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AbstractAbstractAbstractAbstract    

 

The large deflection of a simply-supported beam loaded in the middle is a classic problem in 

mechanics which has been studied by many people who have implemented different 

methods to determine the solution, such as analytical exact solutions and the finite element 

method. The problem is investigated again here but the Galerkin method is used to obtain 

an approximate force-deflection characteristic of the beam. It is shown that the beam can be 

modelled with a Duffing-type stiffness with hardening nonlinearity. The exact solution and 

that from the finite element method are used to validate the results. The accuracy of the 

results and the suitability of the Sine function to model the deflected shape of the beam in 

the Galerkin method are investigated. 

The large deflection of a simply-supported beam due to a pure bending moment is also 

investigated. The exact solution is obtained and the results are used to describe the 

behaviour of the beam.   
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1111 IntroductionIntroductionIntroductionIntroduction    

The common approach to study deflection and vibration of beams is to implement linear 

theory and to consider small rotations. This approach is valid for many practical cases, 

since the materials become plastic by increasing the deformation before the small rotation 

assumption becomes invalid. However, there are different cases in which beams can violate 

the assumption of small deflections. For example, thin bars under excessive load or 

vibration which can result in large deflections without going outside the elastic range of 

their material. Different methods, both numerical and analytical, are suggested to obtain 

the large deformations of beams. In vibration, the nonlinearity of large deflection appears 

in the stiffness term. A nonlinear stiffness dependent on power series of the deflection is the 

most suitable form to study the nonlinear vibration of beams. Hence, the Galerkin method 

has been used in the study reported here. 

The problem of large deformations of beams has attracted a lot of attention and some 

different methods have been suggested to solve the problem. Frisch-Fay [1] has cited most 

of the work in his book “Flexible bars” up to its publication date. Bishop and Drucker [2] 

presented an analytical solution for the large deflection of a cantilever beam loaded at its 

tip in terms of elliptical integrals. Conway [3] found a solution for the large deflection of a 

simply supported beam. He considered the distance between the supports to be fixed 

without considering axial stresses. The problem was solved for two cases of the vertical 

reaction at the supports and for a perpendicular reaction force with friction. Gospodnetic [4] 

considered a thin elastic beam deflected by three symmetrically arranged knife-edged 

supports. In the absence of friction, he considered that the supports exert forces normal to 

the deflected beam and are situated at fixed distances from each other while the beam could 

slide. He also found the solution in terms of elliptical integrals. He plotted the ratio of the 

maximum deflection obtained from nonlinear theory and linear theory as a function of 

applied force and claimed it to be different from the analogous diagram given in reference 

[3].   

Sundara Raja Iyengar and Lakshmana Rao [5] studied the same problem as the one in 

reference [3] and considered a uniform distributed load in addition to the concentrated load. 

They used a power series expansion for the angle along the beam length to find the solution 

for the problem.  
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Wang et. al. [6] used a numerical method to find the large deflection of a cantilever loaded 

along its length and a simply-supported beam loaded partially along its length or by a 

concentrated load. He used the finite difference method to find a solution for the bending 

differential equation along the length of the beam and compared the results with 

experimental results. Wang [7] introduced a different numerical method based on 

integrating along the horizontal axis for a cantilever beam loaded at its end and for a 

simply supported beam subject to a non-symmetrical load. In reference [8] equations for a 

cantilever and a simply supported beam with a distributed load were integrated to obtain 

the relationship between the angle along the beam, the projection in the axial direction and 

the load. Numerical methods were then implemented to solve the problem and deflections 

were calculated using numerical integration. 

Beléndez [9] restated the analytical solution using an elliptical integral for a cantilever 

beam loaded at its tip and compared the results of analytical and numerical solutions with 

experimental results. 

Thomsen [10] studied vibration of a simply-supported beam under a harmonic concentrated 

force on the middle. He considered simply-supported beams with moveable and immovable 

supports. The Galerkin method was used. The effect of shortening of projection length in 

axial direction was not considered which resulted in the erroneous conclusion that a simply 

supported beam with movable supports acts as a softening system.  

