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A Speech Enhancement Algorithm Based on a Chi
MRF Model of the Speech STFT Amplitudes
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Abstract—A speech enhancement algorithm that takes advan-
tage of the time and frequency dependencies of speech signals
is presented in this paper. The above dependencies are incor-
porated in the statistical model using concepts from the theory
of Markov Random Fields. In particular, the speech short-time
Fourier transform (STFT) amplitude samples are modeled with a
novel Chi Markov Random Field prior, which is then used for the
development of an estimator based on the Iterated Conditional
Modes method. The novel prior is also coupled with a ‘harmonic’
neighborhood, which apart from the immediately adjacent sam-
ples on the time frequency plane, also considers samples which
are one pitch frequency apart, so as to take advantage of the rich
structure of the voiced speech time frames. Additionally, central
to the development of the algorithm is the adaptive estimation of
the weights that determine the interaction between neighboring
samples, which allows the restoration of weak speech spectral
components, while maintaining a low level of uniform residual
noise. Results that illustrate the improvements achieved with the
proposed algorithm, and a comparison with other established
speech enhancement schemes are also given.

Index Terms—Chi, Gaussian, Markov random fields, speech en-
hancement, short-time Fourier transform (STFT) estimation.

I. INTRODUCTION

T HE short-time Fourier transform (STFT) of speech is a
representation that has a rich structure with dependencies

both along the time and frequency axes. Cohen [1] has shown
that consecutive samples within a frequency bin are highly cor-
related, while the decision directed approach [2] for the esti-
mation of the a priori signal-to-noise ratio (SNR) owes its suc-
cess largely to the exploitation of the dependencies between suc-
cessive spectral amplitude samples of speech. Correlations also
exist between consecutive samples along the frequency axis of
the STFT, which stem not only from the spectral leakage caused
by the tapered windows used in the calculation of the STFT, but
also from the common modulation of the amplitude of samples
that belong to adjacent harmonics of the voiced speech frames,
as reported in [3]. All this information that is encapsulated in
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the STFT representation of speech can prove very helpful in its
restoration when degraded by noise.

In this paper, we present an algorithm that enhances speech
corrupted by additive and uncorrelated noise, by taking into ac-
count the time and frequency dependencies of speech signals.
The incorporation of these dependencies into the algorithm is
achieved by modeling the amplitude of the speech STFT with a
Markov Random Field (MRF) prior. MRFs are spatial stochastic
processes, which can be considered as two-dimensional exten-
sions of Markov Chains. Therefore, as the value of a random
variable (r.v.) in a Markov Chain depends on some r.v.’s that
precede it, the value of a r.v. in an MRF depends on a number
of r.v.’s which are considered as its neighbors, in the two di-
mensional space in which the MRF is defined.

MRFs have found extensive application in image processing
problems, due to their ability to model the spatial dependencies
of images, particularly over smooth areas. Some characteristic
examples can be found in [4]–[8]. In speech processing on the
other hand, MRFs have not been widely used to date. We in-
dicatively mention the work of Gravier et al. [9] , where MRFs
were employed in a speech recognition problem, and the work of
Andia [10], where MRFs were used for the restoration of STFT
data that were missing due to severe contamination from tonal
noises. To the best of our knowledge, here is the first time that
MRFs are used in the enhancement of speech that is corrupted
with broadband noise.

In the present work, we introduce a generalization of the
established Gaussian MRF, which extends our previous work
that incorporated it [11] and allows the derivation of a well de-
fined speech spectral amplitude estimator, capable of enhancing
speech while avoiding the artefacts known as musical noise. The
novel model is termed Chi MRF, because it constitutes a gener-
alization of the Gaussian MRF, in the same sense that the Chi
density function [12] is a generalisation of the Gaussian den-
sity. We also introduce a “harmonic” neighborhood, according
to which, each sample in an unvoiced or speech absent time
frame interacts with the closest four neighbors on the time-fre-
quency plane, while for the voiced speech frames, the samples
which are one pitch frequency apart are also considered.

