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Sound reproduction systems using omnidirectional loudspeakers produce reflections from room surfaces

which interfere with the desired sound field within the array. While active compensation systems

can reduce the reverberant level, they require calibration in each room and are processor-intensive.

Directional loudspeakers allow the direct to reverberant level to be improved within the array, but still

produce a finite exterior field which reflects from the room surfaces. The use of variable-directivity

loudspeakers allows the exterior field to be eliminated at low frequencies by implementing the

Kirchhoff–Helmholtz integral equation. This paper investigates the performance of variable-directivity

arrays in reducing reverberant levels and compares the results with those derived in a previous paper for

fixed-directivity arrays. The results presented may have some impact on the design of commercial

multi-channel systems for sound reproduction.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3533689]

PACS number(s): 43.60.Tj, 43.55.Jz, 43.38.Md, 43.60.Sx [WMC] Pages: 1429–1438

I. INTRODUCTION

Commercially available surround sound systems approxi-

mate two-dimensional (2D) sound reproduction using a rela-

tively small number of loudspeakers in a circular array around

a listener.1,2 The use of a greater number of loudspeakers

allows the holographic reproduction of wave fields over a

larger volume of space using the 2D circular or three-dimen-

sional (3D) spherical arrays.3–17 The loudspeakers used in the

current systems are typically omnidirectional at low frequencies

and therefore, when used in typical listening rooms, produce

early reflections and reverberation which add to the desired

direct field produced within the array. The effects of the room

can be reduced by acoustical treatment or by using active com-

pensation systems which measure various directional responses

at the desired listener position and then pre-compensate the

loudspeaker signals to eliminate the room effects.18–25

A simpler reduction of room effects is possible by using

directional loudspeakers which increase the level of direct

sound relative to the reverberant field.26,27 In Ref. 26, the

use of fixed-directivity loudspeakers in 3D sound reproduc-

tion systems has been studied, and it has been shown that the

use of hyper-cardioid loudspeakers improves the direct to

reverberant sound ratio by a factor approaching 4, which

accords with the characteristics of a single hyper-cardioid

loudspeaker.28,29

A greater reduction of room effects is possible using an

array of variable-directivity loudspeakers. These can be con-

figured to reduce the exterior sound from the array using the

Kirchhoff–Helmholtz (K–H) integral formula.9–13,30–32 The

K–H integral states that a desired sound field can be created

in a volume of space with boundary S using monopole sour-

ces and dipole sources normal to the surface S and that the

sound field outside that region is zero. The dipole and

monopole amplitudes differ for each loudspeaker, and hence

the K–H integral can be implemented using first-order vari-

able-directivity loudspeakers.

This paper considers sound reproduction using variable-

directivity approaches based on the K–H integral. A spherical

loudspeaker array is assumed, and so the loudspeaker first-

order responses are a weighted combination of a monopole

and a radially oriented dipole response. We show that a

mode-truncated solution produces superior results to a solu-

tion based on the direct discretization of the K–H integral,33

and we also develop a mode-matching solution and compare

it with the mode-truncated solution. Finally, we evaluate vari-

able-directivity solutions by numerical simulations and com-

pare the results with the fixed-directivity results derived in

Ref. 26.

The theory in this paper follows in an analogous manner

to that presented in Ref. 26 and we therefore briefly review

the relevant results from Ref. 26 and then extend it to the

variable-directivity case.

II. SPHERICAL HARMONIC DESCRIPTION OF SOUND
FIELDS

Consider a sphere XrL
of radius rL centered on the ori-

gin. A sound field is referred to as an interior field if it satis-

fies the homogeneous wave equation in the interior of XrL

and as an exterior field if it satisfies the homogeneous wave

equation in the exterior of XrL
.30

The solution of the wave equation can be expressed in

spherical coordinates ~r ¼ r; h;/ð Þ, where the arrow denotes

a vector quantity, the vector norm r ¼ ~rk k is the radial dis-

tance from the origin, h is the elevation angle from the
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vertical z-axis, and / is the azimuthal angle from the x-

axis.30 Assuming a harmonic time dependence of exp(�ixt),
the spherical harmonic expansions of an interior and exterior

sound field at angular frequency x are

p r; h;/; kð Þ ¼

X1
n¼0

Xn

m¼�n

jn krð ÞAm
n kð ÞYm

n h;/ð Þ; r < rL

X1
n¼0

Xn

m¼�n

hn krð ÞCm
n kð ÞYm

n h;/ð Þ; r > rL ;

8>>>><
>>>>:

(1)

where k¼x=c is the wave number, c is the speed of sound

in meters per second (assumed to be uniform in R3Þ, Am
n kð Þ

and Cm
n kð Þ are the expansion coefficients, jn(x) is the nth

order spherical Bessel function, and hn xð Þ ¼ h 1ð Þ
n xð Þ is the

nth order spherical Hankel function of the first kind. The

spherical harmonic Ym
n h;/ð Þ is defined as32

Ym
n h;/ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1ð Þ

4p
n� mj jð Þ!
nþ mj jð Þ!

s
P mj j

n cos hð Þeim/; (2)

where P mj j
n �ð Þ is the associated Legendre polynomial. The

assumption is made that the operating frequency x and

hence the wave number k are fixed, and therefore the de-

pendence of the sound field and other functions of x or k is

not written explicitly.

