ�

þ 2le

qc

r
fCJnþ1ðqcrÞ þ DYnþ1ðqcrÞg þ �q2

c þ
nðn� 1Þ

r2

� �
fCJnðqcrÞ þ DYnðqcrÞg

� �

þ 2le

ðnþ 1Þikz

r
fEJnþ1ðqsrÞ þ FYnþ1ðqsrÞg � ikzqsfEJnðqsrÞ þ FYnðqsrÞg

� �

þ 2le �
nqs

r
fGJnþ1ðqsrÞ þ HYnþ1ðqsrÞg þ

nðn� 1Þ
r2

fGJnðqsrÞ þ HYnðqsrÞg
� ��

cos nh; (4c)

srhe ¼ le

2nqc

r
fCJnþ1ðqcrÞ þ DYnþ1ðqcrÞg � 2nðn� 1Þ

r2
fCJnðqcrÞ þ DYnðqcrÞg

�

þ 2ðnþ 1Þikz

r
fEJnþ1ðqsrÞ þ FYnþ1ðqsrÞg � ikzqsfEJnðqsrÞ þ FYnðqsrÞg

� 2qs

r
fGJnþ1ðqsrÞ þ HYnþ1ðqsrÞgþ q2

s �
2nðn� 1Þ

r2

� �
fGJnðqsrÞ þ HYnðqsrÞg

�
sin nh; (4d)

srze ¼ le �2ikzqcfCJnþ1ðqcrÞ þ DYnþ1ðqcrÞg þ 2nikz

r
fCJnðqcrÞ þ DYnðqcrÞg þ ðk2

z � q2
s ÞfEJnþ1ðqsrÞ þ FYnþ1ðqsrÞg

�

þ nqs

r
fEJnðqsrÞ þ FYnðqsrÞg þ

nikz

r
fGJnðqsrÞ þ HYnðqsrÞg

�
cos nh; (4e)

where q1 is density of liquid. In an inviscid liquid, the shear

stresses in the liquid vanish as shown in Eq. (4). In the solid,

the shear stress of srhe becomes zero in the axisymmetric

mode (n ¼ 0). Moreover, in the axisymmetric case, the prob-

lem is further simplified since all the terms associated with the

coefficients G and H in the normal stresses srre and srze

vanish.

C. Boundary conditions and nontrivial solutions

Neglecting the viscosity of the liquid, the boundary con-

ditions imposed on the structure in Fig. 1 are the continuity of

normal displacements, the continuity of normal stresses, and

the vanishing of the shear stresses at r ¼ b and d, respectively.

The number of unknown coefficients is seven. However,

instead of applying the continuity of normal displacements

and stresses separately, from the continuity of the ratio of

normal displacements to normal stresses, the unknown coeffi-

cient A can be eliminated. Thus, six boundary conditions are

imposed as follows, which generates six independent equa-

tions associated with six unknowns (C–H).

srrl

~ul � r̂

����
r¼b

¼ srre

~ue � r̂

����
r¼b

;
srre

~ue � r̂

����
r¼d

¼ 0;

srhejr¼b ¼ srzejr¼b ¼ 0; srhejr¼d ¼ srzejr¼d ¼ 0: (5)

From Eqs. (2)–(5), six independent equations are

obtained. The condition for obtaining nontrivial solutions to

six unknown coefficients generates the following character-

istic equation:

jdijj ¼ 0; ði; j ¼ 1–6Þ; (6)
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which states that the determinant of the 6� 6 matrix with

the element of dij should vanish. Each matrix element dij is

calculated as follows:

d11 ¼
nqc

b
Jnþ1ðqcbÞ � nðn� 1Þ

b2
JnðqcbÞ;

d12 ¼
nqc

b
Ynþ1ðqcbÞ � nðn� 1Þ

b2
YnðqcbÞ;

d13 ¼
ðnþ 1Þikz

b
Jnþ1ðqsbÞ �

ikzqs

2
JnðqsbÞ;

d14¼
ðnþ 1Þikz

b
Ynþ1ðqsbÞ �

ikzqs

2
YnðqsbÞ;

d15 ¼ �
qs

b
Jnþ1ðqsbÞ þ

q2
s

2
� nðn� 1Þ

b2

� �
JnðqsbÞ;

d16 ¼ �
qs

b
Ynþ1ðqsbÞ þ

q2
s

2
� nðn� 1Þ

b2

� �
YnðqsbÞ; (7a)

d21– d26 ¼ d11– d16jb!d; (7b)

d31 ¼ ikzqcJnþ1ðqcbÞ � nikz

b
JnðqcbÞ;

d32 ¼ ikzqcYnþ1ðqcbÞ � nikz

b
YnðqcbÞ;

d33 ¼ �PJnþ1ðqsbÞ �
nqs

2b
JnðqsbÞ;

d34 ¼ �PYnþ1ðqsbÞ �
nqs

2b
YnðksbÞ;

d35 ¼ �
nikz

2b
JnðqsbÞ; d36 ¼ �

nikz

2b
YnðqsbÞ; (7c)

d41– d46 ¼ d31– d36jb!d; (7d)