A key feature of the proposed algorithm is the estimation
scheme of the MRF prior’s weights, which determine the inter-
action of each sample with its neighbors. The weights are esti-
mated adaptively, via a function of the speech spectral variance
at the sites of the neighbors. According to this scheme, neigh-
bors with a variance higher than that of the noise are more likely
to contain speech and contribute more to the final estimate. On
the other hand, neighbors with a small variance should contain
mostly noise and thus have a relatively smaller influence. The
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result is the ability of restoring speech spectral components that
are immersed in noise, while keeping the level of the residual
noise low.

The outline of this paper is as follows. In Section II, we re-
view the fundamental elements of the MRF theory, on which
the proposed Adaptive Chi MRF (ACMRF) algorithm is based.
In Section III, the statistical model is discussed, which includes
the introduction of the Chi MRF priors and the definition of the
“harmonic” neighborhood. The speech spectral amplitude esti-
mator is derived in Section IV, where the formulae for the adap-
tive estimates of the neighbors’ weights are also given. The pro-
posed algorithm is evaluated in Section V, where a comparison
with other established speech enhancement algorithms is also
shown and finally, Section VI concludes this paper.

II. THEORETICAL BACKGROUND

In this section, we present the basic theory and some funda-
mental concepts of Markov Random Fields. Our presentation,
which is primarily based on [13] and to some extend on [5], [7],
and [8], is focused on those aspects of the MRF theory that will
be necessary for the development of the proposed speech en-
hancement algorithm in the subsequent sections. A more exten-
sive treatment of the theory of MRFs can be found in the above
references.

A. Markov Random Fields and the Hammersley–Clifford
Theorem

Suppose that we have a vector of random variables
and let denote a realization of

. We define the space of the random variable as

where is the probability density function of . The joint
probability density function of the random variables is de-
noted as . The space of the vector of
random variables is given by the Cartesian product of the in-
dividual ’s

A central concept in the development of Markov Random
Fields is that of a neighbor. Given two random variables and

with , we say that is a neighbor of if and only
if the conditional distribution
is a function of . The neighbors of the random variable
are denoted by . We also require that if the realizations

can occur individually, they can also
occur simultaneously. More formally, if ,
then . The last condition is called the posi-
tivity condition and is usually satisfied in practice.

Definition: A Markov Random Field is a collection of inter-
acting random variables with joint probability density function

for which:
1) the positivity condition holds;
2) for each there is a defined set of r.v.’s , which

are called neighbors and the following statement is true

Fig. 1. First-order neighborhood. The cells marked with “x” are the neighbors
of “o”. The distribution of “o” is independent of all the other cells if the values
of the “x”s are known.

where is a shorthand notation for the set of indices
with .

An intuitively appealing method of constructing an MRF is
via the definition of conditional density functions. This method
allows to define explicitly the interactions between a random
variable and its neighbors, which is not as straightforward to
achieve with the direct construction of a joint density function.
The conditional density approach however, is hindered by the
disadvantage that not all conditional densities yield a valid joint
distribution for the process. Instead, there is a number of unob-
vious consistency conditions that the conditional densities need
to satisfy, in order to yield a valid joint MRF density function.
The most general form a conditional density can assume can be
obtained from the class of joint densities that constitute valid
MRF schemes, as it was shown in [13]. The class of valid MRF
densities is defined by the Hammersley–Clifford theorem.

Theorem (Hammersley–Clifford): Let with ,
denote a probability density function satisfying the positivity
condition. Then, is a Markov Random Field if and only if

(1)

The functions are chosen arbitrarily, subject to
for all . The sets of indices de-

fine sets of random variables , which in the MRF literature
are termed cliques. A clique is any set that consists of random
variables which are mutually neighbors. A set that consists of a
single random variable (singleton) is also considered a clique.

Although a number of different neighborhood schemes exist
[13], we will only be concerned with first order schemes, as the
one depicted in Fig. 1. According to this scheme, the random
variables are arranged on a rectangular lattice and each one of
them depends on the values of its four nearest neighbors. As the
lattice is not infinite, the r.v.’s at its edges will only have three
neighbors, while the r.v.’s at the corners will only have two. The
cliques in this spatial scheme consist only of singletons and pairs
of neighbors. Therefore, only pairwise interactions are allowed
between the random variables.

