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ABSTRACT 
 

This report presents the experimental work carried out to implement decentralised velocity 

feedback control on a fuselage section of a Bombardier Dash-8 Q400 aircraft. Five velocity 

feedback control units have been mounted on the trim panel of the fuselage section in order to 

reduce its response and thus sound transmission and radiation. The stability of the five 

control units has been assessed with both the classic and generalised Nyquist criteria for a 

single and multiple feedback loops. Both passive and active effects produced by the five 

control units have been analysed with reference to the spatial response of the trim panel when 

the fuselage skin is excited by a shaker. The tests carried out have shown that the passive and 

active effects produced by the control units produce an overall reduction of vibration between 

4 dB and 15 dB in the frequency range 30 to 520 Hz. 
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1. INTRODUCTION 
 

This report summarises the active control tests carried out on a BOMBARDIER Dash-8 Q400 

fuselage section with trim panel which is equipped with five decentralised velocity feedback 

control units for the reduction of vibration and sound radiation.  

The fuselage of current aircraft for civil transportation is made of an aluminium 

structure formed by circular frames and linear stingers with a thin aluminium skin. This 

lightweight stiff structure efficiently transmits and radiates noise to the interior when excited 

by acoustic sources (i.e. propeller or jet noise), by aerodynamic sources (i.e. pressure fields 

produced by turbulent boundary layer air flow on the aircraft skin) and by structure borne 

paths (i.e. engine induced vibrations or airframe vibrations induced by airflow effects on the 

wings and landing gears during take off and landing manoeuvres).1-3 Passive treatments, such 

as double wall constructions with sound absorption treatments in the air gap or damping and 

mass treatments on the skin of the fuselage, can be used to partially reduce these problems,2,4,5 

although they tend to be ineffective at low audio frequencies unless bulky and heavy 

treatments were to be used. Recent research work has shown that decentralized active 

vibration control with point force actuators provides an efficient solution to the low frequency 

sound radiation and transmission problems due to broad band random excitations, as for 

example, jet noise, turbulent boundary layer pressure fields or airframe structure borne noise 

due to aerodynamic excitations.6 

At low frequency, the sound radiation by a lightly damped trim panel is characterised by 

well separated resonances of the low order modes of the panel.7 Thus, steady state broad band 

sound radiation can be reduced by enhancing the damping properties of the trim panel, which 

can be effectively achieved by velocity feedback control systems.8 If ideal point force actuators 

and velocity sensors are used, then collocated velocity feedback is bound to be 

unconditionally stable.9-11 In practice, force actuators are constructed with an electrodynamic 

actuator that reacts off a proof mass. This type of actuator produces a constant force in phase 

with the driving voltage signal above the fundamental resonance frequency of the resiliently 

mounted mass.12 In contrast, at frequencies below the fundamental resonance frequency of the 

resiliently mounted mass, the force produced by the actuator tends to decrease in amplitude 

and shift to –180o as the frequency goes down. Thus, the desired active damping action of the 

feedback control loop is produced only at frequencies above the fundamental resonance of the 



 2

actuator. In contrast, below resonance, negative damping is produced which would enhance 

the resonant response and sound radiation of the panel and may even lead to instability.  

This report introduces the stability and control performance tests carried out on a 

BOMBARDIER Dash-8 Q400 fuselage section with trim panel which is equipped with five 

decentralised velocity feedback control units for the reduction of vibration and sound 

radiation. Section 2 provides a short description of the fuselage section and the modular 

feedback control units. Section 3 describes the experimental setup and tests carried out to 

assess the effectiveness of the control units. Finally, section 5 presents the experimental 

results for the response of the fuselage section in three cases: a) when there are no control 

units on the trim panel; b) when the trim panel is equipped with open loop control units and c) 

when the trim panel is equipped with closed loop control units.  
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2. FUSELAGE SECTION AND CONTROL SYSTEM TEST RIG 
 

The dimensions of the fuselage section considered in this report have been chosen in such a 

way as to carry out experimental measurements that could be representative of the sound 

transmission and radiation properties in a medium size propeller aircraft at low audio 

frequencies where active control is particularly effective. 

