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Sound reproduction systems using open arrays of loudspeakers in rooms suffer from degradations
due to room reflections. These reflections can be reduced using pre-compensation of the loudspeaker
signals, but this requires calibration of the array in the room, and is processor-intensive. This paper
examines 3D sound reproduction systems using spherical arrays of fixed-directivity loudspeakers
which reduce the sound field radiated outside the array. A generalized form of the simple source
formulation and a mode-matching solution are derived for the required loudspeaker weights. The
exterior field is derived and expressions for the exterior power and direct to reverberant ratio are
derived. The theoretical results and simulations confirm that minimum interference occurs for
loudspeakers which have hyper-cardioid polar responses.
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I. INTRODUCTION

Sound reproduction systems attempt to produce sound
arriving from arbitrary directions using arrays of loudspeak-
ers. Many early systems used a small number of loudspeak-
ers in a line in front of, or a circle around, the listener, and
compensated for the limitation in the number of loudspeak-
ers by including knowledge of psycho-acoustic effects.1–4

With the use of larger numbers of loudspeakers, it became
possible to reproduce sound pressure fields over a larger
space using planar arrays5–7 or 2D circular8 or 3D spherical
arrays.9–18

One of the limitations of implementing sound reproduc-
tion systems in rooms is that the room surfaces add un-
wanted early reflections and reverberation to the desired di-
rect field produced by the loudspeakers.19 These reflections
may be reduced by acoustically treating the room. However,
acoustic treatment may not be possible in many cases, and
typically is difficult at low frequencies.

Active methods may be applied to reduce the influence
of the room on the reproduced sound field.12,19–26 Active
compensation requires measurement of the loudspeaker re-
sponses at one or more receiving positions and the imple-
mentation of a digital compensator, which requires consider-
able processing. Furthermore, when the listener is present,
the diffracted sound field from the listener will radiate out to
the room surfaces and create secondary reverberation arti-
facts in the reproduction region. However, since these arti-
facts are typically of lower sound level than the reflections
produced directly by the loudspeakers, compensation for first
generation reflections can still produce a subjective improve-
ment in sound quality.

There are two approaches which can offer reduced room
influence without requiring active compensation and calibra-

tion. The simplest is to use loudspeakers with a fixed direc-
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tivity which produces a reduced reverberant field. An array
of directional loudspeakers will produce a direct sound
which propagates through the listening region and reflects
from wall surfaces on the far side of the array. The array will
thus reduce early reflections from the nearest walls—which
would produce tonal coloration—but the late echoes from far
walls will still alter the spatial impression of the sound
field.27 A second approach is to use a loudspeaker array that
creates a sound field within the array, but which prevents
sound from radiating outward toward the room surfaces. This
approach is described by the Kirchhoff-Helmholtz �K-H� in-
tegral formula, which shows that a sound field can be created
within a region bounded by a surface S covered by an infi-
nitely dense array of monopole and dipole sources normal to
the surface S, and that the sound field outside the region is
zero.5–7,12–14,28–30 However, in practice a discrete array of
loudspeakers must be used, and so the K-H solution can only
be approximated at low frequencies.

A. Paper outline

This paper considers sound reproduction using fixed-
directivity loudspeakers to reduce the influence of room
acoustics. Each loudspeaker has a first-order response which
is the weighted sum of a monopole and a radially-oriented
dipole response, which allows the reverberant sound within
the array to be reduced compared to the direct sound. The
required loudspeaker weights are derived using a direct ap-
proach, and using a mode-matching approach which allows
control of the reproduction error via regularization of a ma-
trix inverse. The effect of reverberant sound level is quanti-
fied by calculating the direct to reverberant sound ratio pro-
duced by the loudspeaker array at the center of the
reproduction region. This requires the derivation of the exte-

rior power radiated from the array. It will be shown that at
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high frequencies the direct to reverberant ratio can be more
simply written in terms of the directivity of the individual
loudspeakers, and that the hyper-cardioid produces close to
the maximum direct to reverberant ratio. The theory is evalu-
ated using numerical simulations and the advantages and dis-
advantages of the two loudspeaker weight solutions are high-
lighted.

We commence with the spherical harmonic description
of sound fields and monopole and dipole sources. Idealized
forms of these sources will be used that represent the behav-
ior of first-order loudspeakers with frequency-invariant polar
responses.

II. SPHERICAL HARMONIC DESCRIPTION OF SOUND
FIELDS

Let �rL
be a sphere with radius rL centered at the origin.

A sound field is said to be an interior field if it satisfies the
homogeneous wave equation in the interior of �rL

, and it is
conversely said to be an exterior field or a radiating solution
if it satisfies the wave equation in the exterior of �rL

and the
Sommerfeld radiation condition.28 This definition implies
that all sources of sound and scattering objects are located in
the interior of �rL

for an exterior sound field, and outside the
region for an interior field.

