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Abstract 
 
The sharply tuned sense of hearing in humans is believed to be due to active mechanical 
amplification in the cochlea. One apparently natural consequence of this ‘cochlear amplifier’ is 
the existence of spontaneous otoacoustic emissions (SOAEs), narrow-band tones that are 
detected in the ear canals of approximately half of all normal-hearing individuals. Authors have 
argued that SOAEs are created by multiple reflections between the middle ear boundary and a 
dense array of inhomogeneities scattered throughout the cochlea. This theory is contrary to 
previous ideas which assume independently unstable oscillators in the cochlea. 

This work uses a state space formulation of the cochlea to test the predictions of the 
multiple-reflection theory of SOAE generation in humans. In this model, the local mechanics of 
discretized segments of the cochlea are represented by lumped elements. Each section includes 
a frequency-dependent active feedback loop which enhances the motion of the basilar 
membrane (BM), a thin sheet that divides the cochlea into two fluid-filled chambers. The 
activity of adjacent segments of the model is coupled together by the cochlear fluid. The linear 
stability of the cochlear model is evaluated by calculating the eigenvalues of the system matrix. 

Instabilities arise across a wide bandwidth of frequencies when the smooth spatial 
variation of BM impedance is disturbed. The salient features of the multiple-reflection theory 
are observed in this active model given perturbations in the distribution of feedback gain along 
the cochlea. Spatially random gain variations are used to approximate what may exist in human 
cochleae. The average spacings of adjacent unstable frequencies agree with the most commonly 
observed value in human SOAE data. Nonlinear time domain simulations of unstable models 
illustrate how instabilities in the cochlea develop into limit cycles similar to SOAEs. 

1. INTRODUCTION 

The cochlea is the fluid-filled auditory organ located in the inner ear; it is responsible for 
converting mechanical motion induced by acoustic waves, impinging on the eardrum and 
passing through the middle ear to the cochlea’s oval window, into electrical impulses which are 
interpreted by the brain.  A partition known as the basilar membrane (BM) divides the cochlea 
into two fluid-filled chambers, or scalae.  The BM is most stiff near the base of the cochlea (by 
the oval window) and less so toward the apex.  This results in a passive mechanical tuning 
where higher frequencies resonate near the base, and lower frequencies at the apex.  This tuning 
in frequency and position along the cochlea is further sharpened by an active process known as 
the cochlear amplifier (CA).  The CA also enables humans to detect extremely quiet sounds on 
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the order of 0 dB SPL in the ear canal. 
The strongest direct evidence in support of the existence of a CA has long been the 

discovery of spontaneously emitted narrow-band tones, first detected in the ear canal of humans 
by Kemp in 1979[1].  These tones are denoted spontaneous otoacoustic emissions (SOAEs).  It 
is now widely accepted that the outer hair cells situated in the organ of Corti are the driving 
force of the CA, and actively enhance the motion of the basilar membrane (BM) [2]. However, 
the precise mechanism underlying the generation of SOAEs is still in debate.  A further mystery 
is that there is a commonly observed value in the average log-normalised spacing between 
SOAE frequency neighbours, termed the preferred minimum distance (PMD). 

Zweig and Shera [3] propose that SOAE production is due to multiple reflections of the 
travelling wave between a dense array of inhomogeneities in the cochlea and the middle ear 
boundary.  In this theory, the PMD between SOAE frequencies arises naturally due to the 
characteristics of the travelling wave in the cochlea.  The authors of [3] demonstrate this theory 
with a phenomenological model of the cochlea; in contrast, the present paper uses a state space 
formulation of a mathematical model of cochlear mechanics to evaluate the validity of these 
ideas. 

2. METHODS 

2.1 Model Description 
 
The state space model of the human cochlea is based on the formulation of [4], with a number of 
revisions to the original parameters given in [5].  The complete list of revisions can be found in 
[6].  This section gives a brief outline of the model and its formulation, while more curious 
readers are directed to the aforementioned references. 

The cochlea is modelled as a box which is divided into 500 sections.  Each section of the 
BM is represented by a lumped element model, shown in Figure 1.a.  The values of the springs 
and dampers vary as a function of position along the cochlea and are given in [6]; the masses are 
assumed to be constant.  The active feedback force is a pressure acting on the BM that is 
dependent on the relative displacement and velocity between the two masses—M1 which 
represents the BM, and M2 which represents the tectorial membrane, a gelatinous membrane 
positioned over the BM.  The ‘micromechanical’ models act independently of each other, and 
are coupled via the cochlear fluid, as shown in the macromechanical model in Figure 1.b. 