A. Monopole and dipole sources

The acoustic pressure field generated by an ideal

monopole source in the free field is of the form30

pm ~r;~rsð Þ ¼ G ~r j~rsð Þ ¼ eik~r�~rsj j

4p~r �~rsj j ; (3)

which has a spherical harmonic expansion

pm ~r;~rsð Þ ¼
ik
X1
n¼0

jn krð Þhn krsð Þ
Xn

m¼�n

Ym
n h;/ð ÞYm

n hs;/sð Þ�; r < rs

ik
X1
n¼0

jn krsð Þhn krð Þ
Xn

m¼�n

Ym
n h;/ð ÞYm

n hs;/sð Þ�; r > rs ;

8>>>><
>>>>:

(4)

where r ¼ ~rk k and rs ¼ ~rsk k.
A dipole at position ~rs and oriented in direction ~v has a

field that takes the form31

pd ~r;~rsð Þ ¼ @Gð~r j~rsÞ
@~m

¼ �ik
eik~r�~rsj j

4p~r �~rsj j 1þ i

k~r �~rsj j

� �
cos c;

(5)

where c is the angle between ~v and~r �~rs. As in Ref. 26, we

equalize the dipole response by dividing by ik to produce a

first-order directivity that is approximately independent of

frequency. At a given distance rd from the dipole source, the

equalized response is flat for frequencies down to the transi-

tion frequency fd¼ c=(2prd) and rises at 6 dB per octave

below that. Hence, to ensure flat responses down to a fre-

quency fd, we must maintain a distance from any equalized

dipole greater than rd.

The spherical harmonic expansion for a 1/(ik)-equalized

dipole oriented radially with respect to the origin is obtained

from the derivative of Eq. (4) with respect to rs

pd r; h;/ð Þ ¼
k
X1
n¼0

Xn

m¼�n

jn krð Þh0n krsð ÞYm
n h;/ð ÞYm

n hs;/sð Þ�; r < rs

k
X1
n¼0

Xn

m¼�n

j0n krsð Þhn krð ÞYm
n h;/ð ÞYm

n hs;/sð Þ�; r > rs ;

8>>>><
>>>>:

(6)

where j0nð�Þ and h0nð�Þ are the derivatives of the corresponding

spherical Bessel and Hankel functions.

B. Interior and exterior truncation error of monopole
and dipole fields

If the series in Eqs. (4) and (6) are truncated to a given fi-

nite order, n¼N, the representation of the field is no longer

exact since it is affected by the so-called truncation error. In

Ref. 26, the interior truncation error of the monopole and dipole

are presented. For an evaluation of the exterior sound field pro-

duced by the array the exterior truncation error is also useful.

The angle-averaged normalized truncation error for a

monopole with order N expansion PT(r, h, /) is defined as6,8

�eTM N; krð Þ ¼

ð
Xr

p r; h;/ð Þ � pT r; h;/ð Þj j2dXrð
Xr

p r; h;/ð Þj j2dXr

; (7)
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where the overbar denotes an average over all angles. Substi-

tuting the monopole expansions, Eq. (4), yields the monop-

ole truncation error

�eTM N; krð Þ ¼

1 �

XN

n¼0

2nþ 1ð Þj2
n krð Þ hn krsð Þj j2

X1
n¼0

2nþ 1ð Þj2
n krð Þ hn krsð Þj j2

; kr < krs

1 �

XN

n¼0

2nþ 1ð Þj2
n krsð Þ hn krð Þj j2

X1
n¼0

2nþ 1ð Þj2
n krsð Þ hn krð Þj j2

; kr > krs :

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(8)

The truncation error is shown for krs¼ 8 in Fig. 1. For

kr � krs the error is approximately �14 dB for N� kr.6 For

kr> krs, the minimum order required to represent the exte-

rior expansion at large kr is N� krs, where the asymptotic

error again falls to around �14 dB or lower. However, if

lower error is required, particularly for kr close to krs, then

N> krs is required.