The principal components of the decentralised control units mounted on the trim panel 

are also introduced. In particular the design and response of the electrodynamic inertial 

actuator in the control units is described in detail. 

 

 

2.1. Fuselage section 
 

As shown in Figure 1a the fuselage section considered in this study is composed of an 

aluminium structure with two frames, 580 mm apart from each other, and five stringers, 

124 mm apart from each other, on which leans the 1.6 mm thick aluminium skin of the 

aircraft. As shown in Figure 1b a curved rectangular trim panel, with surface 589 × 550 mm2, 

made of a lightweight honeycomb material is connected to the frames via four elastic mounts. 

The air gap between the skin and trim panel is about 81 mm. 

 

 
Fig. 1: Sketch of the fuselage section. (a) Green fuselage section composed of two frames and five stingers. (b) 
Trim panel fixed on four mounts. 
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The details for the dimensions and material properties of the frame structure, fuselage skin 

and interior trim panel are given in Figure 2 and Tables 1 and 2. Also the positions of the four 

mounts with respect to the trim panel are listed in Table 3. 

 

 
Fig. 2: Principal dimensions of the fuselage double wall. 

 

 
Table 1: Material properties of the fuselage skin and frames, i.e. aluminium  

Parameter Value 

Mass density 3mKg 0227=ρ  

Young’s modulus 210 mN  101.7 ×=E  

Poisson ratio 33.0=ν  

Damping loss factor 02.0=η  

Dimensions of the curved skin mm  550589×=× yx ll  

Thickness of the skin mm  6.1=h  

Thickness of the frame profile 2.5  mmfh =  

Thickness of the stringers profiles 23  mmsh =  
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Table 2: Material properties of the honeycomb trim panel. 

Parameter Value 

Dimensions mm  550589×=× yx ll  

Faceplates thickness mm  9.0=fph  

Core thickness mm  6=coh  

Total thickness (core and face plates) mm  8.7=hoh  

Smeared Mass density 3mKg 0227=ρ  

Smeared Young’s modulus 210 mN  101.7 ×=E  

Poisson ratio 33.0=ν  

Damping loss factor 02.0=η  

 
Table 3: Position of the mounts 

Parameter Value 

Position of mount 1 xc1, yc1 = 0.057m, 0.030m  

Position of mount 2 xc2, yc2 = 0.565m, 0.030m  

Position of mount 3 xc3, yc3 = 0.057m, 0.507m 

Position of mount 4 xc4, yc4 = 0.565m, 0.507m 

 

 

2.2. Active Damping Control Unit 
 

In this study, the fuselage section has been equipped with five decentralised control units. As 

shown in Figure 3, the control units are composed of an electromagnetic inertial actuator with 

an accelerometer sensor located at the centre of the actuator footprint. The accelerometer 

signal is first integrated in order to obtain the velocity at the base of the actuator. The velocity 

signal is then passed through a high pass filter with corner frequency around 10 Hz which is 

used for DC decoupling. Finally the signal is amplified with a voltage amplifier and then 

fedback back to the electromechanical inertial actuator. The inertial actuator generates on the 

structure a point force, which is therefore proportional to the opposite of the velocity at the 

actuator base so that it produces a damping action. 
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Fig. 3 Sketch of the active damping control unit composed of a proof mass electromagnetic actuator, an 
accelerometer sensor and an analogue controller. 

 

The small scale electrodynamic inertial actuator used for this study is shown in Figure 4. As 

schematically shown in Figure 3, this actuator is composed of a base disc with a cylindrical 

former on which the coil is wound. The proof mass is formed by a magnetic core cylinder and 

an outer ferromagnetic ring. The proof mass is mounted on three springs and a vertical 

bushing, which forces the magnet to oscillate in the axial direction. 

 

 

 
Fig. 4: Photo of the electrodynamic proof mass actuator. 