d51 ¼ qc
1þ bQn

b
Jnþ1ðqcbÞ

þ Pþ nðn� 1� bQnÞ
b2

� �
JnðqcbÞ;

d52 ¼ qc
1þ bQn

b
Ynþ1ðqcbÞ

þ Pþ nðn� 1� bQnÞ
b2

� �
YnðqcbÞ;

d53 ¼ ikz
nþ 1þ bQn

b
Jnþ1ðqsbÞ � ikzqsJnðqsbÞ;

d54 ¼ ikz
nþ 1þ bQn

b
Ynþ1ðqsbÞ � ikzqsYnðqsbÞ;

d55 ¼ �
nqs

b
Jnþ1ðqsbÞ þ

nðn� 1� bQnÞ
b2

JnðqsbÞ;

d56 ¼ �
nqs

b
Ynþ1ðqsbÞ þ

nðn� 1� bQnÞ
b2

YnðqsbÞ;

(7e)

d61– d66 ¼ d51– d56jb!d;Qn!0; (7f)

where P ¼ k2
z � k2

s =2 and

Qn ¼
q1x

2

2qec2
s

JnðqlbÞ
qlJnþ1ðqlbÞ �

n

b
JnðqlbÞ

: (7g)

In obtaining the expression for dij, the relationships ke

þ2le ¼ qec2
c and le ¼ qec2

s are used (where qe is the density

of the elastic solid). Each matrix element in the second row

(d21– d26) is obtained by replacing b with d in each element

in the first row, and this is indeed the meaning of Eq. (7b).

Likewise, each matrix element in the fourth row is obtained

by replacing b with d in each element in the third row. Ele-

ments from the first row to the fourth row are purely related

to the material properties of the elastic solid. The properties

of the liquid are contained within the elements in the fifth

row, wherein is found Qn, a parameter that is similar to the

acoustic impedance (while acoustic impedance is the ratio of

the acoustic pressure to the velocity, Qn is the ratio of the

acoustic pressure to the displacement). Since the tube wall at

r¼ b is in contact with the liquid, Qn takes a role in loading

the acoustic properties of the liquid to the tube wall. If the

volume contained in the pipe were to be vacuum, Qn

becomes 0 since q1 ! 0. Therefore, each element in the

sixth row is obtained by replacing b with d in each element

in the fifth row and taking Qn ! 0 to reflect the fact that, in

the SNS TTF scenario considered here, the material outside

of the tube (air) is approximated to be a vacuum.

Equations (7a) and (7b) are the terms associated with

sinnh. Hence, in the limit of n ¼ 0 (the axisymmetric case),

only four equations from Eqs. (7c) to (7f) are taken into con-

sideration and all the terms associated with G and H (5th and

6th columns) vanish. This is the case that corresponds to

Eqs. (4a)–(4d) in Ref. 8.

D. Dispersion curves

When the frequency and the mode index (n) are given,

the axial wave number (kz) is found to satisfy Eq. (6). Theo-

retically, throughout the entire frequency domain, there exists

an infinite number of axial wave numbers that satisfy Eq. (6).

However, for a given frequency, only a certain number of

axial wave numbers are permitted, since each mode has a cut-

off frequency that is the lowest frequency that a mode will

propagate in the tube system. Among the solutions to kz, the

largest value of kz is associated with the lowest mode, since

the phase speed of the mode is inversely proportional to the

wave number, kz. Therefore, in this study, the mode is identi-

fied by two indices n and m such as (n, m) mode where n, m
� 0. Axisymmetric modes are represented by (0, m) modes.

Figure 2 shows dispersion curves of phase (solid) and

group (dashed) speeds for several modes in a water-filled

PMMA tube which has 4.445 cm inner radius and 0.5 cm wall

thickness (for details see Refs. 11, 12, and 26). The longitudi-

nal and shear sound speeds of PMMA are 2.690 km s�1 and

1.340 km s�1, respectively. The sound speed in water used in

this calculation is 1.479 km s�1. The densities of water and

PMMA are 1000 kg m�3 and 1190 kg m�3, respectively. Since

PMMA is an acoustically very lossy material, the longitudinal

and shear absorptions of PMMA were included in our calcula-

tions. For the acoustic properties and details of the material

damping of the PMMA, see Ref. 27. The dimensionless coor-

dinate used along the horizontal axis in the graphs (k1b) is the

product of the wavenumber in the liquid and the inner radius.

The vertical axis in the graphs shows the phase speed (cp) and

1228 J. Acoust. Soc. Am., Vol. 133, No. 3, March 2013 Baik et al.: Propagation in liquid-filled pipes

Downloaded 04 Jul 2013 to 152.78.240.208. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



group speed (cg) normalized by the speed of sound in liquid

(c1). The axisymmetric modes in Fig. 2(a) were obtained

when n¼ 0. The nonaxisymmetric modes are displayed in

Figs. 2(b)–2(d). While the two lowest axisymmetric modes

exist at the zero-frequency limit, all the nonaxisymmetric

modes exhibit cut-off frequencies, meaning that such a mode

only propagates above its cut-off frequency. While phase

speeds diverge at their cut-off frequencies, the group speeds

converge to 0.