In this study, a modification and improvement to the solution based on the Galerkin 

method is introduced, and it is shown that a simply-supported beam under a concentrated 

load at the centre can be modelled by a Duffing-type stiffness with hardening nonlinear 

behaviour. The report starts with a brief description of the theory of the basic principles of 

bending. Then the special case of a simply-supported beam loaded by a pure bending 

moment is studied. This case is used to provide a physical explanation for the 

displacements of beams in general. The solution of the simply-supported beam is the main 

part of this report. The exact solution is presented at first and is followed with an 

approximate solution using the Galerkin method. A physical explanation concerning the 

behaviour of beam is provided and the report then concludes with a discussion about the 

accuracy of method. 
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2222 Beam dBeam dBeam dBeam deformation due to eformation due to eformation due to eformation due to a a a a bending bending bending bending momentmomentmomentmoment    

According to Gere and Timoshenko [11], “a beam is a structural member that is subjected to 

loads acting transversely to the longitudinal axis”.  A force applied to a beam causes a 

bending moment to develop inside the beam as well as shear and, or axial forces depending 

on the direction of the applied force. The main cause of the deformation in a beam is the 

bending moment and the effect of shear deformation can often be neglected; this is the case 

in this study. Under the action of a moment, the cross-section of a beam remains plane and 

is normal to the longitudinal axis of the beam. This is true for beams with any 

homogeneous material properties (elastic or inelastic as well as linear or nonlinear), and is 

also true for the large deflection of a beam under pure bending [12].  

To determine the relationships between strain, deformation and bending moment, the 

procedure in reference [11] is followed. Consider the section of a beam shown in Fig 1a in 

which the bending moment is equal to M. The sign convention is given in Fig. 1111b.  The 

strain in the beam element is given by,  

�� � � �� � ��� (1) 

where ρ is radius of curvature and h is the distance from the neutral axis at which the 

strain is measured. The reciprocal of the radius of curvature is called the curvature and is 

represented by κ. The bending moment related to the curvature of the beam can be found 

by  

	 � 
 ��� 
�
�

� 
 ���� 
�
�

 (2) 

Substituting for �� from Eq. (1) gives 

	 � ��� 
 �� 
�
�

 (3) 

The integral in Eq. (3) is the second moment of area denoted by I, so the relationship 

between the curvature and the bending moment can be written as, 

� � 1� � � 	�� (4) 



 

 

Fig. 1. a) Deflected beam due to pure bending moment, b) Sign convention for curvature

 

It should be noted that Eq. (4)

the key equation in the derivation of 

 

2222....1111.... Deflection of Deflection of Deflection of Deflection of a a a a beam due to beam due to beam due to beam due to 

A beam loaded by a pure bending moment is a special case whos

found. Consider the beam shown in

bending moment M at each side. The dis

is the corresponding lateral distance;

centre and �� denotes angle of the beam at each end

For the element ds which is shown 

ds as 

The angle at the centre of the beam is zero because of symmetry. Integrating Eq. (5) 

from � � 0 to � � �� gives 

which can be solved to find the angle at each

6 

. a) Deflected beam due to pure bending moment, b) Sign convention for curvature

Eq. (4) is valid for large as well as small deflections. This equation is 

derivation of the expressions for beam deflection. 

beam due to beam due to beam due to beam due to a a a a pure bendingpure bendingpure bendingpure bending    momentmomentmomentmoment    

pure bending moment is a special case whose deflection can be easily 

. Consider the beam shown in Fig. . . . 2222. The beam is of length L and is loaded by 

at each side. The distance s is measured along the deflected beam and 

the corresponding lateral distance; ���� is the transverse displacement of the beam at the 

denotes angle of the beam at each end. 

which is shown in Fig. . . . 2222a, Eq. (4) can be written as a function of 


�
� � � 	�� 

The angle at the centre of the beam is zero because of symmetry. Integrating Eq. (5) 


 
��
��

� 
 � 	�� 
���
�  

solved to find the angle at each end of the beam, 

 

. a) Deflected beam due to pure bending moment, b) Sign convention for curvature 

is valid for large as well as small deflections. This equation is 

beam deflection.  

e deflection can be easily 

and is loaded by a 

is measured along the deflected beam and x 

ansverse displacement of the beam at the 

can be written as a function of dθ and 

(5) 