 

As shown in Figure 4, the three springs are made up of small circular rings which guarantee a 

relatively larger stiffness in the transverse direction than in the axial direction. In this way the 

fundamental axial natural frequency of the proof mass actuator can be kept rather low with a 

good transverse guiding which prevents non linear effects due to stick slip friction on the 

axial bushing. As shown in Figure 3, the cross section of the proof mass is shaped in such a 

way as to have a magnetic circuit that generates a field oriented in the direction orthogonal to 
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the coil winding. In this way a current flow through the coil produces the reactive axial force 

between the coil and the proof mass. The details of the design of the circular springs and coil-

magnet transducers are presented by Paulitsch.13 The physical and geometrical properties of 

the actuator are summarised in Table 4. 
 

Table 4: Geometry and physical parameters of the actuator. 

Parameter Value 

Proof mass diameter 24 mm 
Proof mass height 12 mm 
Magnet diameter 18 mm 
Magnet height 9.3 mm 

Base disk diameter 38 mm 
Base disk thickness 1 mm 

Housing and base disk mass g  8=bM  

Proof mass g  22=aM  

Suspension system stiffness mN  4.347=aK  

Suspension system damping -1msN  3.3=aC  

Fundamental natural frequency Hz  20=af  

Voice coil coefficient AN  6.2=ψ  
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2.3. Fuselage Section with Five Active Damping Control Units 
 

As shown in Figure 5 and listed in Table 5, in order to generate a substantial active damping 

action, the trim panel has been equipped with five control units arranged on the centre and 

along the diagonals of the panel. 

 

 
Fig. 5: Fuselage section with the five control units. 

 

As shown in Figures 6 , 7 and 8, the five control units have been attached on the interior side 

of the trim panel so that they are enclosed in the air gap between the fuselage skin and trim 

panel. The accelerometer sensors have been located in correspondence to the centres of the 

footprint of the actuators on the radiating side of the trim panel. The five analogue controllers 

have been constructed using off the shelf components without aiming to miniaturise and 

package them with the actuator and sensor transducers. The rack with the five controllers can 

be seen on the bottom left hand side of Figure 7. 

 
Table 5: Position of the feedback control units. 

Parameter Value 

Position of the primary excitation xp, yp = 0.085m , 0.096m 
Position of control system 1 xc1, yc1 = 0.160m, 0.295m  
Position of control system 2 xc2, yc2 = 0.430m, 0.295m  
Position of control system 3 xc3, yc3 = 0.160m, 0.150m 
Position of control system 4 xc4, yc4 = 0.430m, 0.150m 
Position of control system 5 xc5, yc5 = 0.295m, 0.275m 
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Fig. 6: Front view of the fuselage section and trim panel with five control actuators bonded on the interior side. 

 

 
Fig. 7: Front view of the fuselage section and trim panel with five accelerometers bonded in correspondence to 
the centre of the actuators footprints. 

 

 
Fig. 8: Top view of the fuselage section and trim panel with five actuators bonded on the interior side. 
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2.4. Experimental tests 
 

In this report preliminary tests are presented concerning the response of the double panel 

system without and with open loop and closed loop control units. For simplicity the 

experiments have been carried out with the fuselage section suspended by two bandages 

fastened at the top end of the two frames as shown in Figure 9a. The response of the fuselage 

section has been measured with a scanning laser vibrometer. As shown in Figure 9b, the 

fuselage has been excited by a point force located near the bottom left corner at position 

xp , yp = 0.565 m ,  0.507 m.  

Two types of experimental results have been produced: first, the spectrum of the spatially 

averaged response of the trim panel per unit primary excitation and second, the vibration field 

of the trim panel per unit excitation at a given frequency. Despite the simplicity of these 

initial experiments, they provide a good estimate of the response and nearfield sound radiation 

of the trim panel when most of the natural modes of the fuselage skin section are excited. The 

spectrum of the sound transmission is likely to be characterised by fewer resonances since the 

far field sound radiation of some odd – odd modes is attenuated by low radiation efficiency 

properties. Similarly the excitation produced by acoustic plane waves or by random acoustic 

fields or pressure fields generated by Turbulent Boundary Layer air flows is likely to 

unevenly excite the low frequency modes. Nevertheless the experiments presented in the 

following sections should provide a good account of the response and sound radiation of the 

trim panel without and with open and closed loop control units. 

