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This paper proposes an adaptive filter-based method for detection and frequency estimation of

whistle calls, such as the calls of birds and marine mammals, which are typically analyzed in

the time-frequency domain using a spectrogram. The approach taken here is based on adaptive

notch filtering, which is an established technique for frequency tracking. For application to

automatic whistle processing, methods for detection and improved frequency tracking through

frequency crossings as well as interfering transients are developed and coupled to the fre-

quency tracker. Background noise estimation and compensation is accomplished using order

statistics and pre-whitening. Using simulated signals as well as recorded calls of marine mam-

mals and a human whistled speech utterance, it is shown that the proposed method can detect

more simultaneous whistles than two competing spectrogram-based methods while not report-

ing any false alarms on the example datasets. In one example, it extracts complete 1.4 and

1.8 s bottlenose dolphin whistles successfully through frequency crossings. The method per-

forms detection and estimates frequency tracks even at high sweep rates. The algorithm is also

shown to be effective on human whistled utterances. VC 2011 Acoustical Society of America.

[DOI: 10.1121/1.3609117]

PACS number(s): 43.66.Gf, 43.60.Bf, 43.30.Sf, 43.60.Mn [WMC] Pages: 893–903

I. INTRODUCTION

Passive acoustic monitoring of wildlife is a growing

research field, which requires detection and identification of

the calls of the species of interest. Manual call extraction is

tedious and time-consuming, so an automatic method is de-

sirable. We propose an adaptive filter-based method for ana-

lyzing tonal calls known as whistles, e.g., the vocalizations

of some species of birds and marine mammals. This study

deals with detection and frequency estimation, and the pro-

posed method can serve as a front end to a pattern recogni-

tion stage aimed at, e.g., species identification.1 Whistles are

suitable for communication in difficult environments and are

also used in human whistled languages such as that of La

Gomera, Spain.2 We focus on the analysis of marine mam-

mal whistles, which are often observed in strong background

noise and other difficult environmental conditions and are

highly variable. Multiple whistles can occur simultaneously

and can be mixed with interfering transients such as echolo-

cation clicks. Whistles can also have higher harmonics in

addition to the fundamental. The method presented here esti-

mates the strongest tones at each time, which are likely to be

fundamentals, but as will be shown the method can also

track higher harmonics.

Most previous efforts at automatic analysis of whistled

sounds have been based on a spectrogram time-frequency

representation of the recording.3–7 Whistle analysis typically

commences by background noise compensation. The back-

ground noise spectrum can be estimated by averaging the

amplitude of each spectrogram bin over a few seconds. For

improved estimation of background noise in the presence of

signal events such as whistles and clicks, we replace the av-

erage by the median or another so called order statistics esti-

mator.8 Denoising is commonly performed by subtracting

the estimated noise spectrum from the spectrogram.3,5 The

proposed method instead divides by the noise spectrum to

obtain a pre-whitened spectrogram in which the background

noise is approximately white and of unit power. The pro-

posed whistle detector relies on this property. A different

approach to denoising is taken by Mallawaarachchi et al.7

They combine the outputs of four different two-dimensional

filters applied to a spectrogram representation to reduce the

noise level and show that this method is adept at attenuating

impulsive sounds, such as those due to snapping shrimp.

Spectrogram-based whistle detection then proceeds by

finding all sufficiently strong peaks in the noise compensated

spectrogram. Whistles, which appear as connected ridges of

peaks, are then detected by connecting peaks across time and

frequency. Detected whistle ridges can also be joined across

short gaps if their characteristics match.5–7 Datta and Sturti-

vant3 run whistle detection from spectrogram peaks twice,

first using a high threshold to decrease the rate of false detec-

tions and then using a lower threshold in an attempt to

extract each detected whistle in its entirety. For the same
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reasons, Mallawaarachchi et al.7 use morphological opera-

tions followed by region growing on detected whistle peaks.

Their method can only extract a single whistle at each time

and so is not appropriate for multiple whistles.

The rate of false whistle alarms from spurious peaks can

be decreased by using prior knowledge of whistle character-

istics during the contour extraction. Datta and Sturtivant use

an inertial ridge following technique that, in selecting the

next point of a peak ridge, is more likely to select peaks of a

similar amplitude to the current peak and of a frequency that

agrees with a sweep rate based estimate.3 Whistles that fall

below a given duration threshold are discarded. Mallawaar-

achchi et al.7 employ a Kalman filter for whistle extraction.

The Kalman model selects the next point of a whistle ridge

by combining observed peak characteristics with a predic-

tion based on averages of previous characteristics. The pre-

diction is based on the first and second derivatives of the

frequency evolution as a function of time. This can be seen

as a different way of applying inertia to the whistle extrac-

tion process.