The truncation error for the dipole is found from Eq. (6)

�eTD N;krð Þ ¼

1 �

XN

n¼0

2nþ 1ð Þj2
n krð Þ h0n krsð Þ

�� ��2
X1
n¼0

2nþ 1ð Þj2
n krð Þ h0n krsð Þ

�� ��2 ; kr< krs

1 �

XN

n¼0

2nþ 1ð Þj02n krsð Þ hn krð Þj j2

X1
n¼0

2nþ 1ð Þj02n krsð Þ hn krð Þj j2
; kr> krs :

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(9)

This is shown in Fig. 2 for krs¼ 8. The error is around

�16 dB for N� kr and kr � krs and for kr> krs, the error

reduces asymptotically to around �12 dB for N� krs, 2 dB

higher than the monopole case.

In summary, to represent accurately the exterior field

due to a general first-order source, we require N> krs. For

the interior representation of the source, N¼ kr is sufficient,

implying that low orders are sufficient for small radii.26

Finally, for better accuracy near the source, orders higher

than krs are required.

C. Loudspeaker array geometry and Nyquist
frequencies

We will assume a spherical array of loudspeakers, each

of which can produce ideal monopole and dipole fields,

arranged at positions (rL, h1, /1), l [ [1, L], which approxi-

mate a uniform sampling over the sphere, with numerical

weighting coefficients bl, required for accurate numerical

integration. A measure of the uniformity of the loudspeaker

arrangement is given by the discrete cross-correlation of the

spherical harmonics at the loudspeaker angles

C n1;m1ð Þ; n2;m2ð Þð Þ ¼
XL

l¼1

bl Ym1
n1

hl;/lð ÞYm2
n2

hl;/lð Þ�: (10)

This matrix indicates the degree of orthonormality of the

sampled spherical harmonics for the transducer arrangement

adopted. In the ideal case of perfect orthonormality, the

cross-correlation equals dn1n2
dm1m2

, where dnm is the Kro-

necker delta.26 In practice at high orders, the sampled spher-

ical harmonics are not orthogonal and this will contribute to

reproduction errors at high frequencies.26 The array is able

to reproduce a sound field at a given wave number k and at

radius r for N> kr and hence [since there are (Nþ 1)2

spherical harmonics of order N] if L � krd e þ 1ð Þ2 uni-

formly arranged loudspeakers are used (see Ref. 6). This

defines approximately the interior Nyquist frequency of the

array26

fNI rð Þ ¼
c

ffiffiffi
L
p
� 1

� �
2pr

: (11)

FIG. 1. Monopole truncation error for krs¼ 8 and orders N¼ 0 to 10.

FIG. 2. Dipole truncation error for krs¼ 8 and orders N¼ 0 to 10.
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For the control of the exterior field for r> rL Fig. 2 shows

that we require L � krLd e þ 1ð Þ2. Therefore, surround sys-

tems which attempt to control the exterior field are able to

do so up to the fixed exterior Nyquist frequency

fNE ¼
c

ffiffiffi
L
p
� 1

� �
2prL

: (12)

Hence, the interior Nyquist frequency increases toward the ori-

gin due to the focusing of the individual sound fields and the

exterior Nyquist frequency is fixed since the Nyquist constraint

ensures that the correct exterior field is generated near the array.

III. SOUND REPRODUCTION SYSTEMS WITH
VARIABLE-DIRECTIVITY LOUDSPEAKERS

We now consider the implementation of the K–H inte-

gral. As in Ref. 26, we assume a continuous distribution of

monopole and radially oriented dipole speakers on the sur-

face of a sphere XrL
of radius rL at positions ~rv ¼ rL; hv;ð

/vÞ, hv 2 0; p½ �, and /v 2 0; 2p½ �. The exterior field is zero,

and we write the interior field expression as

p ~rð Þ ¼
ð

XrL

@p ~rvð Þ
@~n ~rvð Þ

G ~r j~rvð Þ � ikp ~rvð Þ
1

ik

@G ~rj~rvð Þ
@~n ~rvð Þ

� �
dXrL

;

r < rL; (13)

where p ~rvð Þ is the sound pressure on the boundary of the

region XrL
, dXrL

¼ r2
L sin hVð Þ dhVd/V is an element of solid

angle, and where we have explicitly included the ik equaliza-

tion of the dipole.