 

  
Fig. 9: Measurement setup with laser vibrometer and shaker primary actuator. (a) Front view, (b) lateral view. 

(a) (b) 
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3. STABILITY OF THE CONTROL SYSTEM 
 

When dual and collocated sensor–actuator pairs are used, decentralised velocity feedback 

control is bound to be unconditionally stable.9-11 In practice, the duality and collocation 

properties are possible only within certain limits whatever the sensor and actuator pair is. For 

instance, considering the inertial proof mass actuator and accelerometer sensor arrangement 

under study, the actuator produces a point force excitation in phase with the driving signal 

only above its fundamental resonance frequency and up to about 3 kHz.12 Below the 

fundamental resonance frequency, the dynamics of the suspended mass produces a force with 

opposite phase to the driving signal. This 180o phase mismatch disrupts the duality between 

the actuation force and the velocity signal measured at the base of the actuator. For this reason, 

the actuator has been designed with a very low resonance frequency. Above 3 kHz the 

inductance of the coil motor produces a constant phase lag which also disrupts the duality 

property. For this reason a low inductance coil-magnet linear motor should be used within the 

limitations imposed by the required actuating force. The accelerometer sensor may also 

disrupt the duality property.12 In fact above its characteristic resonance frequency, the output 

signal is proportional to displacement rather than acceleration. Finally the controller also 

introduces phase lag that contributes to disrupt the stability of the feedback loop.12 These 

intrinsic instability problems worsen when multiple feedback loops are implemented. For 

instance, the cross talking effects between neighbouring actuators tend to emphasise the low 

frequency stability problem linked to the fundamental resonance of the actuator.14 

 

�

�

�

Gcp( )�

fp( )�

Va( )�

Gca( )�

- ( )H �

w ( )�c

 

Fig. 10: Block diagram of the multichannel feedback control system implemented on the trim panel 
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In view of these considerations, it is of great importance to assess the stability of the control 

system before closing the feedback control loops. The stability of a single feedback control 

unit can be assessed with the Nyquist criterion,15 which states that, provided the controller is 

stable, the feedback loop is bound to be stable provided the locus of the sensor–actuator FRF 

does not encircle the Nyquist instability point (-1,j0). However, when multiple loops are 

implemented simultaneously, the generalised Nyquist stability criterion16 should be used. The 

open and closed loop response at the error sensor of the decentralised feedback loops can be 

modelled with the block diagram shown in Figure 9 where Gca represent the 5 × 5 matrix of 

frequency response functions between the sensors and actuators and H is a diagonal matrix 

with the feedback control gains that are assumed to be all the same. In this case, the 

generalised Nyquist stability criterion states that, assuming that both the plant and controller 

are individually stable, a multichannel feedback system is bound to be stable provided the 

locus of [ ] 0det =+ HGI ca  does not encircle the instability point (0, j0) as ω varies from –∞ 

to +∞.6 Thus, for the case of decentralised control with the same control gains for all feedback 

loops, so that H  is a diagonal matrix, the stability of the control loop can be assessed by 

considering the fully populated matrix of frequency response functions (FRFs) between the 

five control velocities and the five input current signals to the controller driving each actuator. 

Moreover, the determinant of a matrix is the product of its eigenvalues;16 that is 

[ ] ( )( ) ( )1 2 5det 1 1 1ca g g gλ λ λ+ = + + +I G H , where )(ωλi  is the i-th eigenvalue of HG ca . 