If clicks and other short-duration impulsive sounds are

present in the recording, they can disturb the whistle detec-

tor. Datta and Sturtivant3 attenuate clicks, which appear as

vertical features in the spectrogram, by applying a “masked

equalization” technique, which entails dividing the ampli-

tude of each spectrogram bin by the average amplitude of its

neighboring frequency bins. They then normalize the ampli-

tude spectrogram by subtracting the mean of each partition

and then dividing by the partition standard deviation. Gilles-

pie et al.5 and Halkias and Ellis6 discard click and spurious

noise peaks by requiring that at each time, a peak should not

have too few (noise) or too many (click) neighbors that are

peaks.

For frequency tracking, many non-spectrogram based

techniques for instantaneous frequency estimation of non-

stationary tonals are also applicable to whistles.9 A recent

example is the work of Ioana et al.,10 who split the data into

overlapping sections and use the polynomial phase trans-

form11 to estimate smooth frequency evolutions on each sec-

tion. These are then merged into a single frequency track for

each whistle. This study shows that whistles can be detected

and tracked using an adaptive notch filter (ANF)12–15 applied

to the recorded waveform. However, this requires the devel-

opment of methods for whistle detection, tracking through

strong transients, and handling of multiple whistles the fre-

quencies of which cross. Such methods are described here.

After pre-whitening, the proposed method applies an

adaptive notch filter to estimate the dominant frequencies at

each time. This is done on the whole recording. The method

then uses internal filter variables to achieve detection, i.e., to

determine when the filter was actually tracking a whistle.

This provides independent detection of several simultaneous

whistles. Detections that are too short to correspond to whis-

tles are discarded, and short gaps between detections are

bridged.

To cope with the difficult task of tracking simultaneous

whistles through frequency crossings, previous authors have

employed different techniques that all are based on connect-

ing those segments the characteristics of which before and

after the crossing provide the best match.3,5,6 We proceed

along similar lines, developing a method for sweep rate esti-

mation from the estimated frequencies, and biasing the filter

toward the current sweep rate close to frequency crossings.

Finally, we develop a heuristic waveform-based click

detector that finds short bursts that are much stronger than

their surroundings and estimate whistle tracks during clicks

from the filter’s state just before the click. This allows the

proposed method to track whistles through clicks.

The method is evaluated by application to several

recorded marine mammal whistles and a human whistled

speech utterance. The results are compared to those from

Datta and Sturtivant’s3 and Mallawaarachchi et al.’s7

spectrogram-based methods. The comparison shows that the

proposed method produces longer valid detections that are

not disturbed at clicks while displaying fewer false alarms

than the competing methods. The spectrogram-based meth-

ods detect some low SNR whistles that the proposed method

does not detect but also miss some higher SNR whistles that

are detected by the proposed method. The proposed method

is applicable to recordings of many simultaneous whistles

with strong clicks and consistently tracks whistles through

frequency crossings. Because it employs a significantly

shorter temporal analysis window, the proposed method also

outperforms the competing methods at tracking rapidly

sweeping whistles.

II. NOISE COMPENSATION

Ideally one would seek to measure the background noise

in periods when whistles were absent from the recording.

This can be achieved by performing spectral estimation on

data sections when no whistle is detected. This assumes sta-

tionarity of the noise, an assumption that may not be valid

over the period for which whistles are present, especially in

the presence of a large group of vocal animals. To circum-

vent these issues, one can obtain robust estimates of the

background spectrum even when whistles are present based

on the use of order statistics. In particular, using the median

of the spectrogram provides such a robust estimator.8

Order statistic estimators are based on sorting the data

in order of increasing magnitude. The median estimate is the

50th percentile order statistic, i.e., the value which is larger

than 50% of the data. For even better robustness to interfer-

ing calls, we use the 30th percentile value. Order statistic

estimates of the average noise power are biased, but the bias

can be estimated by making an assumption on the statistical

distribution of the background noise. We assume a Gaussian

distribution, so that the noise power spectrum follows a v2-

distribution. Bias correction for the Nth order statistic can

then be accomplished by multiplying each power spectral

estimate by the data-independent factor n,8

n ¼ � 1

log 1� N=100ð Þ : (1)

As the variance of the order statistic estimates increases with

decreasing order,8 the 30th percentile value was chosen as

an empirical trade-off between accuracy and precision.
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The presence of signals also introduces a bias to the pro-

posed noise estimator if a significant part of the power spec-

tral values in any given frequency bin are inflated. This bias

is difficult to estimate without knowledge of signal charac-

teristics and is typically significantly smaller than the noise-

only bias of Eq. (1).