The solution to the wave equation can be expressed in
spherical coordinates r�= �r ,� ,��, where the arrow denotes a
vector quantity, the vector norm r= �r�� is the radial distance
from the origin, � is the elevation angle from the vertical
z-axis and � is the azimuthal angle from the x axis.28 The
general solutions for interior and exterior sound fields at
negative frequency � are28

p�r,�,�,k,t� = e−i�t�
n=0

�

�
m=−n

n

jn�kr�An
m�k�Yn

m��,��, r � rL �1�

and

p�r,�,�,k,t� = e−i�t�
n=0

�

�
m=−n

n

hn�kr�Cn
m�k�Yn

m��,��, r � rL,

�2�

respectively, where k=� /c rad/m is the wave number �the
speed of sound c in m/s is assumed to be uniform in R3�,
An

m�k� and Cn
m�k� are the expansion coefficients, jn�x� is the

nth order spherical Bessel function and hn�x�=hn
�1��x� is the

nth order spherical Hankel function of the first kind. The
spherical harmonic Yn

m�� ,�� is defined as30

Yn
m��,�� =��2n + 1�

4�

�n − �m��!
�n + �m��!

Pn
�m��cos ��eim�, �3�

where Pn
�m�� · � is the associated Legendre function. The terms

jn�kr�Yn
m�� ,�� and hn�kr�Yn

m�� ,�� are hereafter also referred
as modes of the field.

Throughout this work, the assumption is made that the
operating frequency � and hence the wave number k are

fixed.
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A. Monopole and dipole sources

The acoustic pressure field generated by an ideal mono-
pole source at r�s= �rs ,�s ,�s� of unit amplitude in the free
field �the free-space 3D Green function� is of the form28

pm�r�,r�s,k� = G�r��r�s� =
eik�r�−r�s�

4��r� − r�s�
. �4�

The spherical harmonic expansion of the monopole field is
given by28

pm�r�,r�s,k�

=	ik�
n=0

�

jn�kr�hn�krs� �
m=−n

n

Yn
m��,��Yn

m��s,�s��,

r � rs

ik�
n=0

�

jn�krs�hn�kr� �
m=−n

n

Yn
m��,��Yn

m��s,�s��,

r � rs.


 �5�

The power of the monopole source of unitary amplitude is
obtained by integrating the intensity over a sphere enclosing
the source,28 producing

W =
1

8�	c
, �6�

where 	 is the density of air and 	c its characteristic imped-
ance.

A dipole at position r�s and oriented in direction v� has a
field that takes the form29

pd�r�,r�s,k� =
�G�r��r�s�

�
�

= − ik
eik�r�−r�s�

4��r� − r�s�
�1 +

i

k�r� − r�s�
�cos � , �7�

where � is the angle between v� and r�−r�s. At large distances
from r�s, the dipole field tends to

pd�r�,r�s,k� → − ik
eik�r�−r�s�

4��r� − r�s�
cos �, �r� − r�s� �

1

k
. �8�

In order to produce a first-order directivity that is indepen-
dent of frequency we equalize the dipole response by divid-
ing by ik. The equalized dipole has the on-axis frequency
response

�pd�r�,r�s,k�� =
1

4�r
�1 +

1

�krd�2 , �9�

where rd= �r�−r�s�. The near-field transition of the dipole oc-
curs at krd=1, and the equalized response is flat for frequen-
cies down to the transition frequency fd=c / �2�rd�, and rises
at 6 dB/octave below that. Hence, to ensure flat responses
down to a frequency fL, we must maintain a distance from
any equalized dipole greater than rd=c / �2�fL�.

The spherical harmonic expansion for a 1 / �ik�-equalized
dipole oriented radially with respect to the origin is obtained

from the derivative of Eq. �5� with respect to rs as follows:
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pd�r,�,��

=	k�
n=0

�

�
m=−n

n

jn�kr�hn��krs�Yn
m��,��Yn

m��s,�s��,

r � rs

k�
n=0

�

�
m=−n

n

jn��krs�hn�kr�Yn
m��,��Yn

m��s,�s��,

r � rs,


 �10�

where jn�� · � and hn�� · � are the derivatives of the correspond-
ing spherical Bessel and Hankel functions.

B. Truncation error of monopole and dipole field

In what follows we will be interested in the relative
errors produced by the truncation of the monopole and dipole
source expansions. The angle-averaged normalized trunca-
tion error for a monopole with order N expansion pT�r ,� ,��
is defined as10,12


̄TM�N,kr� =



�r

�p�r,�,�� − pT�r,�,���2d�r



�r

�p�r,�,���2d�r

, �11�

where the overbar represent the average over all angles. Sub-
stituting the interior monopole expansions, Eq. �5� yields the
interior monopole truncation error12


TM�N,kr� = 1 −
�n=0

N
�2n + 1�jn

2�kr��hn�krs��2

�n=0

�
�2n + 1�jn

2�kr��hn�krs��2
, kr � krs.

�12�

The truncation error is shown for krs=8 in Fig. 1. The error
conforms approximately to the rule of thumb of �14 dB for
N=kr derived for plane waves in Ref. 4. However, for kr
approaching krs higher order expansions are required to
maintain accuracy. For example, a truncation error below
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FIG. 1. Monopole truncation error for krs=8 and orders N=0–10.
�14 dB requires an order of N=9 at kr=7.
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The interior truncation error for the dipole is found from
Eq. �10� as follows:


TD�N,kr� = 1 −
�n=0

N
�2n + 1�jn

2�kr��hn��krs��2

�n=0

�
�2n + 1�jn

2�kr��hn��krs��2
, kr � krs.

�13�

This is shown in Fig. 2 for krs=8. For kr�krs the error is
around �16 dB for N=kr but as kr approaches krs higher
order expansions are again required. For example, kr=7 re-
quires N�10 for �14 dB truncation error, a higher order
than the monopole case.