Thus the stability analysis of the five channel control system can be implemented with 

reference to the polar plots of the five eigenvalues of HG ca . In this case, in order to ensure 

the system is stable, the five loci should not encircle the instability point (-1,j0) as ω varies 

from –∞ to +∞. 

Figure 10 shows the amplitude and phase plots for the Frequency Response Functions 

between the five sensors and five actuators. The diagonal plots provide the FRFs for each 

sensor–actuator pair. Thus the FRFs in the diagonal plots of Figure 10 can be used to assess 

the stability of individual feedback loops. The phase plots show that the phase of the sensor–

actuator FRFs exceed +90o at low frequencies, around the fundamental resonance of the 

inertial actuator, and -90o at higher frequencies where the inductance effect of the coil 

produces a constant phase lag. As a result the FRFs are not positive real and thus may encircle 

the Nyquist critical point. Indeed, at low frequency the phase goes up to +270o and at higher 

frequencies it exceeds -360o.  
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Fig. 11: Amplitude and phase of the measured FRFs between the five error sensors and five inputs to the 

controllers driving the actuators. 
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The low frequency problem is quite important since, as can be noticed in the diagonal plots, 

the amplitudes of the FRFs are relatively high at low frequencies and thus little gain margin is 

likely to be left unless the fundamental resonance of the actuator is well damped and kept at 

low frequency.  
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Fig. 12: Block diagram of the multichannel feedback control system implemented on the trim panel 

 

The off diagonal plots with the amplitudes of the cross FRFs between non collocated sensors 

and actuators are comparable to those of the self FRFs between collocated sensors and 
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actuators. This suggests that there is a significant cross talking between the five feedback 

control loops which should also affect the stability when the five control units are activated 

simultaneously. Indeed the five plots in Figure 12 with the eigenvalues of the HG ca  confirm 

that only a limited range of control gains can be implemented otherwise the set of five control 

loops would go unstable. 
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4. EXPERIMENTAL TESTS 
 

In this section the frequency response function (FRF) of the transverse response of the trim 

panel per unit excitation of the shaker primary force excitation is investigated in three cases: 

1) trim panel without control units; 

2) trim panel with open loop control units and 

3) trim panel with closed loop control units. 

For each case the spatially average response per unit excitation is plotted in a frequency range 

between 10 and 600 Hz. Comparison of the plots for the three cases will give an indication of 

the passive and active effects produced by the five control units at low audio frequencies. 

Also the spatial response at specific resonance frequencies has been plotted in order to 

investigate how the passive and active effects of the control units modify the response of the 

trim panel. 

 

 

4.1. Response of Trim Panel without Control Units 
 

Figure 13 shows the spatially averaged FRF of the transverse response of the panel per unit 

force exerted by the shaker in a frequency range between 10 and 600 Hz. The spectrum is 

characterised by sharp peaks due to the resonant response of the fuselage section and trim 

panel. The spectrum shows two clusters of resonances. The first is composed of about six 

resonances between 10 and 106 Hz. These resonances are very lightly damped and produce 

large responses. The second cluster is composed of about 10 resonances, between 196 and 

422 Hz, which are also lightly damped although their amplitudes are about 7 dB lower than 

those of the first cluster of resonances. At higher frequencies above 500 Hz there are wide 

band peaks which may be generated by combinations of neighbourhood resonant modes of 

the fuselage structure, fuselage skin, trim panel and air cavity. The plots with the spatial 

response of the trim panel at the first 12 resonance frequencies shown in Figures 14 and 15, 

show that the cluster of resonances between 15 and 106 Hz are controlled by mode shapes 

characterised by either rigid body motion or first mode order flexural deformations of the trim 

panel. The second cluster of resonances between 196 and 422 Hz are instead controlled by 

bending mode shapes of the trim panel pinned at the four mounting positions. 
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The experimental work presented in this section has shown that, at low audio 

frequencies, the response of the trim panel is characterised by lightly damped resonances 

which are clustered in two principal groups at low frequencies. The modular active damping 

control units described in Section 3 should effectively control these resonances.  
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Fig. 13: Spatially averaged FRF of the trim panel without control units per unit force excitation. 
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19.4 Hz 