Figure 3 shows the theoretical prediction for the

attenuation of each mode (in dB m�1), plotted against the

dimensionless product of the wavenumber in the liquid and

the inner radius for the same water-filled PMMA tube as was

used for Fig. 2. The attenuation was calculated by replacing the

real longitudinal and shear wave numbers in the elastic solids,

kc, ks, and real wave number in the liquid, k1, with complex

wave numbers k0c, k0s, and k01, respectively. This is done by

including the material absorption of the elastic solid in kc and

FIG. 2. Dispersion curves of phase speed (solid)

and group speed (dashed) of modes for water-

filled PMMA tube. (a) The first few axisymmet-

ric modes and (b)–(d) some nonaxisymmetric

modes.

FIG. 3. Dispersion curves of attenuation of

modes for water-filled PMMA tube. (a) The

first few axisymmetric modes and (b)–(d)

some nonaxisymmetric modes.
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ks, and including viscosities and thermal conductivities of the

liquid in k1, as is explained in Ref. 11. When the complex wave

numbers, k0c, k0s, and k01 are substituted into the matrix elements

in Eq. (7), the solution to kz is found in the complex space, and

its real and imaginary parts determine the phase speed and the

attenuation, respectively.

Nonaxisymmetric modes can be experimentally

observed in the k � x space that is obtained using a two-

dimensional (spatially and temporally) Fourier transform of

hydrophone measurements taken along the axis of the tube

as explained in Ref. 11. Figure 4(a) shows the measured

k � x map in the water-filled PMMA tube, using the experi-

mental method described in Ref. 11. The color scheme repre-

sents the signal amplitude in a dB scale. The bright features

represent the dominant modes existing in the water-filled

PMMA tube: three axisymmetric modes and three nonaxi-

symmetric modes are labeled in Fig. 4(a). For clarity, the

theoretical predictions of Eq. (6) are not overlaid on these

experimental data but instead are plotted below them in

Fig. 4(b). The open circles in Fig. 4(b) are measurements

which represent the locations of the bright features in

Fig. 4(a) and show good agreement with the theoretical pre-

dictions (solid curves). For reasons explained in Ref. 11,

each measured mode is only visible over particular fre-

quency bands in Fig. 4(a), even though the predictions of

Eq. (6) suggest continuous curves in Fig. 4(b). Furthermore

some predicted modes in Fig. 3(b) are not observable at all

in the measured data in Fig. 4(a). Other modes such as (2, m)

and (3, m) etc. are not observed in this measurement.

Comparing Fig. 4(a) to Fig. 4(b), nonaxisymmetric modes as

well as axisymmetric modes are clearly observed and the

theoretical calculations correspond very well to the measure-

ments, which validates the theory presented in this study.

III. CIRCUMFERENTIALLY PROPAGATING MODES

A. Characteristic equation

Circumferential modes can be obtained from Eqs. (6)

and (7) by substituting into them kz ! 0. This causes the

motion of the particles in the liquid and the solid to be purely

cross-sectional. In this limit, the matrix elements in Eqs.

(7a)–(7f) are simplified. Moreover, following matrix ele-

ments become zero:

d13 ¼ d14 ¼ d23 ¼ d24 ¼ d53 ¼ d54 ¼ d63 ¼ d64jkz!0 ¼ 0;
d31 ¼ d32 ¼ d35 ¼ d36 ¼ d41 ¼ d42 ¼ d45 ¼ d46jkz!0 ¼ 0:

(8)

This causes the determinant of the matrix to be the product

of the determinants of 4� 4 and 2� 2 matrices. The ele-

ments of the 4� 4 matrix are provided by all the nonzero

elements in the 1st, 2nd, 5th, and 6th rows. The elements of

the 2� 2 matrix are provided by all the nonzero elements in

3rd and 4th rows. Consequently, the characteristic equation

[Eq. (6)] for the circumferential modes is expressed as

d011 d012 d015 d016

d021 d022 d025 d026

d031 d032 d055 d056

d041 d042 d065 d066

����������

����������
d033 d034

d043 d044

�����
����� ¼ 0; (9)

where all the primed notation denotes the value of the matrix

element in the limit of kz ! 0. Equation (9) shows that there

exist two kinds of circumferential waves. One is the wave

satisfying the condition when the first determinant is zero

(plane-strain vibration), and the other is the wave satisfying

the condition when the second determinant is zero (longitu-

dinal-shear vibration).13 In particular, the second determi-

nant in Eq. (9) is briefly expanded as follows:

bdk2
s Lnþ1;nþ1ðksÞ � ndksLnþ1;nðksÞ � nbksLn;nþ1ðksÞ
þ n2Ln;nðksÞ ¼ 0; (10)

where LmnðyÞ is the Wronskian defined by LmnðyÞ
¼ JmðdyÞYnðbyÞ � JnðbyÞYmðdyÞ. Equation (10) is solely de-

pendent on the shear wave number, ks, and this means that

the longitudinal speed in the tube material does not contrib-

ute to this kind of vibration. Equation (10) is not applied to

the axisymmetric mode (n ¼ 0) since the characteristic equa-

tion for the axisymmetric modes cannot be resolved in this

way. When the first determinant is 0, the resulting character-

istic equation is dependent on both the longitudinal and shear

speeds of the tube material.