A. Direct solution for a single point source

For the case where the sound field is due to a point

source outside the region at ~rs, the monopole source ampli-

tudes are, from Eq. (5),

@p ~rð Þ
@n
¼ ik

eik~rs�~rj j

4p~rs �~rj j 1þ i

k~rs �~rj j

� �
cos t; (14)

where m is the angle between the normal and rs. The dipole

source amplitudes are, from Eq. (3),

ikp ~rð Þ ¼ ik
eik~rs�~rj j

4p~rs �~rj j : (15)

In practice a discrete array is used, using L loudspeakers

arranged at positions~rl ¼ rL; hl;/lð Þ on XRL
. The sound field

p̂ð~rÞ reproduced by a discrete array approximation of

Eq. (13) can be represented by

p̂ð~rÞ ¼
XL

l¼1

Gð~r j~rlÞ ul þ
1

ik

@Gð~r j~rlÞ
@~nð~rlÞ

vl

� �
; (16)

where ul and vl are the monopole and equalized dipole

amplitudes, respectively.

As for the fixed-directivity case, the weights in Eq. (14)

and (15) are calculated for each loudspeaker position and

scaled by r2
Lbl to produce discrete monopole weights ul and

dipole weights vl.

B. Mode-truncated solution

Equations (1), (4), and (6) have spherical harmonic expan-

sions of infinite order. When implementing the integral in Eq.

(13) using a discrete array as in Eq. (16), aliasing will occur for

those spherical harmonics which cannot be controlled with the

loudspeaker array.33 This aliasing can be reduced by using

mode-truncated forms of the monopole and dipole amplitudes.33

In view of Eqs. (1) and (13), the order-N truncated expansion

for the monopole amplitude in Eq. (16) is

ûl ¼ kr2
Lbl

XN

n¼0

Xn

m¼�n

j0n krLð ÞAm
n kð ÞYm

n hl;/lð Þ: (17)

Including the minus sign in the dipole weight amplitudes,

the mode-truncated expansion of the dipole amplitude is

derived from Eqs. (1) and (13)

v̂l ¼ �ikr2
Lbl

XN

n¼0

Xn

m¼�n

jn krLð ÞAm
n kð ÞYm

n hl;/lð Þ: (18)

Substituting these solutions into Eq. (16) shows that, below

the Nyquist frequency, they produce the correct sound field

Eq. (1) if the loudspeaker positions produce the ideal ortho-

normality conditions in Eq. (10).

For the case of a point source, we obtain the following

expressions for the mode-truncated weights:

ûl � i krLð Þ2bl

XN

n¼0

Xn

m¼�n

j0n krLð Þhn krsð ÞYm
n hs;/sð Þ�Ym

n hl;/lð Þ

(19)

and

v̂l � krLð Þ2bl

XN

n¼0

Xn

m¼�n

jn krLð Þhn krsð ÞYm
n hs;/sð Þ�Ym

n hl;/lð Þ:

(20)

C. Mode-matching solution

As for the fixed-directivity case,26 a mode-matching so-

lution can be derived for variable-directivity sound repro-

duction systems. This allows some control of the effects of

non-orthogonality of the array at high mode orders. We

determine the loudspeaker weights required to synthesize the

field due to a monopole source, while requiring the exterior

sound field to be zero. For simplicity, we assume that the

monopole source generating the target field is outside the

loudspeaker array. We require the interior spherical har-

monic expansions of the sum of sound fields due to the L
loudspeakers, with monopole weights �ul [applied to Eq. (4)

for position ~rl ¼ rL; hl;/lð Þ] and radial dipole weights �vl,

[applied to Eq. (6)] to equal the desired field expansion in

Eq. (1). For each (n, m), this produces

1432 J. Acoust. Soc. Am., Vol. 129, No. 3, March 2011 Poletti et al.: Variable-directivity speaker sound systems

Downloaded 28 Mar 2011 to 152.78.241.109. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



k
XL

l¼1

ihn krLð Þ�ul þ h0n krLð Þ�vl

� 	
Ym

n hl;/lð Þ� ¼ Am
n ;

n 2 0;N½ �; m 2 �n; n½ �: (21)

Similarly, since we require zero exterior field, the exterior

mode-matching equations for radii greater than the loud-

speaker radius r> rL are

k
XL

l¼1

ijn krLð Þ�ul þ j0n krLð Þ�vl

� 	
Ym

n hl;/lð Þ� ¼ 0;

n 2 0;N½ �; m 2 �n; n½ � : (22)

We note that Eq. (17) and (18) satisfy these two equations

assuming discrete orthonormality of the spherical harmonics,

C ðn1;m1Þ; ðn2;m2Þð Þ ¼ dn1;n2
dm1;nm [Eq. (10)].