C. Loudspeaker array geometry and Nyquist
frequencies

We will assume a spherical array of loudspeakers, each
of which can produce ideal monopole and dipole fields, at
positions �rL ,�l ,�l� , l� �1,L� which approximate an equal
sampling over the sphere, with numerical weighting coeffi-
cients �l which allows accurate numerical integration �see
for example Ref. 31�.

A measure of the accuracy of the geometry is the cross
correlation of the discretized spherical harmonics

���n1,m1�,�n2,m2�� = �
l=1

L

�lYn1

m1��l,�l�Yn2

m2��l,�l��. �14�

This is the discretized version of the orthogonality relation of
the spherical harmonics.28 For an ideal array ���n1 ,m1� ,
�n2 ,m2��=�n1n2

�m1m2
for all orders. However at high orders

there will be insufficient samples to allow the orthogonality
condition to be met. For example, Fig. 3 shows the cross
correlation function for L=144 loudspeakers31 and orders up
to N=11. The error approaches 0 dB at large orders.

A second consequence of the discrete array is that it can
only reproduce desired interior sound fields over a finite
bandwidth. For the accurate representation of a monopole
source field at radius r, Fig. 2 shows that the minimum order
required is approximately N=kr. Since the exact control of

2
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FIG. 2. Dipole truncation error for krs=8 and orders N=0–10.
�N+1� modes requires at least as many loudspeakers, the
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minimum number of loudspeakers required to represent the
interior expansion of a first-order source of wave number k at
radius r is approximately L� ��kr�+1�2 �see Ref. 10�. If the
loudspeakers are arranged uniformly or almost uniformly, it
is reasonable to attempt the reproduction up to the frequency

fNI�r� =
c��L − 1�

2�r
. �15�

This may be termed the interior Nyquist frequency, by the
following simple argument: For a uniform spherical array of
loudspeakers, the minimum angle between speakers is ap-
proximately 2�� /L rad. The sound rays from the loud-

FIG. 3. Spherical harmonic cross correlation in dB, for N=11, v1=n1
2+n1

+m1+1.
This has a value of 3 for a=0.5 �the cardioid response� and
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speakers to the origin at radius r are 2r�� /L apart. Setting
this to a half wavelength yields approximately the same re-
sult as Eq. �15�.

For r=rL the interior Nyquist frequency is such that the
loudspeakers are half a wavelength apart and the interior
Nyquist frequency is equal to the array’s ‘exterior’ Nyquist
frequency for generating an exterior field. This frequency
will be important when calculating the reverberant field pro-
duced by the array �Sec. III E�.

The interior and exterior Nyquist frequencies introduced
here do not represent, as in the case of uniform sampling on
an infinite line or on a circle, a precise boundary below
which no artifacts due to spatial aliasing occur. Equation �15�
is rather to be interpreted as an indicative upper frequency
limit, below which the reproduction of the field can be ex-
pected to be accurate, under the ideal assumption of uni-
formly arranged speakers.10

III. SOUND REPRODUCTION SYSTEMS WITH FIXED-
DIRECTIVITY LOUDSPEAKERS

An ideal first-order loudspeaker has a normalized,
axially-symmetric polar response which is a weighted sum of
monopole equation �4� and dipole equation �7� responses.
The response using the equalized dipole may be written

pa�r�,r�s,k� =
eik�r�−r�s�

4��r� − r�s�
�a − �1 − a��1 +

i

k�r� − r�s�
�cos �� ,

�16�

where a� �0,1� is the first-order weighting parameter and �
is the angle from the loudspeaker axis. The corresponding
spherical harmonic expansion of the first order source is,

from Eq. �5� and Eq. �10�,
pa�r�,r�s,k� = 	k�
n=0

�

�
m=−n

n

jn�kr��iahn�krs� + �1 − a�hn��krs��Yn
m��,��Yn

m��s,�s��, r � rs

k�
n=0

�

�
m=−n

n

hn�kr��iajn�krs� + �1 − a�jn��krs��Yn
m��,��Yn

m��s,�s��, r � rs.
 �17�
The distance-scaled far-field response of the first order
source is, from Eq. �16�,

q��� = a − �1 − a�cos � . �18�

For a=1 the loudspeaker is omnidirectional and for a=0 it
produces a dipole response. The directivity, D�a�, of the first-
order loudspeaker32,33 then follows the same analysis that has
been applied to first-order microphones34 and is given by

D�a� =
4�

2�

0

�

�q����2sin �d�

=
3

3a2 + �1 − a�2 . �19�
has a maximum value of D�a�=4 for a=0.25 �the hyper-
cardioid response�. Higher directivities can be obtained using
second-order loudspeakers, or arrays of loudspeakers. Note
that in the near-field, k�r�−r�s��1, the equalized dipole mag-
nitude increases and the first-order response in Eq. �18� is no
longer correct. The directivity D of a source implies that the
sound at a distance r on-axis will be D times the average
intensity the source produces at the same distance r. Equiva-
lently, the average power radiated from the source is 1 /D
times the power radiated through a small area on-axis.