 

31.2 Hz 

48.1Hz 73.1 Hz 

79.4 Hz 106.3 Hz 

 
Fig. 14: Responses of the trim panel without control units at resonance frequencies. 
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196.9 Hz 230.6 Hz 

 
260.9 Hz 280.6 Hz 

 
305.9 Hz 339.7 Hz 

 
Fig. 15: Responses of the trim panel without control units at resonance frequencies. 
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4.2. Response of Trim Panel with Open Loop Control Units 
 

Figure 16 shows the spatially averaged FRF of the transverse response of the panel without 

(solid black line) and with (dashed blue line) open loop control units per unit force exerted by 

the shaker in a frequency range between 10 and 600 Hz. The open loop control units have 

little effect on the first cluster of resonance frequencies. They slightly shift the resonances to 

lower frequencies indicating a mass effect. However, for the second cluster of resonances, the 

five open loop control units produce a reduction of vibration up to 7 dB except for the 

resonance at 260.9 Hz. This is due to the fact that, above the fundamental resonance of the 

actuator, the suspended mass acts as an inertial reference. As a result the vibration of the coil 

in the annular cavity of the seismic mass is equivalent to a dash pot damper that produces sky 

hook damping. Also, eddy current effects are likely to occur, which also produce dissipative 

effects. The passive effect of the open loop control unit becomes even more significant at 

higher frequencies above 500 Hz. Probably, together with the sky hook passive damping 

effect of the actuator, there is also a mass effect of the components of the control units firmly 

attached to the trim panel, i.e. base disk and coil of the actuator, part of the springs, 

accelerometer sensor, wiring. This effect is particularly important around the wide band 

resonance peak at 521.9 Hz where the response of the panel is reduced by about 8 dB.  
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Fig. 16: Spatially averaged response of the trim panel per unit force excitation. Solid-black line without control 

units, dashed-blue line with open loop control units. 
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20.3 Hz 32.5 Hz 

45.3 Hz 

 

70.9 Hz 

75.6 Hz 104.7 Hz 

 
Fig. 17: Responses of the trim panel with open loop control units at resonance frequencies. 
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184.4 Hz 193.8 Hz 

205.9 Hz 230.0 Hz 

259.7 Hz 333.4 Hz 

 
 

Fig. 18: Responses of the trim panel with open loop control units at resonance frequencies. 
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Comparing Figures 17 and 14 confirms that the spatial responses of the first six resonances of 

the trim panel are barely modified by the five control units. However, comparing Figures 18 

and 15, highlights the fact that the control units have modified the response of quite a few 

resonances in the second cluster between 196 and 422 Hz.  

 

 

4.3. Response of Trim Panel with Closed Loop Control Units 
 

Figure 19 shows the spatially averaged FRF of the transverse response of the panel without 

control units (solid black line), with open loop control units (dashed blue line) and with closed 

loop control units (dotted red line) per unit force exerted by the shaker in a frequency range 

between 10 and 600 Hz. The closed loop control units have little effect on the first three 

resonance frequencies up to 31.2 Hz. However, comparing the open and closed loop results, 

they produce about 5 to 7 dB vibration reductions of the first cluster of resonances 48.1, 73.1 

and 79.4 Hz. Also, good vibration reductions are achieved for some resonance peaks of the 

second clusters such as, for example, around the peak at 196.7 Hz. At higher frequencies the 

five control units produces about 3 to 5 dB reductions, particularly between 340 and 390 Hz 

and between 450 and 550 Hz. 
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Fig. 19: Spatially averaged response of the trim panel per unit force excitation. Solid-black line without control 

units, dashed-blue line with open loop control units, dotted-red line with closed loop control units. 