The angle at the centre of the beam is zero because of symmetry. Integrating Eq. (5) 

(6) 



 

 

a)     

Fig. 2. Simply supported beam loaded by bending moment, a) deflected beam, b) small section of 

 

This shows that there is a linear relation

and rotational stiffness, � 
determined from, 

The maximum transverse deflection 

noting the relationship between 

�!"�
which evaluates to 

Substituting for ��  from Eq.

expression for �!"� , which is

�
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�� � 	#2�� 

      

. Simply supported beam loaded by bending moment, a) deflected beam, b) small section of 
beam of length ds 

a linear relationship between the angle and 

 � 2��/# .  The transverse deflection of the be

�&�' � 
 
� � 
 sin � 
�+
�  

The maximum transverse deflection occurs at L/2. Substituting for s=

noting the relationship between � and s given in Eq. (5) results in 

!"� � 
 sin �  
���
� � � ��	 
 sin �  
��

��
 

�!"� � ��	 &1 � cos ��' 
Eq. (7) and dividing through by L, gives 

, which is, 

�.!"� � �!"�# � 12 1	/ 01 � cos 	/1 

(7) 

b) 

 

. Simply supported beam loaded by bending moment, a) deflected beam, b) small section of 

angle and the bending moment 

deflection of the beam can be 

(8) 

s=L/2 into Eq. (8), and 

(9) 

(10) 

gives the non-dimensional 

(11) 



 

where 	/ � 2&�34/�' is the non-

tip of the beam can be determined in a similar way. The displacement of the tip is given by,

5 � #
The integral can be evaluated in a straightforward manner and the resulting equation 

divided through by L to give the non

The bending moment as a function of 

shape of the beam illustrated 

beam as a result of the constant bending moment along the beam. As a result, the beam 

forms an arc, then a circle 	//5., is softening up to when the 

 

Fig. 3. Non-dimensional bending moment as a function of non
displacement of the tip 
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-dimensional bending moment. The lateral displacement of 

determined in a similar way. The displacement of the tip is given by,

# � 
 cos � 
��
� � # � ��	 
 cos �  
�7��

��
 

The integral can be evaluated in a straightforward manner and the resulting equation 

to give the non-dimensional displacement of the beam tip,

5. � 5# � 1 � 1	/ sin 	/ 

ending moment as a function of tip displacement is shown in Fig.

illustrated for various loads. The radius of curvature is constant over the 

constant bending moment along the beam. As a result, the beam 

forms an arc, then a circle as the bending moment increases. The stiffness of the beam

when the angle is about 120° whereupon it becomes hardening. 

dimensional bending moment as a function of non

The lateral displacement of the 

determined in a similar way. The displacement of the tip is given by, 

(12) 

The integral can be evaluated in a straightforward manner and the resulting equation 

dimensional displacement of the beam tip, 

(13) 

Fig. 3333 with the deformed 

. The radius of curvature is constant over the 

constant bending moment along the beam. As a result, the beam 

. The stiffness of the beam  

it becomes hardening.  

 
dimensional bending moment as a function of non-dimensional lateral 
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The non-dimensional bending moment is plotted as a function of the transverse 

displacement and the lateral tip displacement in Fig. 4. The results obtained from finite 

element method using Ansys are also shown. It can be seen that these match well with the 

analytical results. The transverse stiffness 	//�., is hardening from the beginning and does 

not soften for any value of bending moment, unlike the axial stiffness 	//5.,  which is 

softening for relatively small bending moments and then has a hardening characteristic for 

very large bending moments. The reason of this behaviour is given in the next section by 

considering the displacement as a result of rotation of beam elements.  

 

Fig. 4. Comparison of the analytical results with the results obtained from Ansys for the 
axial displacement of the tip of the beam and the transverse displacement at the centre of 
the beam. 

 



 

2222....2222.... Effect of rEffect of rEffect of rEffect of rotation otation otation otation     

Applying a bending moment to

Although the rotational stiffness is constant, the 

transverse directions are nonlinear

behaviour respectively. Each segment of the beam rotates as a re

Considering a single element, when it rotates its tip moves in 

directions. Summing the displacement

beam in both directions. The effect of the angle of r

of the softening behaviour in the axial direction and the hardening behaviour in the 

transverse direction. 