A. Direct solution for fixed-directivity loudspeaker
weights
Consider a continuous distribution of monopole and

letti et al.: Sound reproduction with fixed-directivity speakers 3593

 or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



Downloade
radially-oriented, equalized dipole speakers on the surface of
a sphere �rL

of radius rL at positions r�v= �rL ,�v ,�v�, �v
� �0,�� and �v� �0,2��. The interior sound field at position
r� can be written

p�r�� = 

0

� 

0

2� �aG�r��r�v� −
�1 − a�

ik

�

�n��r�v�
G�r��r�v��

�w��v,�v�sin �vd�vd�v, r � rL, �20�

where n��r�L� is the unitary vector normal to �rL
at r�v and

directed toward its exterior. Since the weights w��v ,�v� are a
function of ��v ,�v� they have the general form28

w��v,�v� = �
n=0

�

�
m=−n

n

Qn
mYn

m��v,�v� , �21�

where Qn
m are the expansion coefficients. Substituting the

interior form of the monopole and equalized dipole expan-
sions, Eq. �5� and Eq. �10�, and the assumed weight solution
Eq. �21� into Eq. �20� and employing the orthogonality of the
harmonics yields

p�r�� = k�
n=0

�

�
m=−n

n

jn�kr�Qn
m�aihn�krL� + �1 − a�hn��krL��

�Yn
m��,�� . �22�

This must equal the interior expansion of the general sound
field in Eq. �1�. Hence

Qn
m =

An
m

k�aihn�krL� + �1 − a�hn��krL��
�23�

and the continuous distribution of weights is

w��v,�v� = �
n=0

�

�
m=−n

n
An

mYn
m��v,�v�

k�aihn�krL� + �1 − a�hn��krL��
. �24�

For a=1, this solution is the simple source solution for
monopole reproduction.12,18,28,35,36

For a discrete array, with loudspeaker angles ��l ,�l�, l
� �1,L�, and weighting coefficients �l, the discrete loud-
speaker weights truncated to order N are

ŵl = �l�
n=0

N

�
m=−n

n
An

mYn
m��l,�l�

k�aihn�krL� + �1 − a�hn��krL��
, l � �1,L� .

�25�

The weights are required so that the reproduction using L
loudspeakers implements the discrete approximation to Eq.
�20�. For a point source, Eq. �5�, located in the exterior of
�rL

, the loudspeaker weights are obtained by substituting the
interior expansion coefficients An

m= ikhn�krs�Yn
m��s ,�s��.

Note that the solutions in Eq. �25� are in general a function
of frequency, and therefore represent weighting filters, with
associated impulse responses in the time domain. The solu-
tions must be calculated at discrete frequencies spaced at
�f =1 /� to represent the corresponding loudspeaker impulse
responses over their approximate time duration �. The im-

pulse response is then obtained via an inverse discrete Fou-
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rier transform. Sample rates less than �f will lead to time-
aliasing of the impulse response.37

For the continuous array, we can also calculate the ex-
terior field using the exterior field forms of Eq. �5� and Eq.
�10�, with the weight function in Eq. �24� yielding37

p�r�� = �
n=0

�

�
m=−n

n

An
m�k�� ajn�krL� + i�1 − a�jn��krL�

ahn�krL� + i�1 − a�hn��krL��
�hn�kr�Yn

m��,��, r � rL. �26�

This will be used to calculate the reverberant field produced
by the array in Sec. III E., Note that the exterior forms in Eq.
�5� and Eq. �10� mean that the above expression includes the
sound that propagates across the interior of the array and out
the other side.

B. Mode-matching solution

An alternative approach to the analytical solution above
is obtained by requiring that the modal decomposition of the
sound field produced by the loudspeakers match that of the
desired sound field.12 For an arbitrary field with coefficients
An

m, using Eqs. �1�, �5�, and �10� and the orthonormality prop-
erty of the spherical harmonics this produces, for each n and
m, and with mode matching weights w̄l,

k�
l=1

L

w̄l�iahn�krL� + �1 − a�hn��krL��Yn
m��l,�l�� = An

m. �27�

This can be written in matrix form

�Fw = HaYw = d , �28�

where �F is a K by L matrix �K= �N+1�2�, w is an L by 1
vector of loudspeaker weights w̄l, and d is a K by 1 vector of
desired field coefficients d�b�=An

m.
The matrix �F can be factored into the K by K diag-

onal matrix Ha with elements Ha�b ,b�=k�iahn�krL�+ �1
−a�hn��krL��, where b=n2+n+m+1, and a K by L matrix Y
of spherical harmonic terms Y�b , l�=Yn

m��l ,�l��. Note that
Ha contains 2n+1 repeated elements for each n.

For K�L the vector of mode matching weights which
produces the minimum squared error is10,38

w = ��F
H�F + �FI�−1�F

Hd , �29�

where �F is an optional regularization parameter and super-
script H denotes the conjugate transpose.

For K�L the mode matching weights are found from
the minimum energy solution1039

w = �F
H��F�F

H + �FI�−1d , �30�

where �F allows the energy to be reduced below the mini-
mum energy solution, with a corresponding increase in error.