 

 
Figure 1.a-b Micromechanical model (a. left) and macromechanical model (b. right). 
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A wave equation describes the motion of the travelling wave in the cochlea, and the model 
has boundaries at the base (middle ear impedance) and apex (helicotrema—a hole at the end of 
the partition that equalizes the pressure between the two fluid channels in the cochlea).  A finite 
difference approximation is used to discretize the spatial derivatives in the wave equation and 
boundary conditions of the cochlea.  The local activity of the cochlear partition segments is 
related to the fluid mechanics by: 

 ( ) ( ) ( )t t− =Fp w q t , (1) 

where  and  are the vectors of pressure differences and cochlear partition 

accelerations, F is the finite-difference matrix that approximates the wave equation and 
( )tp ( )tw

( )tq  is 
the vector of source terms.  The cochlear micromechanics of isolated partition segments are 
described by individual matrices.  When Equation (1) is substituted into an equation combining 
all the uncoupled elemental matrices, the coupled model of the cochlea can be described by the 
state space equations 

 ( ) ( ) ( )t t= +x Ax Bu t , (2) 
and 
 ( ) ( ) ( )t t= +y Cx Du t , (3) 

where A is the system matrix,  is the vector of state variables, B is the input matrix, ( )tx ( )tu  

is a vector of inputs proportional to ( )tq , ( )ty  is the output variable (selected by C), C is the 
output matrix, and D is an empty feed-through matrix.  A complete description of these 
matrices can be found in [4]. 
 The stability of the model can be determined by calculating the eigenvalues of the A 
matrix, which are the system poles.  Figure 2 shows the stability for the nominal cochlea with 
the micromechanical feedback gain, γ, set equal to 1 at all locations along the cochlea.  Note 
that these poles have been re-oriented such that frequency runs along the x-axis in kHz and σ 
along the y-axis.  σ corresponds to the system response’s rate of growth or decay at a given 
frequency; any poles with a positive value of σ will result in system instability at that frequency. 

 
Figure 2. Stability plot of the nominal cochlea; micromechanical feedback gain vs position inset. 
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2.2 Predictions of Zweig and Shera [3] 
 
According to [3], only frequencies with responses that undergo an integer number of cycles of 
phase change while propagating back and forth between the middle ear boundary and a cochlear 
reflection site will interfere constructively across multiple reflections, thus becoming unstable.  
Furthermore, the response must peak in the region of the cochlear inhomogeneity such that 
enough energy is reflected to overcome the damping between the reflection sites.  It is believed 
that the average distance between resonant positions of SOAEs along the cochlea is related to 
the characteristics of the travelling wave in its peak in the following manner: 

 1
2

SOAE peakx λΔ ≈ , (4) 

where peakλ  is the wavelength of the travelling wave in its peak region.  Consequently, the 
predicted normalised spacing between SOAE frequencies is 

 2 peakf f l λΔ ≈ , (5) 

where l is the cochlear length scale, the distance over the cochlea by which the resonant 
frequency changes by a factor of e.  The length scale of the cochlear model is roughly 7mm, and 
the wavelength of the state space model’s travelling wave at its peak is approximately 0.9 mm 
for much of the cochlea.  Thus, the predicted spacing between SOAE frequencies is 
approximately 15. 

The measured normalised spacing between two adjacent SOAE frequencies, fa and fb, is 
defined as the ratio of their geometric mean of divided by their difference, 

 a b

a b

f f
f f

f f
Δ =

−
. (6) 

The measured PMD in humans is approximately 15 when expressed in terms of f/∆f [3].

3. RESULTS 

3.1 Step Change in Gain 
 
The authors of [3] assume a dense array of inhomogeneities within the cochlea, each of which 
acts as a reflection site.  In this section, a step-change discontinuity in the micromechanical 
feedback gain as a function of position is introduced as an isolated inhomogeneity.  The 
stability of a cochlear model with a step-decrease from γ = 1 to γ = 0.88 at x = 16.3 mm is shown 
in Figure 3.a.  Three frequencies are unstable, at 1.85 kHz, 1.98 kHz and 2.11 kHz.  The f/Δf 
spacing between the two higher frequencies is approximately 15, whereas the spacing between 
the two lower frequencies is approximately 13.5.  This is consistent with expectations, as a 
decreased gain (as is present here in positions apical of 16.3 mm) results in a less sharply tuned 
response (longer travelling wave wavelength) which in turn decreases the predicted f/Δf. 
 A nonlinear time domain simulation was performed in order to evaluate the unstable 
system response to a click.  In order to approximate the nonlinear nature of the CA, a hyperbolic 
tangent function was imposed upon each micromechanical feedback loop to limit the active 
pressures.  The MATLAB ordinary differential equation solver ode45 was employed, and the 
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output time-vector set to a sampling rate of 100 kHz.  The results of the time domain simulation 
are displayed in Figure 3.b-d.   
 