Figure 1 is a spectrogram of a short example recording

with several strong whistles, calculated using Hann win-

dowed 256-point partitions with 50% overlap. The sampling

frequency is 44.1 kHz. Figure 2 shows background noise

spectra of this recording, estimated using the mean, median,

and 30th percentile methods. The bias compensated order

statistic estimators provide results that are in agreement with

those of the mean below 2 kHz, where whistles are absent.

Above 5 kHz, where whistles dominate, the mean estimate is

significantly affected by the whistles. However, the order

statistic spectra exhibit no apparent distortion because of the

whistles. There are no appreciable differences between the

two bias compensated order statistic spectra.

Figure 3(a) shows the result of de-noising the recording

of Fig. 1 by subtracting the noise spectrum. The method

improves the local signal-to-noise ratio (SNR) of most whis-

tles but fails to attenuate the low-frequency noise. Figure

3(b) shows the result of pre-whitening by dividing the spec-

trogram by the noise spectrum. The method of pre-whitening

does not change the local SNR, but the low frequency noise

is attenuated and the noise is now of equal power at all

frequencies.

For comparison, the result of Datta and Sturtivant’s

masked equalization followed by denoising and normaliza-

tion is shown in Fig. 3(c). Here a mask width of 30 fre-

quency bins is used. The noise power spectrum is then

estimated using the order statistic method described here.

Near most whistle peaks, the noise is strongly attenuated.

Clicks are also attenuated and only some remnants of them

can be seen.

Mallawaarachchi et al.’s7 transient suppression denois-

ing consists of converting the spectrogram to a logarithmic

scale and then filtering it with four different Gaussian two-

dimensional filters of size 9� 9. The filters respond to fea-

tures that are horizontal, vertical, and oriented along the two

diagonals, respectively. Denoising consists of applying a

correction term, which is given by the difference between

the largest output from the horizontal and diagonal filters

and that of the vertical filter, to the log-scale spectrogram.

The balance between the correction term and the original

spectrogram is controlled by the parameters a and b. Using

simulated data and varying the values of a and b, we found

that using a¼ 0.3 and b¼ 0.7 gave the best subjective per-

formance. The results of applying this algorithm to the

example recording are shown by Fig. 3(d). Clicks are

strongly attenuated and the noise appears as a nearly con-

stant background level.

The core of the proposed methodology is based in the

time domain. The preprocessing (pre-whitening) is presently

formulated in the frequency domain. At present, our imple-

mentation retains that structure, but we are actively seeking

implementations that are solely based in the time domain.

III. FREQUENCY TRACKING

An adaptive notch filter method tracks whistle frequen-

cies by applying a notch filter to the recording and adap-

tively minimizing its output. In the z domain, the input-

output relationship for the notch filter is

E z�1
� �

¼ H z�1; t
� �

Y z�1
� �

; (2)

where E z�1ð Þ is the z-transform of the filter output e(t),
H z�1; tð Þ is the filter’s time-varying transfer function, with t
representing discrete time, and Y z�1ð Þ is the z-transform of

the pre-whitened recorded signal y(t). The transfer function

of the notch filter has one or several deep notches, each

blocking a narrow band of frequencies, see Fig. 4.

The power of the output of the filter is minimized when

the notches are placed at the frequencies of the strongest nar-

rowband components in the signal. In a denoised whistle re-

cording, these components correspond to whistles unless

strong short duration transients are present. Section VI dis-

cusses how to deal with such disturbances. The center fre-

quencies of the notches at each time should then correspond

to the frequencies of the whistles. The form of time-varying

notch filter employed here is12,16

H z�1; t
� �

¼ A z�1; tð Þ
A qz�1; tð Þ ; (3)

FIG. 1. Spectrogram of a bottlenose dolphin recording.

FIG. 2. Background noise spectrum estimates of the recording of Fig. 1. (a)

Mean (solid) and median (dashed). (b) 30th order statistic.
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where the polynomial A z�1; tð Þ is

A z�1; t
� �

¼ 1þ
Xn�1

i¼1

ai tð Þ z�i þ z�2nþi
� �

þ an tð Þz�n

þ z�2n; (4)

and the parameter q (0 < q < 1) controls the notch width

and is called the pole contraction factor. The order of

A z�1; tð Þ is 2n and n is the number of notches.

The coefficients of A z�1; tð Þ have a symmetric form and

are real-valued. This is a consequence of the fact that the

roots of A z�1; tð Þ are on the unit circle and occur in complex-

conjugate pairs.12 We can also express A z�1; tð Þ as

A z�1; t
� �

¼
Yn

i¼1

1� z�1ejxi tð Þ
� �

1� z�1e�jxi tð Þ
� �

(5)

where x(t)¼ [x1(t), …, xn(t)]T are the notch center

frequencies.