As for the solution in Eq. �25�, the solutions in Eqs. �29�
and �30� are in general frequency-dependent and must be
calculated at a frequency spacing �f which prevents tempo-

ral aliasing of the corresponding filter impulse responses.
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C. Comparison of solutions

The similarities between the direct and mode matched
solutions may be made clearer by writing Eq. �28� as Yw
=Ha

−1d �since Ha is square�. The mode matched solution can
then be written

w = ��YHY + �FI�−1YHHa
−1d , K � L

YH�YYH + �FI�−1Ha
−1d , K � L ,

� �31�

and the direct solution in Eq. �25� may be written in a similar
matrix form as

ŵ = BYHHa
−1d , �32�

where B is an L by L diagonal matrix of weighting coeffi-
cients �l. It is now apparent that the mode matching solution
contains an additional inverse matrix which compensates for
the non-orthogonality of the loudspeaker spherical harmonic
matrix, whereas the direct solution uses a weighting vector
proportional to the solid angle associated with each loud-
speaker, but does not compensate for non-orthogonality.12

D. Robustness

The solutions derived above require that all loudspeak-
ers have identical polar responses. Furthermore, the loud-
speakers must be positioned exactly at �rL ,�l ,�l� for the
spherical harmonic matrix Y to be valid. In practice, neither
of these conditions can be met precisely, and therefore, there
will be an additional error in the reproduced field above the
solution error ��Fw−d�2, due to errors in �F.40 The sensi-
tivity of the solution to these errors is governed approxi-
mately by the condition number of �F.41

The approximate condition number of �F for K�L
may be derived as follows. For K�L the matrix �F has a
singular decomposition �F=USKVH where U is a K by K
unitary matrix, SK is a K by L matrix containing �at full rank�
K singular values ��1 ,�2 , . . . ,�K�, and V is an L by L unitary
matrix.38

The squared singular values of �F are the eigenvalues
of

�F�F
H = USk

2UH = HaYYHHa
H � HaHa

H, �33�

assuming that YYH�I. Hence the 2n+1 repeated singular
values are approximately

�n = �aihn�krL� + �1 − a�hn��krL�� , �34�

and so the condition number is

�F =
�aihN�krL� + �1 − a�hn��krL��
�aih0�krL� + �1 − a�h0��krL��

= �krL�2 �aihN�krL� + �1 − a�hn��krL��

��krL�2 + �1 − a�2�1 � 2
. �35�

The condition numbers are shown for an array of 144 loud-
speakers at a radius 1.5 m at four frequencies from 100 to
600 Hz in Fig. 4. The match is good for K�L �N�11� as
expected, but at 200 and 300 Hz the theoretical value is also
approximately true for K�L. For K=L there is an increase

in condition number at all frequencies, which is most appar-
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ent above the exterior Nyquist frequency of the array �400
Hz�. The condition number behavior above the Nyquist fre-
quency is similar to that of the condition number of random
normal matrices,42 which has a peak when the matrix is
square. The distributions of the real and imaginary parts of
the entries in �F are not normal, and so the precise variation
of the log of the condition number does not follow that in
Ref. 42, but the peak value at K=L is similar to the value
E�log��F��=log�L�+0.982 �5.95 for L=144� derived in
Ref. 42.

E. Direct to reverberant ratio

The optimum directivity of the loudspeakers in a sound
reproduction system depends on the acoustic parameter to be
optimized. If the goal is to minimize the level of the rever-
berant sound at the center of the array, the optimum is ob-
tained by maximizing the ratio of the direct sound to the
reverberant sound at the center of the array. We briefly re-
view the derivation of the direct to reverberant ratio �DRR�
here.

1. DRR for a single loudspeaker

If a directional loudspeaker with directivity D, emitting
acoustic power Wl is placed in a semi-reverberant room, then
at a distance rL, on-axis, the intensity is33

Idir,l�rL� =
Wl

4�rL
2 D . �36�

The reverberant intensity is43

Irev,l =
4Wl

S�̄
�1 − �̄� =

4Wl

R
, �37�

where R=S�̄ / �1− �̄� is the room constant, S is the room
surface area and �̄ is the average sound absorption coeffi-
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FIG. 4. log��� calculated at 4 frequencies, K�L approximation from Eq.
�35� and random normal matrix result, L=144, rL=1.5 m.
cient. Hence, the direct to reverberant sound intensity ratio is
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� =
Idir,l�rL�

Irev,l
=

DR

16�rL
2 . �38�

This is equal to one at the critical distance rc=�DR / �4���.33

Hence, to minimize reverberant effects in rooms, the loud-
speaker should be positioned closer to the listener than the
critical distance.

For an array that accurately reproduces the sound due to
a point source at distance rs, with power Ws, the direct in-
tensity at the center of the array has the same form as Eq.
�36� with D=1. The reverberant intensity produced by the
array is 4Wext /R where Wext is the total power radiated out-
ward from the array into the room. Hence the general expres-
sion for the direct to reverberant ratio of a sound reproduc-
tion system is

� =
Ws

Wext

R

16�rs
2 . �39�

We now calculate the exterior power for the continuous and
discrete array cases, and derive an approximate expression
that applies at high frequencies which yields a simple inter-
pretation in terms of the loudspeaker on-axis directivity D.

2. Exterior power for continuous and discrete
array

At frequencies below the exterior Nyquist frequency, the
sound radiated from a discrete implementation of the fixed-
directivity array will be approximately equal to that of the
continuous array. The acoustic power radiated can be com-
puted by calculating the acoustic intensity from Eq. �26� and
integrating over a sphere,28 yielding

Wext =
1

2	ck2 �
n=0

�

�
m=−n

n �An
m ajn�krL� − i�1 − a�jn��krL�

ahn�krL� − i�1 − a�hn��krL�
�2

.