To illustrate this phenomenon

has an angle 10° with the x

moves to the right by a distance 

70° with the x axis. By rotating it 

dx is larger than in the previous

displacement in the x direction is proportionately larger and the displacement in the 

direction is proportionately smaller.

Fig. 5. Relationship between 
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bending moment to a beam causes it to deflect and take the

Although the rotational stiffness is constant, the cross stiffnesses

nonlinear, having softening and then hardening, 

Each segment of the beam rotates as a result of this deformation. 

Considering a single element, when it rotates its tip moves in both 

displacements of all the elements gives the displa

beam in both directions. The effect of the angle of rotation on this displacement 

of the softening behaviour in the axial direction and the hardening behaviour in the 

illustrate this phenomenon, consider the line shown in Fig. 5555. The dotted line in 

x axis. By rotating the line by a further 10°

moves to the right by a distance dx. Now, consider the same dotted line making an angle 

axis. By rotating it by a further 10°, as before, the projection of displacement 

than in the previous case.  It can thus be seen that for an i

direction is proportionately larger and the displacement in the 

direction is proportionately smaller. 

Relationship between the angle and the displacement in the x direction.

take the shape of an arc. 

es in the axial and 

and then hardening, and hardening 

sult of this deformation. 

both axial and transverse 

gives the displacement of the 

otation on this displacement is the cause 

of the softening behaviour in the axial direction and the hardening behaviour in the 

. The dotted line in Fig. 5555a 

10°, the tip of the line 

line making an angle of 

, the projection of displacement 

It can thus be seen that for an increasing angle the 

direction is proportionately larger and the displacement in the y 

 

direction. 



11 

 

The tip displacement of the line in the x direction is the difference between its projection 

onto the x axis for two different positions. This is related to the cosine of the angle and can 

be derived easily.  

Consider now Eq. (12) which describes the axial displacement of the tip of the beam. If the 

beam is divided to n equal segments, the integral on the right hand side of Eq. (12) can be 

approximated by a summation over the n segments, so that 

5 � # � 8 cos �!  ∆�:
!;�  (14) 

Because of the constant radius of curvature, the angle, ∆θ, for each segment ∆s is constant, 

so that 

∆� � ∆��  (15) 

Considering that  ∆� � #/<, and # � 2��� then 

∆� � 2��<  (16) 

So Eq. (14) can be rewritten as,  

5 � # � 8  cos =2>��< ? ∆�:
!;�  (17) 

Thus, it can be seen that the axial displacement of the tip of the beam is the difference 

between the length of the beam and the sum of all projections of beam segments onto the x 

axis. It can also be seen that the relationship between the axial displacement of the beam 

and the rotation of the beam behaves in a similar way to the line discussed at the beginning 

of this section. Note that the angle θ� is linearly related to the bending moment as shown 

by Eq. (7) so the axial displacement of the beam subject to a bending moment behaves as a 

softening spring as discussed previously. This explains the softening behaviour shown in 

Fig. 3333 up to and angle θ�  of about 120°. The hardening behaviour of the beam in the 

transverse displacement can be analysed in a similar way.  

  



 

    

3333.... Simply supported beam loaded Simply supported beam loaded Simply supported beam loaded Simply supported beam loaded 

 

An alternative method is needed

beam loaded at its centre. The exact analytical solution is presented 

a reference to validate the approximate solution derived 

Section 3.2. The results are also compared with 

element analysis software Ansys. The accuracy of 

by comparing the shape function

 

3333....1111.... Exact solutionExact solutionExact solutionExact solution    

A concentrated load p is applied

As before, the transverse d

maximum deflection. The bending 

from the left-hand end is given by

a)     

Fig. 6. Simply supported beam loaded at the centre, a) schematic of the beam, b
section of the beam 
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Simply supported beam loaded Simply supported beam loaded Simply supported beam loaded Simply supported beam loaded at the centreat the centreat the centreat the centre    

is needed to determine the large deformation of 

. The exact analytical solution is presented first. It

the approximate solution derived using the 

The results are also compared with solutions determined using the finite 

Ansys. The accuracy of the approximate method is also examined 

comparing the shape function used with the actual deformed shape 

is applied to the middle of the simply supported beam shown in

ransverse displacement of the beam is denoted by 

bending moment at each cross section of the beam at a distance 

is given by, 

	 � @�2                   for � C D2 
	 � @&D � �'2         for � E D2 

    b) 

ported beam loaded at the centre, a) schematic of the beam, b

large deformation of a simply supported 

first. It is then used as 

 Galerkin method in 

solutions determined using the finite 

approximate method is also examined 

 of the beam. 