The phase speed of the circumferential wave at n ¼ 0 is

infinite since it is inversely proportional to the mode index, n.

At a given frequency, x, the phase speed of the circumferen-

tial wave (creeping wave), cf , normalized by the intrinsic

speed of sound in liquid, c1, is found from the relation of

FIG. 4. (Color online) (a) Two-dimensional spectrum of the measured signal

array along the axis of the water-filled PMMA tube (Ref. 11) and (b) theoretical

loci of the axisymmetric and nonaxisymmetric modes that are observed in (a).

1230 J. Acoust. Soc. Am., Vol. 133, No. 3, March 2013 Baik et al.: Propagation in liquid-filled pipes

Downloaded 04 Jul 2013 to 152.78.240.208. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



cf =c1 ¼ k1d=n (where d is outer radius of the tube), where n
satisfies Eq. (9).19 Consequently, the number, n, need not

necessarily be an integer, but it does need to be real when

there is no absorption (to account for finite absorption, this

number can be extended to the complex space). In particular,

when n becomes integer, the system resonates and the corre-

sponding frequency becomes a resonance frequency. The

resonance condition is imposed when the circumference of

the tube is the same as a multiple of the wavelength of the

creeping wave.

B. Dispersion relation

Figure 5 uses Eq. (9) to calculate the phase velocity of

circumferential waves on a water-filled PMMA cylinder

which has the same dimension as that used in the calculation

of Fig. 2. Figure 5 plots the phase speed (normalized by the

speed of sound in water) as a function of the product of the

wavenumber in water and the outer radius. There exist infi-

nite numbers of circumferential modes. Plane-strain modes

are denoted by PSm where m is modal index, and the

longitudinal-shear mode is denoted by LS.13 While an infi-

nite number of PS loci exist, there is only one LS loci

obtained from Eq. (9). PS curves are obtained from the first

determinant of Eq. (9). The LS mode which is explicitly

shown in Eq. (10) gives only one solution, which is almost

constant throughout the frequency. The phase speed of the

PS1 mode becomes 0 at the zero frequency limit and

increases with increasing frequency. Other modes (PS2 and

higher) diverge as frequency decreases and their phase speed

become infinite at their cut-off frequencies.

C. Resonance frequency and the shape of the modes

The resonance frequencies of the modes can be obtained

using two methods. One approach is to find, from Fig. 5, the

frequencies where the circumference of the tube equals an

integer number of multiples of the wavelength of the mode

(the principle of phase matching).19 This method can be

readily applied to a cylinder or a thick shell. Since the wave-

length of the circumferential wave is approximately given

by 2pd=n for a thin-walled pipe, n should be an integer to

satisfy the condition that the circumference of the tube is an

integer number of multiples of the wavelength. Conse-

quently, the resonance frequency can be found by searching

the intersection of the curves in Fig. 5 with the following

function by varying the index, n, as 1, 2, 3,…

cf

c1

¼ kd

n
: (11)

The other method of finding the resonance frequencies

is by using Eq. (9) directly. Substituting n ¼ 0; 1; 2; …

into either the first or the second determinant, the frequency

which satisfies Eq. (9) is a resonance frequency.

The integer index n is related to the shape of the motion

where creeping waves that exhibit such displacement display

resonance frequencies. In such a condition, the circumfer-

ence of the tube becomes equal to an integer multiple of the

wavelength when the index n is an integer. Each value of

n¼ 0 through 3 corresponds to the cross-sectional motion of

the tube as shown in Fig. 6, which was obtained through sim-

ulation of the eigen modes of the water-filled PMMA tube.

This simulation was made by the Finite Element Method

through the commercial software of COMSOL. The defor-

mation of the structure is exaggerated to show the mode

shape of the tube. The bright to dark grey scheme represents

the positive to negative magnitude of the normal stress in the

liquid (which is the acoustic pressure multiplied by �1) and

the tube material. The breathing mode (n¼ 0), translational

mode (n¼ 1), dipole mode (n¼ 2), and tripole mode (n¼ 3)

are illustrated in Figs. 6(a)–6(d), respectively. As the mode

FIG. 5. Phase speed of the circumferential waves on water-filled PMMA

cylinder.

FIG. 6. Finite Element simulation for the cross-sectional mode of the water-

filled PMMA tube surrounded by vacuum at each resonance frequency. The

resting positions of the inner and outer tube walls are shown by the two con-

centric circles on each panel. The bright to dark color scheme represents the

positive to negative magnitude of the acoustic pressure in the liquid (which

is the normal stress multiplied by �1) and the normal stress in the tube.

Wall displacement was exaggerated to show the mode shape clearly.
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number, n, increases, the number of nodes and the anti-

nodes also increases.