�40�

Note that since the expansions in Eq. �5� and Eq. �10� apply
for all angles, Eq. �40� includes the sound that propagates
through the interior of the array to the exterior field. For the
case of a point source with acoustic power Ws given in Eq.
�6� the exterior power is �using the spherical harmonics ad-
dition theorem30�

Wext = Ws�
n=0

�

�2n + 1��hn�krs��2

�� �jn�kR� − i�1 − ��jn��kR�
�hn�kR� − i�1 − ��hn��kR�

�2

. �41�

At frequencies above the Nyquist frequency, the exterior
power radiated from the discrete array must be calculated
from the individual loudspeaker weights ŵl or w̄l. Using the
exterior field expansions in Eqs. �5� and �10�, and Eq. �6�, the

ˆ
radiated power for the weights wl can be written
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Wext = 4�Ws�
n=0

�

�ajn�krL� − i�1 − a�jn��krL��2

� �
m=−n

n ��
l=1

L

ŵlYn
m��l,�l���2

. �42�

3. High frequency approximation

Equation �42� can be approximated by noting that at
high frequencies the power radiated from the array will tend
to the sum of the powers radiated from each loudspeaker,
although interference effects will still occur. Since each loud-
speaker is assumed to have the same power as the source,
with an amplitude weighting factor �ŵl for example�, the
exterior power is approximated by

Wext �
Ws

D
�
l=1

L

�ŵl�2 =
rL

2

rs
2

Ws

D
�
l=1

L

�w̃l�2, �43�

where the normalized weights

w̃l =
rs

rL
ŵl �44�

are defined by noting that the sound pressure produced by
the array at the origin must satisfy

�
l=1

L

ŵl��s,�s� =
rL

rs
eik�rs−rL�. �45�

Note that Eq. �43� also includes the sound that propagates
through the interior of the array and to the exterior field.
Substituting Eq. �43� into Eq. �39�, the direct to reverberant
ratio at high frequencies can be written

�high �
DR

16�rL
2

1

�l=1

L
�w̃l�2

. �46�

This has a similar form to Eq. �38� with an additional term
due to the loudspeaker weights. The DRR is reduced if the
sum of the squared normalized loudspeaker weights is
greater than one. The term

� = �
l=1

L

�w̃l�2 �47�

is thus a figure of merit for any sound reproduction design
above the exterior Nyquist frequency of the array. Solutions
for which � is large have been shown to be non-robust solu-
tions for which large errors in the reproduced field can occur
for small perturbations in the loudspeaker positions and fre-
quency responses.40 For robust solutions, � is ideally one or
less in which case the direct to reverberant ratio is the same
or better than that of a single directional loudspeaker at a
distance rL.

IV. SIMULATIONS

We now present simulations that allow the direct and
mode-matched solutions to be assessed. We use a spherical

array of 144 loudspeakers which are almost uniformly

Poletti et al.: Sound reproduction with fixed-directivity speakers

 or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



Downloade
arranged31 at a radius of 1.5 m producing an exterior Nyquist
frequency of 400 Hz. The loudspeaker array is assumed to be
in a free field, so there are no room reflections.

The near-field of the loudspeaker dipole responses occur
at a distance for which k�rL−r�=1, which is a distance of
1.22 m at 200 Hz �Eq. �9��. Due to the poor conditioning of
the mode matching for the maximum possible mode order of
11 �see Fig. 4� and the need to maintain a high order for
exterior control, we will use N=10 in the simulations. Both
direct and mode matched solutions for N=11 produced
higher weight energies, required larger regularization and
produced higher errors than the tenth order solutions.

The desired field is that due to a point source positioned
on the x-axis at rs=3 m. In practice we found some variation
in error performance versus source angle, but the relative
performance of the two methods for ��s ,�s�= �� /2,0� is in-
dicative of the behavior at other angles.
proximation results shown for comparison.
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To quantify the performance of the fixed-directivity so-
lutions we calculate the angle-averaged relative error be-
tween the desired field p�r ,� ,� ,k� and the reproduced field
p̂�r ,� ,� ,k� as follows:10


̄�kr� =



�r

�p�r,�,�,k� − p̂�r,�,�,k��2d�r



�r

�p�r,�,�,k��2d�r

. �48�

This may be determined using the orthogonality properties of
the spherical harmonic expansions in Eqs. �1�, �5�, and �10�
as12

̄�kr� =
4��n=0

�
jn
2�kr��m=−n

n ��l=1

L
�iahn�krL� + �1 − a�hn��krL��ŵlYn

m��l,�l�� − ihn�krs�Yn
m��s,�s���2

�n=0

�
�2n + 1�jn

2�kr��hn�krs��2
. �49�
Figure 5 shows the exterior power relative to the source
power as a function of frequency for a=0.25. At frequencies
below the exterior Nyquist frequency �400 Hz�, the radiated
power equals the continuous array power. In the region of the
Nyquist frequency the actual power deviates from the con-
tinuous result and at high frequencies, oscillates with fre-
quency about the non-coherent power result.