B. Gaussian Markov Random Fields

An example of a common MRF, which is a special case of the
Chi MRFs that we introduce in this paper, and aids the clarifi-
cation of the concepts discussed in the previous section, is the
Gaussian MRF. Its conditional density function is

(2)
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where is related to the variance of and controls the scaling
of the prior, while is a weight that determines the influence
of on . The joint density function can be derived via the
factorization

(3)

where by and we denote two realizations of the vector of
random variables . Substituting the expression for the con-
ditional density from (2) into the above factorization, and as-
suming the symmetry condition , the derived
expression for the joint density is

(4)

where denotes the unordered set of pairs of indices, such that
if and only if and are neighbors. Note also that

, or in other words the cliques in a first-order
neighborhood consist of the r.v.’s that form the MRF (single-
tons) and the pairs of r.v.’s which are mutually neighbors. A
comparison with (1) reveals that (4) has the form required by
the Hammersley–Clifford theorem.

C. Estimation With MRF Priors

Suppose that we observe a set of random variables
, which are modeled as a random function of the

random variables that constitute an MRF. An example of such
a random function could be the addition of a Gaussian noise
vector to . We additionally suppose that the random variables

are mutually independent when the values of are known,
while is independent of all , except for . For the joint
density function of we therefore have

(5)

A typical estimation problem under the above scenario is to find
an optimal, in some sense, estimate of when only is ob-
served, given that the joint density of belongs to the class of
Markov Random Fields.

An estimator that has been widely used is the maximum a
posteriori (MAP), which according to Bayes’ theorem, can be
written as [14]

(6)

The above optimization problem can be difficult to solve due
to the large number of the random variables involved in many
real problems. In an image processing scenario for example,
even a small picture contains pixels. A rela-
tively efficient, although still computationally demanding opti-
mization method, was proposed by Geman and Geman [4] in-
volving simulated annealing and the Gibbs sampler. Apart from
the heavy computational load, an additional disadvantage of this
type of global optimization is that it can induce correlations be-
tween random variables that are arbitrary far from each other

[5], while it is generally desirable to have models whose depen-
dencies are only local.

An alternative local, as opposed to global, optimization
method was proposed by Besag [5], which was termed Iterated
Conditional Modes (ICM). Under this estimation scheme, the
proposed estimate is the one with the maximum probability
given the observation and the neighbors . That is

(7)

The ICM method circumvents the problems posed by the
computational load and the large scale dependencies of the
global optimization methods. However, the ICM does not
always converge to the global estimate of (6), which is the
theoretically sound solution according to the MRF model
specification. Furthermore, the ICM method does not require
the strict adherence to genuine MRFs as predicted by the Ham-
mersley–Clifford theorem [5]. Nevertheless, its computational
efficiency and the avoidance of large scale dependencies make
it a very attractive method, and for these reasons it is employed
in the present study.

III. STATISTICAL MODEL

A. Problem Formulation

The problem we consider in this work is the enhancement
of speech that is corrupted by additive and uncorrelated noise.
The enhancement of noisy speech is formulated as an estima-
tion problem, according to which, an optimal estimate of the
clean speech STFT amplitudes is sought, when only the STFT
of the noisy speech is observed and a statistical model for the
clean speech and noise is assumed. The linearity of the Fourier
transform implies the following relationship for the th sample
of the STFT representations of the noisy speech, the speech and
the noise signals, respectively

(8)

In the above equation, , , and are the STFT amplitudes
of the noisy speech, the speech and the noise, , , and are
the respective phases and .

For the noise STFT coefficients we use the standard modeling
assumption (e.g., [2]), which is the zero mean complex Gaussian
distribution with independent and identically distributed real
and imaginary parts. We denote the second moment of the noise
spectral amplitude by .