Figure 7 plots the resonance frequencies of some modes

against the mode indices, n, comparing several resonance

frequencies for the water-filled PMMA tube predicted by the

theory (filled circles) and by the Finite Element simulation

(open circles) which used a 2D frequency domain Acoustic-

Solid interaction module provided by COMSOL with quad

mesh having a maximum element size of 2.8 mm. The COM-

SOL’s Eigen-frequency solver was used to determine the res-

onance frequencies. The dimension of the tube system is the

same as that at the ORNL, which is, 6.4097 cm inner radius

and 0.6553 cm wall thickness. Each mode is denoted by

modal index (n, m). The Finite Element simulation (FEM)

shows an excellent agreement with the calculations predicted

by the theory proposed in the current study.

IV. FORCED OSCILLATION

A. External excitation and boundary condition

When an external excitation is applied to the fluid-filled

tube, its response changes as a function of frequency. Such

excitation may be axial or cross-sectional. In this study,

only the cross-sectional excitation (which is independent of

axial coordinates) is assumed to exist. Consequently the

applied pressure P1 is expressed as P1 ¼ P1ðhÞexpð�ixtÞ
where h is azimuthal angle. When the source excites the

tube symmetrically with respect to h ¼ 0 as shown in

Fig. 8(a), the applied pressure is expanded by Fourier series

as follows:

P1 ¼
X1
n¼0

p1ncosnh; p1n ¼
en

p

ðp

�p
P1ðh0Þcos nh0dh0;

(12)
where en is 1 at n¼ 0, and en¼ 2 for all other values of n. In

this situation, the boundary condition changes at r¼ d owing

to the presence of the external pressures. Thus, from Eqs.

(4c) and (12), the continuity of the normal stress at r ¼ d
(when kz ! 0) gives

kc

d
Jnþ1ðkcdÞ þ � k2

s

2
þ nðn� 1Þ

d2

� �
JnðkcdÞ

� �
C

þ kc

d
Ynþ1ðkcdÞ þ � k2

s

2
þ nðn� 1Þ

d2

� �
YnðkcdÞ

� �
D

þ � nks

d
Jnþ1ðksdÞ þ

nðn� 1Þ
d2

JnðksdÞ
� �

G

þ � nks

d
Ynþ1ðksdÞ þ

nðn� 1Þ
d2

YnðksdÞ
� �

H ¼ p1n

2le

:

(13)

The right-hand side of the equation represents the forcing

term. Therefore, the equation of the cross-sectional motion

of the system (when kz ! 0) imposed by the forced oscilla-

tion on the outer surface of the tube is described as

d011 d012 0 0 d015 d016

d021 d022 0 0 d025 d026

0 0 d033 d034 0 0

0 0 d043 d044 0 0

d051 d052 0 0 d055 d056

d061 d062 0 0 d065 d066

2
666666664

3
777777775

C

D

E

F

G

H

2
666666664

3
777777775
¼

0

0

0

0

0

p1n=ð2leÞ

2
666666664

3
777777775
:

(14)

FIG. 7. Comparison of the resonance frequencies of water-filled PMMA

tube found from the theory (filled circles) and the FEM simulation (open

circles). At each mode, resonance frequencies predicted by the theory devel-

oped in the current study exactly correspond to the FEM calculations.

FIG. 8. (a) Configuration of the forced excitation of the tube and (b) geome-

try of the actual coupling cap used by TTF SNS to excite the outer surface

of the tube. The area in contact with the coupling cap is characterized by the

angle /. Inside this area of contact, the partial wave cannot change its phase

if the source is piston-like.
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Equation (14) determines the value of coefficients, C, D, E,

F, G, and H explicitly. In the calculation of the coefficients,

the elements, d033; d034; d043; d044 do not affect the calcula-

tion. This is because the determinant composed of such ele-

ments is a common factor in this calculation of the

coefficients. This in turn is a consequence of the property

that the determinant of the 6� 6 matrix can be resolved as

the product of determinants of two matrices as shown in

Eq. (9). When those coefficients are substituted into Eqs. (2)

and (4) (when kz ! 0), the displacements and stress ele-

ments in the liquid and the elastic solid can be calculated. As

is evident in Eq. (14), the value of the coefficients E and F
are 0. The value of the coefficient A can be obtained from ei-

ther continuity of the normal displacement or the normal

stress at the inner wall of the tube (r¼ b).

B. Point source and actual source

In the geometry in Fig. 8, the Fourier coefficient p1n is

defined by the kind of source and therefore may take various

forms. As a first example, suppose that there is an ideal point

source at h ¼ 0, which can be configured as P1ðh0Þ
¼ Ppoint

10 dðhÞ. In cylindrical coordinates, the delta function

with respect to the azimuthal angle is defined as

dðhÞ ¼ 1

2p

X1
n¼�1

einh ¼ 1

2p
þ 1

2p

X1
n¼1

ðeinh þ e�inhÞ

¼ 1

2p

X1
n¼0

encosnh: (15)

The delta function is therefore automatically decomposed by

the terms with mode index, n, thus, relating Eq. (15) with

Eq. (12),

P1 ¼ Ppoint
10 dðhÞ ¼

XPpoint
10

2p
encosnh ¼

X
p1ncosnh;

(16)

and coefficient, p1n is calculated as

p1n ¼
Ppoint

10 en

2p
: (17)