to the middle of the simply supported beam shown in Fig. 6666. 

is denoted by y and �!"�  is the 

moment at each cross section of the beam at a distance x 

(18a) 

(18b) 

 

ported beam loaded at the centre, a) schematic of the beam, b) a small 
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The solution presented here is similar to that given in references [2, 9].  By substituting the 

expression for the bending moment from Eq. (18a) into Eq. (5) gives, 


�
� � � @�2��       for � C D2 (19) 

Because of the symmetry only half of the beam is considered in the following analysis. The 

equation for � E D/2  would only be slightly different from the equations derived. 

Differentiating Eq. (19) with respect to s gives, 


��
�� � � @2�� 
�
� (20) 

Now, 


�
� � cos � (21) 

Combining Eqs. (20) and (21) gives, 


��
�� F @2�� cos � � 0 (22) 

Multiplying Eq. (22) by 
�/
� gives, after some rearranging, 



� G12 =
�
�?� F @2�� sin �H � 0 (23) 

Integrating Eq. (23) gives, 

=
�
�?� F @�� sin � � I (24) 

where c is a constant. From Eq. (19) it can be seen that when � � 0 then 
�/
� � 0. Also at 

this position � � ��. Thus the constant is given by, 

I � @�� sin �� (25) 

and Eq. (24) can be rewritten as, 
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�
� � �J @�� Ksin �� � sin � (26) 

Note that the minus sign is because of the negative curvature illustrated in Fig 1b. The 

angle at the left-hand support θ� can be found by integrating Eq. (26) s =0 to L/2, 

# � �2L��@ 
 
�Ksin �� � sin �
�

��
 (27) 

The solution of the integral in Eq. (27) can be found in terms of an elliptical integral whose 

solution exists as power series. Noting that cos � � 
�/
�  and sin � � 
�/
�, the following 

equations can be derived from Eq. (26) for x and y at any point on beam as a function of θ, 

� � 2L��@ Ksin �� � sin � (28) 

� � �L��@ 
 sin � 
�Ksin �� � sin �
�

��
 (29) 

The angle θ is equal to zero at the middle of the beam where the transverse displacement is 

maximum. The length between the two supports and the maximum transverse 

displacement can be determined by setting � � 0 in Eqs. (28) and (29) to give, 

D � 4L��@ Ksin �� (30) 

�!"� � L��@ 
 sin � 
�Ksin �� � sin �
��

�  (31) 

As described in many publications, the displacement of the beam can be found by way of 

elliptical integrals using a suitable variable transformation. The other approach is to 

evaluate the integrals using numerical methods by Matlab. To do this, the applied force p 

can be found by solving the integral in Eq. (27) for different values of θ�. Having a set of 

forces p and the correspondence set of angles ��, the maximum deflection can be found from 

Eq. (31) by calculating the integral in this equation numerically for each pair of p and ��. 

The distance between the supports can be easily calculated using Eq. (30). The shape of the 
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deflected beam can be found from Eqs. (28) and (29) by considering a set of values of θ 

varying from �� to zero for each specific value of p.  

 

3333....2222.... An aAn aAn aAn approximate solutionpproximate solutionpproximate solutionpproximate solution    

For large deflections, the relationship between the radius of curvature and the derivatives 

of the transverse displacement, y with respect to x (denoted by the superscript ′ ) is [13], 

1� � �NN
&1 F &�′'�'O� (32) 

This can be expanded by Maclaurin series up to the second term for � ′ to give, 

1� � �′′ =1 � 32 0�′1�? (33) 

Combining Eq. (33) with Eq. (4) results in,  

� 	�� � �′′ =1 � 32 �′�? (34) 

which is often called second order beam theory in the literature. Equation (34) can be solved 

by Galerkin’s method by considering a shape function for the beam. Here a sinusoidal shape 

function is chosen as it represents the shape of a simply supported beam in its first mode of 

vibration. Thus the transverse displacement of the beam can be approximated by 

�&�' � �!"� �Q<&��' (35) 