Equations (21) and (22) can be written in matrix

notation

WIM WID

WEM WED

� �
u

v

� �
¼ W

u

v

� �
¼ d

0

� �
; (23)

where WIM is a K¼ (Nþ1 )2 by L matrix of interior monop-

ole terms WIM b; lð Þ ¼ ikhn krLð ÞYm
n hl;/lð Þ�, where b¼ n2þ n

þmþ 1, WID is a K	 L matrix of interior dipole terms

WID b; lð Þ ¼ kh0n krLð ÞYm
n hl;/lð Þ�, u is an L	 1 vector of

monopole weights �ul, and v is an L	 1 vector of dipole

weights �vl. Similarly, WEM is a K	L matrix of exterior

monopole terms WEM b; lð Þ ¼ ikjn krLð ÞYm
n hl;/lð Þ� and WED is

a K	L matrix of exterior dipole terms WED b; lð Þ ¼ kj0n krLð Þ
Ym

n hl;/lð Þ�. Finally, d is a K	 1 vector of desired sound field

terms db ¼ Am
n and 0 is a K	 1 vector of zeros.

For K�L , the least squares solution to Eq. (23) is35

u

v

� �
¼ WHWþ kVI
� 	�1

WH d

0

� �
; (24)

where kV is a regularization parameter and the superscript H
denotes the conjugate transpose. For K< L, the minimum

energy solution is36

u

v

� �
¼ WH WWH þ kVI

� 	�1 d

0

� �
: (25)

D. Comparison of solutions

The matrix W in Eq. (23) can be decomposed into the

product of 2	 2 block matrices

W ¼ k
iH H0

iJ J0

� �
Y 0

0 Y

� �
¼ kUY2; (26)

where H and H0 are the diagonal matrices whose terms are

spherical Hankel functions and their first derivative, respec-

tively, and analogously J and J0 are diagonal matrices with

spherical Bessel functions and their derivative, respectively.

Note that each of these matrices have 2nþ1 repeated terms

for each value of n. Y is a K	 L matrix of spherical harmonic

terms Y ¼ Ym
n hl;/lð Þ�. Since U is block diagonal, its inverse

is a block diagonal matrix of 2	 2 inverse matrices

U�1 ¼ iH H0

iJ J0

� ��1

¼ D�1 0

0 D�1

� �
J0 �H0

�iJ iH

� �
; (27)

where D is the diagonal determinant D¼ i[HJ0 – JH0], which

has the Wronskian property30

D ¼ i HJ0 � JH0½ � ¼ 1

krLð Þ2
I (28)

and hence

U�1 ¼ krLð Þ2 J0 �H0

�iJ iH

� �
: (29)

Therefore, the mode-matching matrix in Eq. (23) can be written

Y 0

0 Y

� �
u

v

� �
¼ kr2

L

J0 �H0

�iJ iH

� �
d

0

� �
¼ kr2

L

J0d
�iJd

� �
: (30)

The mode-matching solution can therefore be written in the

alternative form

u

v

� �
¼

kr2
L YH

2 Y2 þ kV

� 	�1
YH

2

J0d

�iJd

� �
; K � L

kr2
LYH

2 Y2YH
2 þ kV

� 	�1 J0d

�iJd

� �
; K < L :

8>>><
>>>:

(31)

Furthermore, the mode-truncated solutions in Eq. (17) and

(18) can be written in matrix form as

û

v̂

� �
¼ kr2

LB
YH 0

0 YH

� �
J0d
�iJd

� �
¼ kr2

LBYH
2

J0d
�iJd

� �
; (32)

where B is an L	L diagonal matrix of weighting coefficients

bl. It is now clear from a comparison of Eq. (31) with Eq. (32)

that the mode-matching solution contains an additional inverse

matrix which compensates for the non-uniformity of the loud-

speaker array geometry, whereas the mode-truncated solution

assumes orthogonality of the sampled spherical harmonics in

using the Hermitian transpose of Y2 to obtain the associated

solution.8

E. Robustness

As discussed in Ref. 26, the sensitivity of the loud-

speaker array to variations in the loudspeaker polar responses

and errors in the array layout is approximately governed by

the condition number of the K	 L matrix WV.34 This matrix

has a singular value decomposition WV¼USK V
H, where U

is a K	K unitary matrix, SK is a K	 L matrix containing (at

full rank) K singular values [r1, r2, … , rK], and V is an L	 L
unitary matrix.34 For K<L, the K squared singular values of

WV are the eigenvalues of

WVWH
V ¼ US2

KUH ¼ UY2YH
2 UH � UUH; (33)

where the last term assumes that the matrix Y2 is close to

unitary. Therefore, the condition number is

jV ¼ WVk k W�1
V



 

 ¼ Uk k U�1


 

; (34)
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where ||
|| is the two-norm, equal to the largest singular value

of WV. The norm ||U�1|| is found from Eq. (29)

U�1


 