However, in the practical instrument for SNS TTF that this

paper underpins, the source is not so simple. A coupling cap

(flat on one side, and curved to match the outer wall of the

pipe on the other; Fig. 8) is placed between the flat faceplate

of the transducer and the outer wall of the pipe (otherwise

the curvature of the pipe wall would mean that only a small

proportion of the transducer faceplate would be in contact

with the pipe wall). In such a geometry, P1ðh0Þ is represented

by Pactual
10 when jh0j � / and 0 otherwise. When this is substi-

tuted into Eq. (12), the coefficient p1n is

p1n ¼
en

p

ð/

�/
Pactual

10 cosnh0dh0 ¼ 2Pactual
10 en

p
/

sinn/
n/

� �
:

(18)

Comparing this with the scenario when a point source is

used, as shown in Eq. (17), the coefficient p1n when the

actual source is used contains a sinc function. From Fig. 8,

the angle / is simply calculated by / ¼ sin�1ðh=dÞ where h
is half width of coupling cap.

C. Truncation of infinite sum and pressure
distribution

From Eq. (14), the coefficients C, D, E, F, G, and H, can

be explicitly calculated. The coefficients E and F are 0.

When those are substituted into Eq. (4) in the limit of

kz ! 0, the values of srre, srhe, and srze are obtained. Among

them, srze vanishes since kz ! 0 and the coefficients E and F
are 0. The pressure in the liquid is calculated by knowing the

value of coefficient, A, which is deduced from the continuity

of normal displacement in the limit of kz ! 0, that is,

�k1Jnþ1ðk1bÞ þ n

b
Jnðk1bÞ

h i
A

¼ �kcJnþ1ðkcbÞ þ n

b
JnðkcbÞ

h i
C

þ �kcYnþ1ðkcbÞ þ n

b
YnðkcbÞ

h i
D

þ n

b
JnðksbÞ

h i
Gþ n

b
YnðksbÞ

h i
H: (19)

Once the value of A is known, the normal stress in the liquid

can be also calculated. Since viscosity is disregarded, the

shear stresses in the liquid are zero. The total stress is the

sum of each term with the index n. Theoretically, the sum-

mation may need many terms since so many modes can exist

for a given excitation. However, in the numerical regime,

the summation should be truncated using criteria that are

based upon the size of the actual excitation depicted in

Fig. 8. Suppose the acoustic source is generally piston-like

and driving a coupling cap whose side facing the outer tube

wall is machined to fit to the curvature of the tube. For a

given excitation, there exist several circumferential modes.

However, the number of existing modes is finite because of

the size of the coupling cap. The area of the tube in contact

with the coupling cap is characterized by the angle /. Within

this area, it may not be possible to excite a mode whose

wavelength changes its phase over the dimension of the cou-

pling cap because the source is piston-like. Although the

actual coupling cap is not rigid but plastic, the surface of the

acoustic source/receiver that is in contact with the coupling

caps is a metal (aluminum) and they are tightly mounted on

the outer wall of the tube. Because of this, the effect of sud-

den phase changes of the mode within the size of the plastic

coupling cap is minor. Thus, as shown in Fig. 8(b), the mini-

mum wavelength is formed when its half wavelength equals

to the width of the coupling cap since it does not changes the

sign of its phase as indicated by the dash-dot curve in the

picture. Therefore, the condition that the mode can be

excited is characterized by the following equation:

k
2
� 2d/: (20)

The wavelength k is related to the mode index, n, as

nk ¼ 2pd. When this is substituted into Eq. (20) and the result

arranged with respect to the mode index, n, it becomes
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n � p
2/

; (21)

where / ¼ sin�1ðh=dÞ. Therefore, the maximum mode index

that can be excited is the integer satisfying the condition in

Eq. (21). For example, when / ¼ p=6, the maximum mode

number is 3 and the summation of the series to calculate the

stress elements should be truncated at 3. As the angle /
increases, the maximum of n decreases. Consequently, when

/ shrinks to zero to make an ideal point source, the maxi-

mum value of possible n becomes infinite, and the stress ele-

ments are given as the summation over the infinite series.

D. Distribution of stress

Figure 9 shows the continuous change of the values

between the acoustic pressure in the liquid and the normal

stress of the pipe for the water-filled PMMA tube system [as

shown in Eq. (4a), acoustic pressure in the liquid is the nega-

tive of the normal stress]. Different sizes of coupling cap

(the outlines of which are drawn either side each pipe) are

characterized by the angle /. The bright to dark color

scheme represents the positive to negative amplitude of the

normal stress. The frequency of the excitation is fixed at

38 kHz. It was assumed that there was no absorption in water

or the tube material. Figures 9(a)–9(d) show the magnitudes

of the normal stress at given angles of / ¼ p=10, / ¼ p=6,

/ ¼ p=4, and / ¼ p=3, respectively, which is related to the

size of coupling cap that is drawn in outline either side of

the pipe. The magnitude of the applied pressure Pactual
10 to the

tube wall was set as 1 Pa. The color scheme represents the

amplitude of the normal stress in Pascals. The horizontal and

vertical position axes are normalized with respect to the

outer diameter of the tube. The coupling cap excitation

against the wall is introduced and its center is located at the

coordinates (1, 0). Two concentric rings represent the inner

and the outer boundary of the PMMA tube filled with water.