The coefficient k can be found by applying the boundary condition �&D' � 0. Hence 

�!"��Q<&�D' � 0     (36) 

Hence, for the static deflection of the beam, 

� � RD  (37) 

To find the deflection �!"�, Galerkin’s method is applied to Eq. (34) to give, 
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 � 	�� �Q< SRD �T 
�U
� � 
 �′′ =1 � 32 �′�? �Q< SRD �T 
�U

�  (38)  

By substituting for y(x) from Eq. (35) and M  from Eq. (18a) gives, 


 @�2�� �Q< SRD �T 
�U�
� F 
 @&D � �'2�� �Q< SRD �T 
�U

U�
� 
 �!"� SRD T� �Q<� SRD �T V1 � 32 S�!"�RD T� IW�� SRD �TX 
�U

�  

(39) 

Evaluating the integrals gives, 

D�@2��R� F D�@2��R� � 8�!"�D�R� � 3�!"�ORZ16DO  (40) 

which can be rearranged to give, 

@ � ��RZ2DO \�!"� � 3R�8D� �!"�O] (41) 

where right hand side of Eq. (41) is the same as the stiffness term of equation (3.158) in 

reference [10]. It may appear at first glance that the beam exhibits softening behaviour 

because of the negative sign in front of the cubic term.  However, the length between the 

supports is not fixed and reduces in size because the beam is inextensible and the support 

on the right hand side slides to the left with increasing beam displacement. To determine 

whether the beam has a hardening or softening characteristic the expression given in Eq. 

(41) needs to be rewritten in terms of the length of the beam L. To do this the relationship 

between L and l needs to be determined.  

Now,  

# � 
 
� �
� � 
 K1 F &�′  '�U

� 
� (42) 

Substituting for y from Eq. (35) gives, 
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# � 
 L1 F S�!"� RD T� cos� SRD �T 
�U
�  (43) 

The integral in Eq. (43) can be evaluated as the sum of two elliptical integrals, 

# � DR ^
 L1 F S�!"� RD T� sin�θ 
�_�
� F L1 F S�!"� RD T� 
 L1 F �!"��R�D� F �!"��R� sin�θ 
�_�

� ` (44) 

 Expanding the elliptic integrals as a series up to second term results in, 

# � D F �!"��R�4D  (45) 

Rearranging Eq. (45) the distance between the supports can be written in terms of the 

length of the beam as,  

D � 12 S# a K#� � �!"��R�T (46) 

Combining Eqs. (41) and (46) results in  

@ � 2��RZ&2�!"�S# F K#� � �!"��R�T� � 3�!"�OR�'
&# F K#� � �!"��R�'b  (47) 

Expanding Eq. (47) as a series up to third order gives 

@ � ��RZ2#O \�!"� F 3R�8#� �!"�O] (48) 

Comparing this with Eq. (41) it can be seem that the equations are identical in form with 

the exception of the sign change in front of the cubic term and the variable L replacing l. It 

can be seen that the beam has a hardening rather than a softening characteristic. 

Equations (47) and (48) can be written in non-dimensional form respectively as, 

@̂ � 2RZ V2�.!"� \1 F J1 � �.!"��R�]� � 3�.!"�OR�X
\1 F J1 � �.!"��R�]b  (49) 
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@̂ � RZ2 \1 F 3R�8 �.!"��] �.!"� (50) 

where @̂ � @/&��/#� ' and �.!"� � �!"�/#.  

Equations (49) and (50) are plotted in Fig. 7. together with results calculated from finite 

element analysis using Ansys. The force deflection plot obtained from Eq. (49) exhibits 

hardening then softening characteristics while the results from Ansys, Eq. (50) and the 

exact solution exhibit hardening behaviour. Both equations deviate from the exact solution 

at a non-dimensional transverse displacement of about 0.17. The behaviour of Eq. (49) 

occurs because the higher order terms of the expansion of the integral in Eq. (43) are 

neglected and an approximation for l is used in the derivation of Eq. (49).  