 ¼ krLð Þ2 J0 �H0

�iJ iH

� �








 ¼ krLð Þ2 Uk k; (35)

since the adjugate matrix adj{U} has the same singular val-

ues as U. Hence

jV ¼ krLð Þ2 Uk k2¼ krLð Þ2max eig UUH
� �� �

: (36)

Since U is block diagonal, the eigenvalues of UUH are sim-

ply the (repeated) eigenvalues of the set of 2	 2 matrices

U2UH
2 where

U2 n; krLð Þ ¼ ihn krLð Þ h0n krLð Þ
ijn krLð Þ j0n krLð Þ

� �
; n ¼ 0;N: (37)

The largest eigenvalues occur for the maximum order n¼N
and so

jV � krLð Þ2maxfeigfU2 N; krLð ÞU2 N; krLð ÞHgg: (38)

The condition number of W is shown in Fig. 3 for four fre-

quencies from 100 to 600 Hz. Equation (38) correctly pre-

dicts the condition number for K< L, when K¼L there is an

increase in condition number, and Eq. (38) is not correct for

K>L. At 600 Hz (above the Nyquist frequency), the condi-

tioning becomes similar to that of the random matrix case,

with a peak of E{log(jV)}¼ log(2L)þ 0.982¼ 6.64.37

IV. SIMULATIONS

We now present simulations of sound fields produced

by variable-directivity arrays in free-field conditions using

the mode-truncated and mode-matched solutions. For com-

parison with the fixed-directivity case,26 we also present

simulations using arrays with weights given by

ŵl ¼ bl

XN

n¼0

Xn

m¼�n

Am
n Ym

n hl;/lð Þ
k aihn krLð Þ þ 1� að Þh0n krLð Þ
� 	; l 2 1; L½ �;

(39)

where a is a first-order weighting parameter which produces

monopole loudspeaker responses for a¼ 1 and dipole responses

for a¼ 0. With a¼ 0.25, each loudspeaker polar response is a

hyper-cardioid which produces the maximum direct to rever-

berant ratio in reverberant conditions.

We use a spherical array of 144 loudspeakers which are

approximately uniformly arranged34 at a radius of 1.5 m

producing an exterior Nyquist frequency of 400 Hz. The

near-field of the dipole responses occur at a radius r from the

origin for which k (rL� r)¼ 1, which is a radius of 1.22 m at

200 Hz. Due to the poor conditioning of the mode-matching

for the maximum possible mode order of 11 (see Fig. 3) and

the need to maintain a high order for exterior control, we

will use N¼ 10 in the simulations. In this case, the mode-

matched solution is given by Eq. (25) and the approximate

condition number in Eq. (38) is valid.

The desired field is that due to a point source positioned

on the x-axis at rs¼ 3 m. The error performance was found

to be similar for all source angles, due to the regular arrange-

ment of the loudspeakers, and the fact that the source dis-

tance is larger than the loudspeaker radius (so that the source

position never coincides with a loudspeaker position).

A. Reproduction error and exterior field level

To quantify the performance of the solutions inside the

array, we calculate the angle-averaged (radial) relative error

between the desired field p(r, h, /, k) and the reproduced

field p̂ r; h;/; kð Þ at radius r< rL (Ref. 6)

�e krð Þ ¼

ð
Xr

p r; h;/; kð Þ � p̂ r; h;/; kð Þj j2dXrð
Xr

p r; h;/; kð Þj j2dXr

: (40)

This may be determined for a point source with spherical

harmonic expansion coefficients Am
n ¼ ihn krsð ÞYm

n hs;/sð Þ�
using the orthogonality properties of the spherical harmonic

expansions in Eqs. (1), (4), and (6) yielding (using as an

example the mode-matching coefficients �ul and �vl)

�e krð Þ ¼
4p
X1
n¼0

j2
n krð Þ

Xn

m¼�n

XL

l¼1

i �ulhn krLð Þ þ �vlh
0
n krLð Þ

� �
Ym

n hl;/lð Þ� � ihn krsð ÞYm
n hs;/sð Þ�

�����
�����
2

X1
n¼0

2nþ 1ð Þj2
n krð Þ hn krsð Þj j2

: (41)

FIG. 3. Log(j) at four frequencies from 100 to 600 Hz, K¼ (Nþ1)2<L
approximation and random normal matrix result, L¼ 144, rL¼ 1.5 m.
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To determine the performance of the surround system outside the array we calculate the angle-averaged exterior sound pres-

sure magnitude squared, relative to the angle-averaged desired sound pressure magnitude squared at the loudspeaker radius

�! krð Þ ¼

ð
Xr

p̂ r; h;/; kð Þj j2dXrð
XrL

p rL; h;/; kð Þj j2dXrL

; r > rL (42)

which can be written in terms of the spherical harmonics for a point source field in the form

�!ðkrÞ ¼ 4p

X1
n¼0

hn krð Þj j2
Xn

m¼�n

XL

l¼1

i �uljn krLð Þ þ �vlj
0
n krLð Þ

� �
Ym

n hl;/lð Þ�
�����

�����
2

X1
n¼0

2nþ 1ð Þj2
n krLð Þ hn krsð Þj j2

: (43)

Equations (41) and (43) may also be used with the mode-

truncated K–H weights ûl and v̂l in Eqs. (19) and (20). In

practice, we use a finite maximum order of n¼ 25 in Eqs.