As / increases (nmax decreases), the normal stress distribu-

tion becomes axisymmetric. In all cases, the stress distribu-

tion is symmetric with respect to both x- and y-axes.

Whilst an infinite number of possible panels could be

produced for Fig. 9, four sizes of the coupling caps were

selected to show the clear change of the acoustic pressure in

the liquid from nonaxisymmetric to axisymmetric distribu-

tions as the size of the coupling caps increases (from when

the coupling cap fits the size of the smallest transducer face-

plate used, to when it covers most of the pipe wall). The four

panels show that, for a given frequency (here 38 kHz, the

resonance of the smallest transducer used), the size of the

coupling cap strongly influences the pressure field in

the pipe in the absence of bubbles. The capability to model

the bubble-free sound field is important because, when

bubbles are added, the local pressure in the liquid at their

location is scattered off the bubble and impinges upon the

pipe wall (and in turn is partially scattered back onto the

bubble28,29). The contribution made by bubbles to the pres-

sure field at the pipe wall changes the boundary condition

imposed on the liquid-tube interface. Changes in this bound-

ary condition are reflected as changes in the pressure

detected by acoustic sensors mounted on the outer surface of

the tube, and it is this that is used here to monitor for the

presence of bubbles. The principle would work for other

scatterers, but the potency of bubble sources would mean

they would likely dominate if present. In SNS TTF bubbles

are the only inhomogeneities present in the liquid.

Figure 10 shows the shear stress, srh, distribution for the

PMMA tube filled with bubble-free water for different sizes

of coupling cap characterized by the angle /. As in Fig. 9, the

magnitude of the applied pressure Pactual
10 to the tube wall was

set as 1 Pa and bright to dark color scheme represents the pos-

itive to negative amplitude of the shear stress in Pascals. The

frequency of the excitation is fixed as 38 kHz. Since no vis-

cosity is assumed, the shear stress in water is 0. The shear

stress, srz is automatically 0 in purely cross-sectional prob-

lems. Looking at the distribution of the shear stress, as /
increases (nmax decreases), the number of nodes distributed

along the tube decreases since the mode behaves more axi-

symmetrically, which decreases the level of the shear stress.

In the extreme case that nmax is less than 1 (the axisymmetric

case), the shear stress vanishes even inside the tube walls

since srh is automatically 0 when n¼ 0. This explains the low

values seen in Fig. 10(d) compared to Fig. 10(a). The absorp-

tion of PMMA takes a negligible role in the circumferentially

formed stress due to the very short dimension of the pipe

cross section compared to the material absorption. The even-

tual usage of the forced excitation is intended for the steel

pipelines where the material absorption is much smaller than

that of PMMA tube. For this reason the absorption of PMMA

was neglected in these simulations since, when transferred to

the actual ORNL SNS TTF case, the absorption parameter

would be set to 0. Hence the simulations here neglect the

effect of absorption in the calculation of stress.

Whereas Fig. 9 showed finite acoustic pressures (the

negative of the normal stress) in the liquid, in Fig. 10 there is

FIG. 9. (Color online) Normal stress in water and PMMA under acoustic ex-

citation of 38 kHz and applied pressure Pactual
10 of 1 Pa. Bright to dark color

scheme represents the positive to negative amplitude of the stress in Pa. The

coupling cap excitation against the wall is introduced and its center is

located at the coordinates of (1, 0) in the picture. The edge of the coupling

cap is superimposed on the plot using thick solid black lines to the left and

right of the pipe. Different values of / are chosen as (a) / ¼ p=10, (b)

/ ¼ p=6, (c) / ¼ p=4, (d) / ¼ p=3, respectively, to investigate the effect of

/ on the stress distribution.
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of course no stress (shear stress) in the liquid (because of

course it is assumed to be inviscid). As a result, bubbles in

an inviscid liquid cannot affect the shear stress in the pipe

wall, and consequently the detector will be based on the nor-

mal stresses in the wall.

The contract with ORNL required that the device be taken

to ORNL, fitted to SNS TTF, and measure bubbles. However

the cost and hazard of building a 1:1 scale test rig in South-

ampton using flowing mercury in steel pipelines was prohibi-

tive, and so modeling was undertaken to test whether a

suitable 1:1 scale model could be built using flowing water in

PMMA pipelines. To do this the acoustic pressure in the liquid

and the normal stress in the pipe material were plotted in

Fig. 11 (for bubble-free water in PMMA pipes) and in Fig. 12

(for bubble-free mercury in steel pipes) for the four frequen-

cies at which the sensors operated [(a) 38 kHz, (b) 128 kHz,

(c) 220 kHz, and (d) 245 kHz], for the size of coupling cap

that was actually used. The objective was to determine the dif-

ferences in the stress generated in the two cases. This was to

allow assessment of the modifications that would be needed to

be made to a sensor that had been tested and calibrated on a

water-filled PMMA pipe, when those sensors were deployed

on ORNL’s mercury-filled steel pipes. The dimensions of the

tube systems in Figs. 11 and 12 are the same as those of the

steel/mercury tube in ORNL, that is, 6.4097 cm inner radius

and 0.6553 cm thickness (the dimensions used to build the 1:1

PMMA/water model at Southampton).