Figure 6 shows the direct to reverberant ratios as a func-
tion of directivity parameter a for a room volume of 320 m3

�8�8�5 m3� with a mean room absorption of 0.2. At 200
Hz the exact �discrete array� DRR �solid line� equals the
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FIG. 5. Relative exterior power for a spherical array with L=144 loudspeak-
ers, rL=1.5 m, a=0.25, with the continuous array and high frequency ap-
continuous array DRR �the two lines are identical� and the
non-coherent result from Eq. �46� is incorrect. The non-
coherent result is larger than the other two because at 200 Hz
the sum of squared weights is approximately equal to one
half, due to the increased near-field dipole response. At 400
Hz the discrete DRR and continuous DRR begin to diverge,
and at 800 Hz the discrete DRR is approximately the same as
the non-coherent DRR. The discrete DRR has a maximum of
around 2.5 for a directivity parameter in the range of 0.25 to
0.3. This is consistent with the fact that the first-order loud-
speaker directivity is maximum for a=0.25, and the variation
from the 0.25 optimum is due to the coherent radiation from
the array at low frequencies and the oscillatory variation of
the actual exterior power at higher frequencies. For compari-
son, the DRR for a single loudspeaker in the same room at
the loudspeaker radius has a maximum DRR of 2.55 for the
hyper-cardioid response �a=0.25�.

Figures 7 and 8 show the real part of the sound field
obtained from direct solution �25� at 200 Hz for a=1 �mono-
pole loudspeakers� and a=0.25 �hyper-cardioid loudspeak-
ers�, respectively, assuming free-field conditions. �The corre-
sponding mode-matched solution wave fields were similar in
appearance, and their relative error performance is consid-
ered shortly.� The dashed circle indicates the loudspeaker
radius and the dark circle is the maximum radius rN= ��L
−1� /k where the mode-limited reproduction can maintain ac-
curacy. The magnitude of the complex fields were limited to
1.5 times the expected magnitude at the origin, 1 / �4�rs�, to
make the images clearer. The monopole field produces sound
radiation outwards from the array of the same amplitude as

that radiating toward the center of array. This exterior radia-
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tion would contribute high reverberant levels to the repro-
duced field when implemented in a room. The DRR for
monopole sources with the same room conditions as Fig. 6 is
0.9. The hyper-cardioid field has a reduced exterior field
compared to the monopole field, with a DRR for the same
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FIG. 6. Direct to reverberation ratio for a room volume of 320 m3 and
low-frequency continuous array DRR �dash-dotted line� and discrete array D
�d�.

FIG. 7. �Color online� Reproduced sound field in free-field conditions, f
=200 Hz, rL=1.5 m, rs=3 m, a=1.0 �monopole sources�. The dark line
denotes the maximum radius where accurate field reconstruction is possible,

and the dashed white line is the loudspeaker radius.
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room conditions as Fig. 6 of 2.6, an improvement by a factor
of 3.2 over the monopole source case. However, the accuracy
of the reproduced field is reduced for radii near rL. There is
thus a slight trade-off between exterior radiation and interior
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ption coefficient 0.2. High frequency �non-coherent� DRR �dashed line�,
�solid line�, at frequencies 200 Hz �a�, 400 Hz �b�, 600 Hz �c� and 800 Hz

FIG. 8. �Color online� Reproduced sound field in free-field conditions, f
=200 Hz, rL=1.5 m, rs=3 m, a=0.25 �hyper-cardioid sources�. The dark
line denotes the maximum radius where accurate field reconstruction is pos-
absor
RR
sible, and the dashed white line is the loudspeaker radius.
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accuracy at low frequencies when using directional loud-
speakers.

Figures 9 and 10 shows the sound fields produced by
monopole and hyper-cardioid loudspeakers, respectively, at a
frequency of 600 Hz. In Figs. 7 and 8 the radius for accurate
reproduction exceeds the loudspeaker radius and the sound
field is accurate over the interior of the array, but the accu-
racy reduces near the loudspeakers, due to the modal trunca-
tion of the solutions. At 600 Hz the region of accuracy is
about 1 m, and the field is inaccurate outside this radius for
both monopole and hyper-cardioid cases. The fields within 1
m have similar accuracy, suggesting that there is little reduc-
tion in accuracy using the directional array above the Ny-
quist frequency.

FIG. 9. �Color online� Reproduced sound field in free-field conditions, f
=600 Hz, rL=1.5 m, rs=3 m, a=1.0 �monopole sources�. The dark line
denotes the maximum radius where accurate field reconstruction is possible,
and the dashed white line is the loudspeaker radius.

FIG. 10. �Color online� Reproduced sound field in free-field conditions, f
=600 Hz, rL=1.5 m, rs=3 m, a=0.25 �hyper-cardioid sources�. The dark
line denotes the maximum radius where accurate field reconstruction is pos-

sible, and the dashed white line is the loudspeaker radius.
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The monopole field displays greater beaming of exterior
sound than the hyper-cardioid array, particularly at array po-
sitions nearest the source position. The DRR for the mono-
pole array was 0.86, and for the hyper-cardioid array was 3.

With directional loudspeakers, the sound from the
source angle propagates across the array and out the other
side. If a listener walked around the outside of a directional
loudspeaker array, he/she would tend to hear only those vir-
tual sources originating from the far side of the array and
would not tend to hear those originating from the near side.