(41) and (43) which produced negligible truncation error.

B. Simulation results

We first demonstrate the improvement in accuracy

obtained using the mode-truncated form of the K–H integral

Eqs. (19) and (20) compared to the direct form Eqs. (14) and

(15) (corresponding to infinite order expansion).33 Figure 4

shows the interior error and exterior relative field for both

solutions at 200 and 600 Hz. At low frequencies, the direct

and mode-truncated results are essentially the same. At 600

Hz, the amplitudes of the high-order terms for N> 10 are

significant, hence the error is larger for the direct solution,

with an error of �17 dB at r¼ 0, compared to less than

�80 dB for the truncated case. The exterior error is around

5 dB higher for the direct solution. We, therefore, consider

only the mode-truncated and mode-matched solutions in the

following simulations.

Figures 5 and 6 show the real part of the sound fields (at

t¼ 0) obtained from the truncated-fixed solution with

a¼ 0.25 (hyper-cardioid) and the variable-directivity solu-

tion [Eqs. (19) and (20)]. (The corresponding mode-matched

solution wave fields were similar in appearance, and their

relative error performance is considered shortly.) The dashed

circle indicates the loudspeaker radius and the dark circle is

the maximum radius rN ¼
ffiffiffi
L
p
� 1

� �
=k where the mode-lim-

ited reproduction can maintain accuracy. The sound field

produced by the fixed-directivity solution propagates across

the interior of the array and beyond it. In contrast, the energy

of the variable-directivity field is largely confined to the inte-

rior of the array and the exterior field is very small. This is

shown more clearly by the radial error, shown in Fig. 7.

Mode-truncated and mode-matched results are shown for

both fixed- and variable-directivity cases, together with the

FIG. 4. Interior radial error (r< 1.5 m) and relative exterior sound level

(r> 1.5 m) for direct and mode-truncated K–H solutions at 200 and 600 Hz.

FIG. 5. (Color online) Fixed-directivity sound fields for f¼ 200 Hz, rL¼ 1.5

m, rs¼ 3 m, and a¼ 0.25.
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interior truncation error for the source [Eq. (8)], which repre-

sents the lowest possible error for a truncation limit of

N¼ 10. The mode-matching errors are shown for regulariza-

tion parameters of kV¼ 0.0001 and 0.001 to show how they

vary with the regularization.

The interior errors are approximately the same for both

the fixed- and the variable-directivity solutions, showing that

there is no significant penalty associated with the exterior

cancellation of the sound field. The mode-matching errors

are approximately constant with radius near the center of the

array. They are around �50 dB for r< 1m for kV¼ 0.001

and are about �70 dB for kV¼ 0.0001. The mode-truncated

solution errors reduce with radius and are below �80 dB at

the center of the array.

The mode-matched solutions are able to provide a more

consistent accuracy across a wider area than the mode-trun-

cated solutions and can reduce the error at larger radii.

Increasing the regularization raises the error floor (by around

20 dB in this example).

The variable-directivity relative exterior sound level

falls to below �70 dB at r¼ 3 m for the mode-matched solu-

tion with kV¼ 0.0001, to below �50 dB for kV¼ 0.001, and

to around �65 dB for the mode-truncated case. These results

are over 40 dB lower than the fixed-directivity exterior levels

which both reduce to around �10 dB. Hence at low frequen-

cies (below the exterior Nyquist frequency), the exterior field

is significantly reduced by the variable-directivity array

compared to the fixed-directivity array.

The truncation error for the monopole source is also

shown in Fig. 7. It is below �80 dB for radii less than 1 m.

The reproduced sound fields do not approach this lower limit

since all positions greater than r¼ 0.27 m are in the near-

field of the loudspeakers, where the truncation error for the

loudspeaker sources is large (Figs. 1 and 2).

Figures 8 and 9 show the fixed-directivity and variable-

directivity mode-truncated sound fields produced at 600 Hz,

above the exterior Nyquist frequency of the array (400 Hz).

In both cases, the interior field is accurate to a radius rN¼ 1

m. Both arrays now produce an appreciable exterior field.