The model we assume for the speech phase is that it follows
a uniform distribution, which is independent from the ampli-
tude [15], [16] (i.e., , ).
This model seems to agree very well with the speech data pre-
sented in [16] and has the additional advantage that the optimal
estimate of the speech phase is the noisy phase itself [2], [15].
This implies that for the estimation of the clean speech STFT it
suffices to estimate the amplitude only, which is then combined
with the noisy phase to produce an estimate of the clean speech
waveform. The statistical model that we are assuming for the
speech spectral amplitude samples is detailed in the next sec-
tion.
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B. Speech Spectral Amplitude Prior

The STFT amplitude of speech signals has a rich structure
across both time and frequency. Cohen [1] investigated the cor-
relation of successive (in time) speech spectral amplitude sam-
ples using scatter plots and by calculating their correlation co-
efficient. For STFT frame overlap of 50% the correlation co-
efficient for STFT samples adjacent in time was 0.7 while for
a 75% overlap it increased to 0.85. It is worth mentioning that
the respective values for white noise signals were reported to be
significantly lower, which implies that the correlation between
consecutive STFT samples is a property of speech signals and
is not solely due to the STFT frame overlap. Zavarehei et al.
[3] claimed that the amplitudes of adjacent speech harmonics
within the same time frame are highly correlated, reporting cor-
relation coefficients in the region of 0.75–0.85. Additionally,
samples which are adjacent in frequency within a STFT frame
will also be correlated to a certain extent, due to the spectral
leakage caused from the windowing operation involved in the
calculation of the STFT.

A major contribution of this paper is the introduction of a
speech spectral amplitude prior that is capable of taking into
account the above dependencies that are present in the speech
STFT amplitudes. The prior we propose, which we term Chi
MRF prior, is given by

(9)
The above density is an extension of the Gaussian MRF condi-
tional density, in the same manner that the Chi density [12] is a
generalisation of the Gaussian density. Equation (9) yields the
Gaussian MRF conditional density for . Since the param-
eter in the case of the Chi density is called shape parameter, we
maintain the same terminology here. The parameter controls
the scaling of the density, while the parameters determine the
influence between the neighbors and . The joint density can be
found by considering the symmetry condition
and by substituting the conditional density from (9) into the fac-
torization in (3), which after some algebraic manipulation yields
[17]

(10)
Chi MRF priors are introduced in this work in order to

sidestep the shortcomings of a Gaussian MRF based speech
enhancement algorithm that was proposed in [11]. The latter
resulted in musical residual noise, while the estimator was
not well defined for all the values of its input parameters. The

Fig. 2. Illustration of the proposed harmonic neighborhood. Upper right figure
shows the neighbors of a sample that belongs to an unvoiced frame and lower
right figure shows the neighbors used for the samples of the voiced frames.

generalization provided by the Chi MRF priors mitigates both
problems as it will be shown in Section V.

Definition of the Neighborhood

The selection of the neighbors of the sample determines
its interaction with the rest of the spectral amplitude samples.
To capture both the time and frequency dependencies of speech
signals we propose a “harmonic” neighborhood, similar to the
one found in [10]. In our scheme, the neighbors of each spectral
amplitude sample in time, are the two adjacent samples within
the same frequency bin. For the unvoiced or the speech absent
frames, the frequency neighbors are the samples that are adja-
cent in frequency in the same time frame. For the voiced speech
frames however, the frequency neighbors are frequency bins
apart, where is the frequency bin number that corresponds
to the pitch frequency of the current frame (assuming that the
DC frequency bin has the number 0). The definition of the har-
monic neighborhood is given in (11) and is illustrated in Fig. 2.
See equation (11) at the bottom of the page.

As a shorthand notation for the neighbors of
we introduce the notation , which
denote the south, north, west and east neighbors, respectively.
If the frame is unvoiced we denote and

, while if frame is voiced
and . In both cases, and

.
The samples which lie on the edges of the STFT, and

therefore have less than four neighbors, are treated by an
appropriate modification of their weights, as discussed at the
end of Section IV-B. Additionally, for the samples that belong
to a voiced frame and correspond to frequencies smaller than
the frame’s pitch frequency, the neighborhood of the unvoiced
frames is used. That is because these samples typically have
very low energy and this neighborhood avoids contamination

if
if

(11)
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from samples above the pitch frequency, which typically have
higher energy levels.