 

Fig. 7. Non-dimensional force as a function of non-dimensional transverse displacement 

 

3333....3333.... DiscussionDiscussionDiscussionDiscussion    

The deflection of a beam is mainly due to the internal bending moment, and the effect of 

shear deformation can be neglected, which is the case in this study. To determine the 



 

reason why the beam has a hardening characteristic

which is the main reason of the deflection, 

Suppose, a simply supported beam is loaded by a force equal to

internal bending moment as a function of 

same figure. The maximum bending moment is at the middle of the beam and is equal to @dDd/4 where Dd is the distance between the supports

the beam deflects more and the 

Although the force @� � e@d
the decreasing distance between the supports.

 

Fig. 8. The bending moment in 

 

Thus, as the force increases, the internal bending moment increase

Because of the direct relation

beam exhibits hardening behaviour. In addition to this

described in section  2.2, is valid in this case as well

hardening characteristics.  
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why the beam has a hardening characteristic, the behaviour of the 

which is the main reason of the deflection, is investigated. 

Suppose, a simply supported beam is loaded by a force equal to @d as shown in 

internal bending moment as a function of the distance from the fixed end 

same figure. The maximum bending moment is at the middle of the beam and is equal to 

distance between the supports. By increasing the force to 

the beam deflects more and the distance between the supports D� decreases compared 

d, the maximum bending moment 	���� C
the decreasing distance between the supports. 

ending moment in a simply supported beam loaded at the centre

s the force increases, the internal bending moment increase

of the direct relationship between the bending moment and 

hardening behaviour. In addition to this, the “rotation effect”, which wa

, is valid in this case as well, and this also causes 

the behaviour of the bending moment, 

as shown in Fig. 8(a). The 

end x is shown in the 

same figure. The maximum bending moment is at the middle of the beam and is equal to 

increasing the force to @� � e@d, 

decreases compared to Dd. C e	���d, because of 

 

ported beam loaded at the centre 

s the force increases, the internal bending moment increases at a lower rate. 

bending moment and the curvature, the 

, the “rotation effect”, which was 

this also causes the beam to have 
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3333....4444.... Accuracy of the approximate solutionAccuracy of the approximate solutionAccuracy of the approximate solutionAccuracy of the approximate solution    

To find a solution for the large deflection of the simply supported beam, two approximations 

were made. The first one was to consider the deflected shape of the beam to be a Sine 

function. The second approximation was made in the determination of the length between 

the beam supports as a function of force and transverse displacement. This was considered 

to be a second order function of the length of the beam with the higher order terms being 

ignored. The effect of these approximations is investigated in this section. 

The Sine function is considered to be a good candidate for the shape function for a simply 

supported beam in the Galerkin method. It satisfies the simply supported boundary 

condition and its first and second derivatives are easily determined. The shape of the beam 

modelled by the Sine function is compared with the exact shape of the deflected beam 

derived from the exact solution which is calculated numerically and is shown in Fig. 9. The 

dotted line represents the shape of the beam given by �.!"� sin R�.. The approximate shape is 

a reasonable representation of the actual shape of the beam even for large deflections. The 

Mean Square Error (MSE) between the actual and the approximate shape normalised by 

the area bounded by the curves of the deflected shape and the undeflected shape of the 

beam is shown in Fig. 10 as a function of the non-dimensional force applied to the beam. 

The error is small but increases rapidly for non-dimensional forces greater than about 12. 

As well as errors in the approximate displacement there are errors in the first and second 

derivatives of transverse displacement as well, and these are investigated next.  
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Fig. 9. Deflected shape of the beam for different values of load, solid lines (-): exact shape, 
dotted lines (...): shape given by a Sine function 

 

Fig. 10. Normalised mean square error between the actual and approximate shapes of the 
beam given in Fig. 10. 
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Examining Eq. (38), it can be seen that the first and second derivatives of the transverse 

displacement have been used to find the deflection of the beam. The first derivative of the 

transverse displacement with respect to x is shown in Fig. 11. The Sine function is a good 

approximation for small displacements, but deviates for higher loads especially close to the 

ends of the beam. The mean square error of the first derivative (slope) normalised by the 

area under the curve (as before) is plotted in Fig. 12. The MSE of the slope increases with 

the force similar to the MSE of the displacement.  