Figure 11 shows the continuous change of the values

between the acoustic pressure in the liquid and the normal

stress of the pipe for the PMMA tube filled with water at the

four frequencies. Four frequencies were selected to show the

strong concentration of the acoustic pressure in the liquid

along the direction that the sensors are facing with each other

as the excitation frequency increases. The bright to dark color

scheme represents the positive to negative amplitude of the

normal stress in Pascals. The material parameters are the

same as those in Figs. 9 and 10. The magnitude of the applied

pressure Pactual
10 to the tube wall was set at 1 Pa. The angle /

was fixed so that h is 2.1 cm, which means that nmax is fixed

and, with this system dimension, nmax is 5. In order to show

the features clearly, the color bar in each panel extends from

the minimum to the maximum amplitude of each stress distri-

bution. As the frequency increases, more nodes are formed

inside the tube along the radial direction, since higher fre-

quencies are associated with smaller wavelengths.

Figure 12 shows the continuous change of the values

between the acoustic pressure in the liquid and the normal

stress of the pipe for the steel tube filled with liquid mercury

FIG. 10. (Color online) Shear stress srh in water and PMMA under acoustic

excitation of 38 kHz and applied pressure Pactual
10 of 1 Pa. Bright to dark color

scheme represents the positive to negative amplitude of the stress in Pa. The

coupling cap excitation against the wall is introduced and its center is located

at the coordinates of (1, 0) in the picture. The edge of the coupling cap is

superimposed on the plot using thick solid black lines to the left and right of

the pipe. Different values of / are chosen as (a) / ¼ p=10, (b) / ¼ p=6, (c)

/ ¼ p=4, (d) / ¼ p=3, respectively, to investigate the effect of / on the stress

distribution. Since no viscosity was assumed, the shear stress in water is zero.

FIG. 11. (Color online) Normal stress in water and PMMA tube with the same

dimension of the ORNL pipeline under different acoustic excitation of (a)

38 kHz, (b) 128 kHz, (c) 220 kHz, and (d) 245 kHz, respectively. Bright to

dark color scheme represents the positive to negative amplitude of the stress in

Pa. The coupling cap excitation against the wall is introduced with the applied

pressure Pactual
10 of 1 Pa, and its center is located at the coordinates of (1, 0) in

the picture. The edge of the coupling cap is superimposed on the plot using

thick solid black lines to the left and right of the pipe. Angle / was fixed

throughout the figure by / ¼ sin�1ðh=dÞ where d¼ 7.065 cm and h¼ 2.1 cm.

FIG. 12. (Color online) Normal stress in mercury and steel under different

acoustic excitation of (a) 38 kHz, (b) 128 kHz, (c) 220 kHz, and (d) 245 kHz,

respectively. Bright to dark color scheme represents the positive to negative

amplitude of the stress in Pa. The coupling cap excitation against the wall is

introduced with the applied pressure Pactual
10 of 1 Pa, and its center is located

at the coordinates of (1, 0) in the picture. The edge of the coupling cap is

superimposed on the plot using thick solid black lines to the left and right of

the pipe. Angle / was fixed throughout the figure by / ¼ sin�1ðh=dÞ where

d¼ 7.065 cm and h¼ 2.1 cm.
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for the same four excitation frequencies as Fig. 11. The bright

to dark color scheme represents the positive to negative am-

plitude of the normal stress. The material parameters used in

the calculation are as follows: The densities of steel and mer-

cury are 7900 kg m�3 and 13 500 kg m�3, respectively. The

shear and longitudinal wave speeds in steel are 5675 m s�1

and 3140 m s�1, respectively, which makes the Poisson’s ratio

of the material take a value of 0.2792. The intrinsic sound ve-

locity in mercury is assumed to be 1451 m s�1. Comparing

Fig. 12 with Fig. 11, the patterns at each frequency are very

similar with each other. This similarity is used to justify build-

ing a 1:1 scale model of the mercury-filled steel pipework of

TTF SNS out of water-filled PMMA pipes of the same dimen-

sion, in order to provide a safe (mercury-free) test bed for the

sensor before it was transported out to ORNL, Tennessee.

V. CONCLUSION

A theory to describe the dispersion curves for the axially

propagating nonaxisymmetric modes in liquid-filled tube

was developed and compared with measurements. This

theory was applied to the dispersion curve for the circumfer-

ential modes. The resonance frequency of each circumferen-

tial mode was calculated and compared with the Finite

Element results. The stress distributions in the liquid and the

tube were theoretically calculated by the summation of the

circumferential modes when acted upon by an external

acoustic source which drives the outer surface of the tube.

The code was used to justify the building of an inexpensive,

safe 1:1 scale model of ORNL’s SNS TTF consisting of

water in PMMA pipes, in order to provide a test bed for the

sensors, prior to their being transported to Tennessee for use.
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