The above type of neighborhood requires a pitch estimate for
each of the voiced frames. The estimates are obtained with the
pitch estimator of the 2400-bps Federal Standard Speech Coder
[18]. This pitch estimation algorithm is based on autocorrelation
and the application of error correcting procedures for common
errors such as pitch doubling.

The proposed speech enhancement algorithm is robust
against small errors in the pitch estimates. The reason is that
only the frequency bin number that corresponds to the pitch
frequency is required and not the actual pitch frequency. In
our experiments we used analysis windows of 256 samples
for calculating the STFT coefficients, while the sampling fre-
quency was 8 KHz. This implies that each frequency bin has a
bandwidth of 31.25 Hz; hence, pitch errors smaller than 15 Hz
can be tolerated.

The voiced/unvoiced classification of the time frames was
carried out with a voice activity detector (VAD), which was
based on the average log-spectral difference between the noisy
speech and the noise estimate for each time frame. We observed
that applying the voiced frame neighborhood to an unvoiced or
noise only time frame did not have a detrimental effect, because
coupling frequency bins that were not adjacent still aided the re-
covery of broadband speech components and the uniform sup-
pression of noise. On the other hand, using the unvoiced neigh-
borhood for voiced frames did not allow the adequate recovery
of the weaker speech harmonics.

In the light of the above observation, one could avoid the use
of a VAD and treat all frames as voiced [i.e., discarding the first
leg of (11)], using the pitch estimate of the last voiced frame
for the unvoiced/speech absent frames. We prefer however to
maintain this distinction, because a basic VAD is either compu-
tationally cheap and simple to implement or it comes with the
pitch estimation algorithm at no extra computational cost, and
in this way we avoid the oxymoron of requiring a pitch estimate
for the unvoiced or speech absent frames.

IV. ACMRF ALGORITHM

A. Derivation of the Estimator

Applying the ICM method to the estimation of the speech
spectral amplitudes yields

(12)

Based on the Gaussian noise model, the expression for the
likelihood in (12) is given by [2], [19]

(13)

where is the modified Bessel function of the first kind.
The prior term in (12) is the Chi MRF prior given in (9). An
analytical expression for the estimator in (12) can be found by
maximizing the logarithm of term, w.r.t.

. This procedure is outlined in the following.

The modified Bessel function is first approximated by the for-
mula [19]

(14)

as this allows the derivation of the estimator in a closed form.
Discarding the terms of (12) that are constant w.r.t. , the ex-
pression that has to be maximized is

(15)

Maximizing (15) leads to the following expression for the esti-
mator:

(16)

where

(17)

and

(18)

The following sections discuss the selection of the MRF prior
parameters , and provide a method for the practical imple-
mentation of the algorithm.

B. MRF Parameter Selection

In image processing problems, fixed values for the parameters
of the MRFs are often used (e.g., [5], [7]). For speech enhance-
ment, the fixed parameters control the tradeoff between noise
suppression and fidelity of the recovered speech [11], [17]. The
reason being that the neighbors exert a constant influence
on , independent of the level of speech they contain. Ideally,
one would like a neighbor to have a greater contribution when
it contains significant speech information and smaller contribu-
tion when it contains mostly noise.

To implement such a policy we propose a set of adaptive
MRF parameters, which are functions of the spectral variances
of speech and noise. The proposed estimates for and are

(19)

and

(20)
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In the above equations, and are the
variances of the th spectral components of speech and noise,
respectively. The constants are weights that provide further
control to the interaction between neighbors. An interpretation
of the above equations and their function within the MRF prior
is given in Appendix I. Briefly, note that (or ) increases
when the variance of (or ) is greater than the variances of
noise and the other neighbors and vice versa.