 

Fig. 11. Slope of transverse displacement, solid lines (-): exact solution, dotted lines (...): 
approximate solution 



23 

 

 
Fig. 12.  Mean Square Error of slope normalised by the area under the curve 

The same procedure is followed for the second derivative of the transverse displacement 

with respect to x.  The second derivatives of the exact and approximate solutions are shown 

in Fig. 13. It can be seen that the Sine function is not a good approximate of the second 

derivative of the beam. The second derivative is not a smooth function any more, as there is 

a discontinuity at the centre of the beam. This is can be understood by examining Eq. (34), 

that the second derivative is a function of the bending moment as well as slope of the beam. 

The bending moment of a simply supported beam loaded by a force at the centre has a 

triangular shape with the maximum being in the middle. For small loads, where the slope 

is small, the second derivative is predominantly a function of the bending moment only. By 

increasing the force and as a result the deflection, the slope of the beam increases and can 

not be ignored in this case. This results in the second derivative having a pronounced 

discontinuity at the centre of the beam. 

To obtain the approximate solution, the integral of the product of second derivative and 

first derivative of deformation is used. Although, the Sine function does not approximate 

well the second derivative of deformation, the area under the curve is very similar to the 

actual curve and thus the normalised MSE between the actual and the approximate 

solutions is small for small loads a shown in Fig. 14.   
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Fig. 13. Second derivative of the transverse displacement, solid lines (-): exact solution, 
dotted lines (...): sine function 

 

Fig. 14: Mean Square Error of the second derivative normalised by the area under the curve 
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The second issue with the accuracy of the approximate solution is the accuracy of the 

solution for length between the supports. As mentioned in the previous section, the 

accuracy of Eq. (49) illustrated in Fig. 7 is linked to the accuracy of the expansion of the 

integral in Eq. (43) used to derive Eq. (49). Equation (45), which relates the length of the 

beam to the distance between the beam supports, can be written in a more complete form 

by including higher order terms to give, 

# � D F �!"� �R�4D � 3�!"�ZRZ64DO F 5�!"� gRg256Db � 175�!"� iRi16384Dj F 441�!"�d�Rd�65536Dk � 4851�!"�d�Rd�1048576Ddd F l (51) 

Considering this equation, the distance between the beam supports l cannot be derived 

easily as a function of the beams length L. The integral in Eq. (43) can be solved 

numerically to compare the results with the series. A new variable α is introduced to help 

solve the integral numerically, so that 

m � �D     n 
� � D 
m (52) 

and the integral in Eq. (43) can be rewritten as, 

#D � 
 L1 F SR �!"�D T� cos�&Rm'
md
�  (53) 

Solving this integral for values of �!"�/l  from zero to one gives the results presented in Fig. 

15. Results of the expanded series using the first two, three and seven terms of Eq. (51) are 

plotted alongside the numerical solution as well. The expansion series results match with 

the numerical results well for small beam deflections, but deviate rapidly for large 

deflections. It can be seen that for the truncated series given in Eq. (45), which is used to 

give the analytical results, gives reasonable accuracy up to a value of 
opqrU C 0.2. 
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Fig. 15. Relationship between the distance between the beam supports, its length and the 
transverse displacement. 
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4444.... ConclusionConclusionConclusionConclusionssss    

 

This report has described an investigation into the large deflections of beams. It has been 

shown that a simply-supported beam loaded in the middle can be modelled by a Duffing-

like stiffness model with hardening nonlinearity. The Galerkin method has been used to 

obtain the approximate solution of the governing equation. The exact solution and the finite 

element method have been used to validate the results. The suitability of the sine function 

to be used as shape function in the Galerkin method for a simply-supported beam has also 

been investigated. It has been shown that this gives a good approximation for the force-

deflection curves of the beam when it is loaded in the centre, provided that the maximum 

displacement is less than about 20% of the length of the beam.  

The deformation of a simply supported beam loaded by pure bending moment has also 

investigated. The exact solution for large deflection in this case can easy to derive and the 

results are used to explain some aspects of beam behaviour. The rotational stiffness of the 

beam in this case is constant while the transverse stiffness is hardening.   
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