Figure 11 shows the angle-averaged reproduction error
calculated from Eq. �49� at frequencies 200, 400, 600 and
800 Hz, with a=0.25. Also shown for comparison is the
radial error at 200 Hz for monopole sources, and the error for
an array of L=36 hyper-cardioid loudspeakers.

At 200 Hz the error is below �30 dB for radii less than
1.25 and the accuracy is high over most of the array interior.
The truncation error is significantly lower than the measured
error, since at 200 Hz the error is increased by the near-field
behavior of the loudspeaker dipole responses. The mode
matched and direct solutions are essentially identical. The
monopole array produces an error approximately 10 dB
lower than the hyper-cardioid array which reduces the radius
of accurate reproduction by around 7%, consistent with Fig.
7 and Fig. 8.

At 400 Hz the reproduction region is approximately
equal to the loudspeaker radius. The mode matched solution
remains close to the truncation error from 1.5 m down to
0.75 m, and for smaller radii, flattens out to a constant value
of around �60 dB. The direct solution diverges more rapidly
from the truncation error, but is below �30 dB for radii less
than 0.85 m. Furthermore, the direct solution has no fixed
error floor, and reduces to zero at the origin. The error curves
at 600 and 800 Hz show similar behavior. It is clear that the
mode-match solution is able to maintain accuracy out to a
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FIG. 11. Direct and mode-matched angle-averaged relative error in free field
conditions from Eq. �49� at f =200, 400, 600 and 800 Hz, a=0.25, rL

=1.5 m, rs=3 m, N=10. The error at f =200 Hz with a=1, and the error at
f =800 Hz for L=36 loudspeakers and N=4, are also shown for compari-
son. The monopole source truncation error for N=10 is also shown.
larger radius than the direct solution, and offers a more prac-
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tical error performance, maintaining a fixed error floor from
the center of the array out to the truncation error.

The angle-averaged error for 144 monopole sources at
600 Hz �not plotted in Fig. 11� is within 1 dB of the hyper-
cardioid error at all radii. This is consistent with the similar-
ity of the interior fields in Figs. 9 and 10. Hence, the direc-
tional array produces slightly lower accuracy near the
loudspeaker radius at low frequencies, but has equivalent
performance to the monopole array at higher frequencies.

The error at 800 Hz using L=36 hyper-cardioid loud-
speakers shows that the region of accurate reproduction has
reduced from r=0.7 to r=0.3 at an error of �10 dB. The
maximum region for accurate reproduction is rN���L
−1� /k �Eq. �15��, and so L=36 reduces the region of accurate
reproduction to about 0.45 of the radius for L=144.

The figures of merit, Eq. �47�, for both direct and mode-
matched solutions with L=144 were �=2.57 at 200 Hz
�caused by the near-field behavior of the loudspeaker dipole
responses�, 0.98 at 400 Hz, 1.08 at 600 Hz and 0.98 at 800
Hz. Hence, above the near-field frequency fd, the DRR is
optimum.

V. CONCLUSIONS

This paper has investigated two methods for reproducing
three-dimensional sound fields using loudspeakers with
fixed, frequency-independent, first-order directivities, with
the goal of reducing the reverberant field that occurs with
sound reproduction in rooms. The reduction is quantified by
the direct to reverberant sound ratio, which at low frequen-
cies is governed by the coherent exterior field produced by
the array, and at high frequencies is approximated by the
individual behavior of each loudspeaker.

It has been shown that the reverberant field produced by
a 3D spherical array can be reduced in a similar way to that
due to a single loudspeaker and therefore directional loud-
speakers are a useful approach to reducing room effects in
sound field reproduction systems. The sound system does not
need to be calibrated in-situ and is therefore simpler than
adaptive systems. However, the reduction is likely to be less
than that produced by an adaptive system. A further improve-
ment in performance is possible at low frequencies by imple-
menting a discrete approximation of the Kirchhoff-
Helmholtz integral, which would eliminate the exterior field.
This topic will be examined in a subsequent paper.

The large number of loudspeakers required for 3D sound
field reproduction remains a challenge for any practical
implementation. We have used 144 loudspeakers at a radius
of 1.5 m in our simulations. The loudspeaker radius does not
affect the region of accurate reproduction but practical sys-
tems would typically require a reduced number of loud-
speakers, reducing the region of accurate reproduction, rN

���L−1� /k, at each frequency. Three-dimensional arrays
are feasible in large specialized installations, such as public
displays, but home use would typically require simpler 2D
systems. The use of loudspeakers with directional character-
istics also provides the prospect for higher quality 2D sur-
round sound listening in the home. For example, vertical line

sources with first-order directivity in azimuth would allow a
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significant reduction of the ceiling, floor and near-side wall
reflections. Such loudspeakers can be built using a vertical
line array with controlled radiation of the sound wave from
the rear of each loudspeaker.44 Higher-order 3D responses
can be created using spherical arrays of transducers.45

We have assumed an ideal dipole response in this paper
which has been equalized so that its response is flat beyond
the near-field. The sound reproduction simulations assume
these idealized dipoles in deriving the loudspeaker weights
and in calculating the resulting sound field. In practice, di-
pole loudspeakers will not have a low frequency boost and
therefore their near-field behavior will differ from the simu-
lations. The simulations may be regarded as valid for all
positions in the far-field of the loudspeakers, and the low-
frequency performance of practical installations will differ
from the results presented here.
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