C. Implementation

The estimation proceeds from smaller to larger frequency in-
dices and subsequently from smaller to larger time frame in-
dices . According to this schedule, during the estimation of
there are estimates available for and , but not for and

. For the two latter quantities we need to calculate temporary
estimates. The temporary estimate for is found using a spec-
tral subtraction type estimate

(21)

and a similar formula is used for the estimation of . For the
variances of the neighbors we propose the estimates

(22)

while for the variance of the sample we use

(23)

The above strategy for the estimation of the parameters that
are involved in (19), (20) allows us to write the ACMRF es-
timator in a very compact form and provides some further in-
sight on its behavior. We begin by noting that according to (22),

. Using this last result, substitution of the
expressions for and (19), (20) in the equation for (17)
yields, after some algebraic manipulation

(24)

If we finally define an a priori SNR estimate as

(25)

then can be further simplified to

(26)

Following the same procedure, can be reduced to

(27)

The ACMRF estimator can therefore be summarized as

(28)

TABLE I
PSEUDOCODE FOR THE ACMRF ALGORITHM

where and are given by (26), (27).
The above form of the estimator is similar to the MAP esti-

mator that uses the Chi speech prior, presented in [20] and is
a generalization of the MAP spectral amplitude estimator pro-
posed by Wolfe and Godsill [21]. A major difference of the
MRF-based estimator however, is that for the estimation of the
a priori SNR the variances of and a number of neighbors

are taken into account, while in the traditional Decision
Directed approach [2] for example, only the variances of
and are considered.

The weights are empirically selected as ,
, , , and . The

and weights are significantly larger because during the
estimation of , the and have already been estimated
with the ACMRF algorithm and therefore the estimates are more
accurate. For the samples that lie on the DC and Nyquist fre-
quency bins we use , , ,

and , while for voiced frame samples
that are less than a pitch frequency apart from the Nyquist fre-
quency, is set to zero.

Some final implementation details include limiting the vari-
ances (22), (23) to non-negative numbers and forcing to be
greater than dB for perceptual reasons. Also for ,
when (28) cannot be applied and the noisy samples
are suppressed by a fixed amount (50 dB). The ACMRF algo-
rithm is summarized in Table I.

V. EVALUATION

The proposed algorithm was evaluated with a series of objec-
tive and subjective tests. For the objective evaluation we used 48
sentences from the TIMIT database, sampled at 8 KHz and ut-
tered by three male and three female speakers. The speech was
corrupted with four different types of noise, computer generated
white Gaussian, train and car noise recorded by our colleagues,
and babble noise from the Noizeus database [22]. The objective
measures we used in the evaluation were the Segmental SNR
(SegSNR) [23], the Log Spectral Distortion (LSD) [1], and the
PESQ. The last measure is the ITU-T P.862 recommendation
[24], [25], and is an objective measure that is designed to pre-
dict the results of Mean Opinion Score tests (MOS). The PESQ
scores lie on a scale from 1 bad to 4.5 no distortion and
are reported to correlate well with subjective MOS results [26].

The subjective evaluation consisted of a listening test (A-B
preference test) in which the ACMRF algorithm was compared
with the Log STSA (LS) [27]. In this test, ten sentences, ut-
tered by five male and five female speakers, were corrupted
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Fig. 3. Objective measures scores as a function of the shape parameter �. The
corrupting noise is white Gaussian at 0 (circles) and 10 (crosses) dB input
SegSNR.

with the noises used for the objective evaluation at two different
SNR levels. Ten normal hearing listeners, age 20–30 years, were
asked to identify the algorithm that provided the best quality of
enhanced speech. The sentences were presented to each listener
in a random order and the order of presenting the two enhanced
versions of the same sentence was also randomized.

For both evaluations the transformation to the STFT domain
was performed with Hamming windows of 256 samples, using
an overlap of 75%. In order to isolate the effect of the per-
formance of a practical noise estimation algorithm (e.g., [28]),
the noise power was estimated from the noise samples directly
with a first-order recursive system as in [1]. The pitch estimates
needed for the definition of the neighborhood were obtained
with the pitch estimator described in [18] directly from the noisy
speech signals. The VAD had a high sensitivity, because as ex-
plained in Section III-C, treating a voiced frame as unvoiced
(false negative) hindered its enhancement, while the opposite
(false positive) had a rather negligible effect.

We begin our evaluation by examining the effect of the shape
parameter on the quality of speech.