0 0.5 1 1.5 2 2.5
-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

Frequency [kHz]

σ  
[s

ec
-1

]

(a)

0 10 20 30
0.85

0.9
0.95

1
1.05

Position along the cochlea [mm]

γ

  

0 0.5 1 1.5 2 2.5
-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

Frequency [kHz]

St
ap

es
 D

is
pl

ac
em

en
t [

 d
B 

R
e:

 1
 μm

 ]

 
0 5 10 15 20 25 30 35 40

-14

-12

-10

-8

-6

-4

-2

0

2

Time [ms]

St
ap

es
 D

is
pl

ac
em

en
t [

 μm
 ]

 
Figure 3.a-d.  Stability plot of a cochlear model (a) with a 12% step-decrease in gain, γ, at x = 16.3mm, 
and resultant time domain simulation results (b-d).  (b) represents a mesh of BM velocity against 
position and time; a black line at 16.3 mm shows the location of the step-discontinuity.  (c) Power 
spectrum of stapes (middle ear boundary) displacement with initial transient discarded.  (d) stapes 
displacement as a function of time. 
 

It is clear from Figure 3.c that the power spectrum of the stapes displacement reflects the 
linear stability plot in Figure 3.a; the three unstable frequencies are strongly expressed.  From 
the mesh of Figure 3.b, it is possible to discern a significant reflection of the travelling wave at 
the location of the step-discontinuity at 16.3 mm.  The backward-travelling waves are 
especially visible from 5 ms onward.  The frequency content of these reflected waves is tuned to 
the resonant frequencies of the region of the cochlea surrounding the discontinuity.  When the 
reflected waves bounce off of the middle ear, starting at approximately 6 ms as seen in the 
stapes displacement of Figure 3.d, they again peak at their resonant locations as is visible from 
approximately 9 ms onward.  The amplitude of the response is limited by the nonlinearity in the 
feedback loop, as seen in the stapes displacement of Figure 3.d.  In order to understand why 
only three distinct frequencies become unstable, as opposed to the range of frequencies that 
peak in the vicinity of the discontinuity, it is instructive to examine the frequency responses of 
these three unstable frequencies in the nominal, stable cochlea. 

Figure 4.a-d shows the frequency response of the three unstable frequencies of Figure 3.a 
in a stable cochlea with a uniform gain of γ = 1 at all positions. 
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Figure 4.a-d.  Frequency response of a stable cochlea at 18.4 kHz, 1.98 kHz and 2.11 kHz.  (a) and (b) 
represent the magnitude of the response, while (c) and (d) show the phase.  (b) and (d) show the 
magnitude and phase in detail with a vertical line at 16.3 mm, marking the location of the discontinuity 
in the unstable cochlea of Figure 3.  Circles in (d) mark -3.5, -4 and -4.5 cycles at 16.3 mm. 
 
It is clear from Figure 4 that the frequency responses of the three unstable frequencies peak in 
the vicinity of the discontinuity of Figure 3, with the most unstable frequency peaking almost 
exactly at 16.3 mm.  However, the phases of these responses at the location of the discontinuity 
are the key, passing through -3.5, -4.0 and -4.5 cycles.  If reflected back to the stapes, the 
travelling waves of these frequencies would undergo a total round-trip phase-change of 7, 8 and 
9 cycles, thus meeting the requirements for instability as outlined by [3]. 
 
3.2 Random Variations in Gain 
 
In a biological cochlea, it is likely that deviations from a perfectly smooth variation of 
parameters will occur.  In these simulations, the micromechanical feedback gain as a function 
of position is perturbed with band-limited Gaussian white noise.  The white noise is passed 
through a 5th order Butterworth band-pass filter in order to prevent the wavelengths involved 
from exceeding the length of the cochlea (35mm) or falling below the scale of the cochlear 
discretization (~0.07 mm).  The peak-to-peak amplitude of the perturbation is 10% of nominal.  
Figure 5.a shows a typical stability plot for a cochlea with randomly perturbed gain distribution, 
while Figure 5.b displays the histogram of normalized spacings for 200 examples of perturbed 
cochlear models. 
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Figure 5.a-b.  (a) typical stability plot with sample distribution of gains inset; note that only the first 5 
mm of this γ(x) are shown for clarity.  (b) averaged histogram of the normalised spacings for 200 
cochlear models arranged in log-bins. 
 
From Figure 5, it is apparent that a wide range of frequencies can become unstable when the 
gain is perturbed.  The average normalized spacing of unstable frequencies peaks at 
approximately 15, which is in good agreement with published results of clinically measured 
SOAE spacings in humans [7]. 

4. CONCLUSIONS 

The state space formulation of the human cochlea is able to determine the stability of a given 
model.  Nonlinear time domain simulations have demonstrated that linearly unstable 
frequencies evolve into limit-cycles similar to SOAEs when simulated in time.  The normalised 
spacings of unstable frequencies given random distributions of gain in the cochlea agree well 
with measured results in humans.  Furthermore, the phase responses of unstable frequencies in 
a stable cochlea suggest that an integer round-trip phase-change is necessary for instability.  
The observations made here support the theory and predictions of [3]. 
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