The variable-directivity field is smaller in the direction to-

ward the source (at x¼ 3 m) and on the downstream side of

the array from the source but produces larger radiation in lat-

eral directions. The fixed-directivity solution does not reduce

the downstream propagation, and the sound wave propagates

out of the array on the far side. There is also some lateral

radiation of sound producing interference effects.

FIG. 6. (Color online) Variable-directivity sound fields for f¼ 200 Hz,

rL¼ 1.5 m, and rs¼ 3 m.

FIG. 7. Variable mode-truncated and mode-matched radial error (r< 1.5

m), and relative exterior sound level (r> 1.5 m) for f¼ 200 Hz, a¼ 0.25,

rL¼ 1.5 m, rs¼ 3 m, and N¼ 10, for regularization parameters of 0.001 and

0.0001. The fixed-directivity mode-truncated and mode-matched results and

truncation error for N¼ 10 and r< 1.5 m are also shown for comparison.

FIG. 8. (Color online) Fixed-directivity mode-truncated sound field for

f¼ 600 Hz, rL¼ 1.5 m, r¼ 3 m, and a¼ 0.25.
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The angle-averaged radial error is shown in Fig. 10. The

interior sound fields produce an error close to the truncation

limit, but the mode-match solutions are able to maintain ac-

curacy down to r¼ 0.5 m, whereas the mode-truncated solu-

tions diverge from the minimum error at r¼ 0.8 m. The

exterior field levels produced by the variable-directivity sol-

utions are now 2 dB higher than the fixed-directivity level

and so the benefit of variable-directivity is lost.

At higher frequencies, the variable-directivity solution

tends to produce radiation lobes at a variety of angles on the

downstream side of the array, caused by the unsuccessful

attempt to cancel the sound propagating from the interior of

the array to its exterior. The fixed-directivity solution pro-

duces a simpler exterior field in the region opposite to the vir-

tual source location, but a more significant backward radiation

of sound toward the virtual source. Generally the fixed-direc-

tivity exterior sound level is slightly lower than the variable-

directivity level, and so at frequencies above the exterior

Nyquist frequency, a fixed-directivity solution is preferable.

V. CONCLUSIONS

This paper has investigated the production of three-

dimensional sound fields using loudspeakers with variable-

directivity with the goal of reducing the low-frequency

reverberant field that occurs with sound reproduction in

rooms. The exterior—and hence the reverberant—field can

be eliminated below the exterior Nyquist frequency of the

array with no appreciable increase in interior reconstruction

error in comparison with fixed-directivity solutions. Above

this frequency, the array cannot cancel the exterior field and

fixed-directivity is more effective.

This paper has demonstrated that low-frequency control

of room acoustics is possible in 3D surround systems without

the need to take into account the modal behavior of the

room. The sound system does not need to be calibrated in-
situ and is therefore simpler than adaptive systems, but it

does require first-order loudspeakers with variable-directiv-

ity which have closely matched polar responses. Further-

more, it does not eliminate sound scattered from the listener

and reflected from the room surfaces.

We also note that the theory presented here is applicable

to any practical situation where 3D wave fields are synthe-

sized using an open sphere of directional transducers and

that such an array avoids the modal resonances that would

be produced by an array inside a solid enclosure (if the loud-

speakers were arranged on a rigid wall). However, it does

produce finite exterior fields above the exterior Nyquist fre-

quency of the array.

The results in this paper are restricted to numerical

simulations and we have not investigated practical variable-

directivity loudspeakers, or the phase and amplitude match-

ing performance of typical transducers. Since exterior

cancellation is only possible at low frequencies, a practical

loudspeaker product would provide monopole and dipole

responses for the woofer (either as a number of fixed combi-

nations for fixed-directivity applications or with discrete

inputs for variable-directivity use) and the tweeter would

produce a single response with the directivity governed by

the loudspeaker baffle and tweeter diaphragm size. Such

loudspeakers would also prove beneficial in stereo sound

systems for reducing the effect of low-frequency modes. An

alternative approach would be to use separate woofer and

tweeter arrays, with a larger number of tweeters to extend

the accurate region of the interior sound field and reduce the

exterior field at higher frequencies.
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FIG. 9. (Color online) Variable-directivity mode-truncated sound fields for

f¼ 600 Hz, rL¼ 1.5 m, and rs¼ 3 m.

FIG. 10. Variable mode-truncated and mode-matched radial errors (r< 1.5

m) and relative exterior field (r> 1.5 m) for f¼ 600 Hz, a¼ 0.25, rL¼ 1.5

m, rs¼ 3 m, and N¼ 10. The fixed-directivity mode-truncated and mode-

matched results and truncation error for N¼ 10 and r< 1.5 m are also shown

for comparison.
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