A. Effect of the Shape Parameter

Fig. 3 shows the results in the three objective measures as a
function of the value of , for white noise and two input SegSNR
levels. The respective curves for other noise types and input
SegSNR levels have a similar shape to those shown here. Fur-
ther examples can be found in [17].

The objective measures indicate that the optimal range of the
shape parameter is , while their values do not vary
significantly when lies in the above interval. Informal listening

tests and observation of spectrograms indicate that these values
of result in a good preservation of speech spectral compo-
nents in combination with uniform residual noise. For ,
spurious spectral peaks begin to appear, which are perceived
as musical noise and/or speech distortion. Finally, for larger
than 3 the preservation of the speech spectral components grad-
ually deteriorates, which is reflected in the drop of the objective
measures scores. Based on the above analysis we use for the re-
mainder of this evaluation .

B. Comparison With Alternative Algorithms

This section compares the proposed algorithm with two well
established alternatives, the Ephraim–Malah MMSE STSA
(EM) [2] and the Log STSA (LS) [27].

Fig. 4 shows spectrograms of the sentence “This has been
attributed to the helium film flow in the vapour pressure ther-
mometer” corrupted with white Gaussian noise at 0 dB input
SegSNR and enhanced with the three algorithms. Fig. 4(f)
shows the frame SNRs for the same sentence that is shown in
the spectrograms, augmented by half a second of silence, in
order to highlight the noise suppression ability of the ACMRF
algorithm.

A comparison of Figs. 4(c)–4(e) shows that the ACMRF
algorithm restores a large number of speech spectral com-
ponents, which are missed by the two alternative algorithms
and are unidentifiable even by a visual inspection of the noisy
speech spectrogram in Fig. 4(b). The recovery of these spectral
components is attributed to a large extent to the frequency
coupling that is imposed by the MRF prior. Additionally, in
noise dominated regions, the smoothing that is achieved by
considering the values of the four nearest neighbors, results in
a uniform noise of much lower level. Inspection of the last time
frames in Fig. 4(f) reveals that the ACMRF algorithm results in
8 and 12 dB more suppression of the residual noise compared to
the LS and EM algorithms, respectively, in the silent segments
of the utterance.

Table III shows the SegSNR scores of the three algorithms
for the different noises and input SegSNR levels. The ACMRF
algorithm results consistently in higher scores compared to the
two alternatives. For example the improvements over the EM
algorithm are as high as 3 dB in low input SegSNR conditions.
Tables IV and V show the respective LSD and PESQ results,
which in all cases favor the ACMRF algorithm.

Table II shows the results of the subjective listening test.
The results indicate that the listeners preferred the ACMRF
algorithm from 76% to 91% of the time, depending on the
background noise and input SegSNR level. It was constantly
reported that the ACMRF algorithm resulted in lower levels
of residual background noise. For the low SNR condition, the
higher noise suppression capability of the ACMRF algorithm
made some artefacts of the noise suppression process more
perceivable. We attribute the lower scores for the low SNR
condition to this characteristic. An exception to this observation
was the car noise. Because most of its energy is concentrated
in the lower frequency bands, the processing artefacts were
masked by the speech energy and the listeners overwhelmingly
chose the ACMRF algorithm for the low SNR. For the higher
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Fig. 4. Spectrograms of clean speech, speech corrupted with Gaussian white noise at 0-dB input SegSNR and enhanced with the EM, LS, and ACMRF algorithms.
(f) shows the frame SNR of the above utterance enhanced with the three algorithms, augmented with half a second of silence.

TABLE II
PERCENT PREFERENCE OF THE ACMRF ALGORITHM OVER THE LS FOR

DIFFERENT NOISE TYPES AND INPUT SEGSNR LEVELS

SNR condition, the listeners reported that for some of the sen-
tences the two algorithms produced very similar results, so their
preference for the ACMRF was not as strong. In conclusion,
the proposed algorithm was chosen at least 3 times out of 4,
across all noise types and levels.