 24

 

20.6 Hz 24.1 Hz 

32.5 Hz 34.4 Hz 

44.1 Hz 68.4 Hz 

 
Fig. 20: Responses of the trim panel with closed loop control units at resonance frequencies. 
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105.0 Hz 206.6 Hz 

230.9 Hz 260.9 Hz 

339.1 Hz 388.4 Hz 

 
Fig. 21: Responses of the trim panel with closed loop control units at resonance frequencies. 
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Figures 20 and 21 show that the five closed loop control units have an important effect on the 

spatial response of the trim panel. The responses are no longer characterised by well defined 

mode shapes of the trim panel, which indicates that indeed the passive and active damping 

action of the control units has heavily reduced the vibration contribution of the resonant 

modes. 

In summary, the combination of passive and active control effects generated by the five 

control units produces an overall reduction of vibration between 4 dB and 15 dB in the 

frequency range 30 to 520 Hz. 

 

 

5. CONCLUSIONS 
 

This report presents the experimental work carried out to implement decentralised velocity 

feedback control on a fuselage section of a Bombardier Dash-8 Q400 aircraft. Five velocity 

feedback control units have been mounted on the trim panel of the fuselage section in order to 

reduce its response and thus sound transmission and radiation. The velocity feedback control 

units are composed of an electromagnetic inertial actuator with an accelerometer sensor 

located at the centre of the actuator footprint. In order to implement velocity feedback, the 

accelerometer signal is first integrated, amplified and then fed back to the electromechanical 

inertial actuator. In this way the point force generated by the electromagnetic actuator on the 

trim panel is proportional to the opposite of the velocity at the actuator base and thus it 

produces a damping action that reduces its response and sound radiation.  

The effects of the control systems have been assessed with reference to the response of 

the trim panel to a point force excitation exerted by a shaker on the skin of the fuselage 

section. The principal outcomes of this study can be summarised in the following points. 

1) At low audio frequencies, the response of the trim panel is characterised by clusters of 

lightly damped resonances due to rigid body modes or low modal order flexible modes 

of the trim panel.  

2) At higher frequencies the response of the trim panel is characterised by wide band 

resonant peaks which are due to the neighbouring resonant modes of the various 

components of the fuselage section, i.e. the frames and stringers, the fuselage skin, the 

trim panel and the air cavity between the skin and panel structures. 



 27

3) The five control units produce significant passive effects on the response of the panel. 

In particular, at low audio effects, the inertial mass and coil system form a dash pot 

system that effectively produces passive damping effects. Also, at higher frequencies, 

the components of the control units rigidly attached to the trim panel produce a mass 

effect. The superposition of the two effects can bring down the response of the panel by 

as much as 8dB at some resonance frequencies. 

4) The active damping action produced by the five control units further reduces the 

response of the trim panel at resonance frequencies of low order modes by another 5 to 

7 dB. 

5) The passive and active effects produced by the control units produce an overall 

reduction of vibration between 4 dB and 15 dB in the frequency range 30 to 520 Hz. 

 

 

6. FUTURE WORK 
 

The results presented in this report summarise the initial work carried out to test the 

effectiveness of decentralised velocity feedback control using inertial electrodynamic 

actuators built by ISVR PhD students. Future work is required to further develop the control 

system and also to better understand the dynamic response of the structure and thus identify 

the type of control action that should be implemented by the control units in order to obtain 

the best possible control performance. Future work would be of great interest in the following 

areas. 

1. Theoretical and experimental analysis of the response of the fuselage section in 

order to understand the effects produced by  

• curved frame structure and skin panel 

• curved honeycomb trim panel fixed via four mounts 

• coupling between the skin and trim panel via structure (frame and 

mounts) and acoustic (air gap) paths 

2. Analysis of the passive and active response of the trim panel with five control units 

when the fuselage skin and the trim panel is equipped with sound absorption 

blankets. 
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3. Implementation of sound radiation and sound transmission tests with reference to 

acoustic or random pressure fields (without control units, with open loop control 

units and with closed loop control units). 

4. Development of suitable control units comprising accurately designed control 

actuators, miniaturised controllers and low cost MEMS accelerometer sensors. 
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