Regarding the computational efficiency, unlike the EM and
LS algorithms, the ACMRF requires only the evaluation of ele-
mentary operations. It also requires a VAD and a pitch estimator,

which are additional to most speech enhancement schemes. Ex-
cluding the cost of the latter two modules, the ACMRF has com-
parable computational requirements to the efficient algorithms
proposed in [21].

VI. CONCLUSION

In this paper, we presented a speech enhancement algorithm
that models the time and frequency dependencies of the speech
STFT amplitudes. The modeling of the above dependencies was
pursued using concepts from the theory of Markov Random
Fields. A novel model, the Chi MRF, was introduced and it
was shown that it constitutes a generalization of the established
Gaussian MRF. The conditional Chi MRF density was then em-
ployed as a speech prior for the development of a MAP speech
spectral amplitude estimator.

The proposed prior was combined with a “harmonic” neigh-
borhood, in which the four nearest neighbors of each sample
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TABLE III
SEGSNR RESULTS OBTAINED WITH THE EM, LS, AND ACMRF ALGORITHMS FOR DIFFERENT NOISE TYPES AND INPUT SEGSNR LEVELS

TABLE IV
LSD RESULTS OBTAINED WITH THE EM, LS, AND ACMRF ALGORITHMS FOR DIFFERENT NOISE TYPES AND INPUT SEGSNR LEVELS

TABLE V
PESQ RESULTS OBTAINED WITH THE EM, LS, AND ACMRF ALGORITHMS FOR DIFFERENT NOISE TYPES AND INPUT SEGSNR LEVELS

were considered in the unvoiced speech or speech absent frames,
while the samples that were one pitch frequency apart were
used for the frames that contained voiced speech. The pitch es-
timation was performed with an “off-the-shelf” pitch estimator,
which estimated the pitch directly from the noisy samples.

An important aspect of the proposed algorithm was the adap-
tive selection of the weights that determined the influence of
the neighbors on the estimated sample. These were selected in
such a way that samples with large variance, which were more
likely to contain speech, exerted more influence on the estimated
sample, compared to samples with smaller variance, which were
more likely to correspond to noise. This strategy allowed the re-
covery of weak speech spectral components, while keeping the
residual noise level low.

The comparison of the proposed algorithm with other widely
used speech enhancement schemes, highlighted its ability to re-
cover speech spectral components that are immersed in noise.
This attribute of the proposed algorithm is largely due to the
time-frequency coupling that the MRF priors imposed. Addi-
tionally, in noise dominated areas, the consideration of a larger
number of neighboring samples compared to more traditional
approaches, resulted in lower levels of residual noise, which
was also free of musical noise artefacts. The above two char-
acteristics of the proposed algorithm were also illustrated in a
number of objective and subjective speech quality tests. Finally,
the derivation of the proposed estimator in a simple, closed
form, allows the easy implementation of the ACMRF algorithm,
and keeps its computational complexity low.

APPENDIX

INTERPRETATION OF THE AND PARAMETERS

The Chi MRF prior (9) can be written as

(29)

with as defined in (19) and

(30)

When the variances of the neighbors tend to zero, because
contain mostly noise, then also tends to zero

and the prior tends to be proportional to the Chi density, which is
given by . The pa-
rameter , which is the scale parameter of the Chi density, tends
to , which is in accordance with the expression for
the second moment of the Chi density, which is .
In other words, when the neighbors contain mostly noise,
the prior degenerates to a univariate Chi density with variance

; hence, the similarities of the ACMRF algorithm with
the MAP-Chi estimator presented in [20].

On the other hand, when the variance of the neighbors is much
higher than and , then tends to zero, and
tends to . This implies that the prior degenerates to a point
mass, which is centered at . The result is that when the neigh-
bors of contain mainly speech, then the prior strongly favors
the observation as an estimate for .
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In preliminary work, we experimented with the parameter

(31)

Under this scenario, when is much greater than the rest of
the variances, then the prior tends to a point mass centred at

and effectively we have . In an image processing
scenario, where MRFs have been extensively used, assigning to
a pixel the value of its neighbor might be desirable, assuming
that both pixels represent the same color. For the restoration of
the speech STFT amplitudes however, this approach was found
to generate significant distortions and was abandoned.
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