Nehorai presented an algorithm for estimating

a(t)¼ [a1(t), …, an(t)]T adaptively.12 The properties of this

algorithm are well known,13,17 and it is applicable to whistle

tracking. However, the whistle detection strategy of Sec. V

requires that the filter is parametrized in terms of the notch

center frequencies. Chen et al. presented such a direct fre-

quency estimation ANF using a recursive prediction error

(RPE) method.16 The method updates x tð Þ using

x tð Þ ¼ x t� 1ð Þ þ P tð Þwx tð Þe tð Þ: (6)

Here, wx(t) is the gradient of the prediction error with

respect to x(t) and P(t) is the inverse of the so-called

pseudo-Hessian matrix.18 The pseudo-Hessian is a matrix of

approximate second derivatives of e(t):

P tð Þ ¼
Xt

m¼1

kt�mwx mð ÞwT
x mð Þ (7)

where k is the forgetting factor, which controls the duration

of the analysis window. To use Eq. (6), we need to express

e(t) and wx(t) in terms of y(t) and x tð Þ. From Eqs. (2) to (4),

we have

e tð Þ ¼ y tð Þ � y t� 2nð Þ þ q2ne t� 2nð Þ
þ /T tð Þa t� 1ð Þ (8)

where / tð Þ ¼ /1 tð Þ;…;/n tð Þ½ �T is given by

/i tð Þ ¼�y t� ið Þ� y t� 2nþ ið Þ
þqi tð Þe t� ið Þþq2n�i tð Þe t� 2nþ ið Þ; i< n

/n tð Þ ¼�y t� nð Þþqn tð Þe t� nð Þ: (9)

We estimate a(t) from x(t) in an iterative fashion.19 These

iterations are applied through increasing model order. So

that a
mð Þ

i tð Þ denotes the coefficients of order m, with

ai tð Þ ¼ a
nð Þ

i tð Þ, and for m¼ 1, 2, …, n one calculates

a
mð Þ

i tð Þ ¼ a
m�1ð Þ

i tð Þ � 2a
m�1ð Þ

i�1 tð Þ cos xm tð Þ þ a
m�1ð Þ

i�2 tð Þ (10)

for 1 � i � n, given that a
mð Þ

0 tð Þ ¼ 1 for all m and a
mð Þ

i tð Þ ¼ 0

for all other i and m.

FIG. 3. Spectrogram of the record-

ing of Fig. 1. (a) De-noised by sub-

tracting the noise spectrum. (b) Pre-

whitened by dividing by the noise

spectrum. (c) De-noised using the

method of Datta and Sturtivant.3 (d)

De-noised using the method of Mal-

lawaarachchi et al.7

FIG. 4. Transfer function magnitude of a notch filter.
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The gradient wx(t) is expressed using the chain rule as

wx tð Þ ¼ � @e tð Þ
@xT

¼ � @e tð Þ
@aT

@a tð Þ
@xT

¼ wa tð Þ @a tð Þ
@xT

: (11)

The gradient with respect to a(t), wa(t), is given by12

wa tð Þ ¼ �
Xn�1

i¼1

ai tð Þ wa t� ið Þ þ wa t� 2nþ ið Þf g

� an tð Þwa t� nð Þ � wa t� 2nð Þ þ / tð Þ: (12)

The Jacobian @a(t)/@xT can be estimated using19

@a0 tð Þ
@xp

¼ 0

@a1 tð Þ
@xp

¼ 2 sin xp tð Þ

@ai tð Þ
@xp

¼ 2 cos xp tð Þ @ai�1 tð Þ
@xp

� @ai�2 tð Þ
@xp

þ 2ai�1 tð Þ sin xp tð Þ; 2 � i � n;

(13)

where 1 � p � n.
It is common to set k¼q. Previously, notch filters have

been applied to tonals that start simultaneously at known

times. The forgetting and pole contraction factors were then

set to low values at the onset of a new tonal.12,13,16,19 How-

ever, in automatic whistle analysis, we do not know a priori
when the whistles start, so this strategy cannot be used.

Instead we use constant values close to 1 for both k and q.

As our results show, the ANF can still pick up new tonals.

This is essential to the operation of the proposed whistle

analysis method. It permits us to use the ANF to estimate the

dominant frequencies at each time and then detect whistles

after frequency estimation by determining whether or not the

ANF was tracking a whistle at each time.

Throughout this study, we use k¼q¼ 0.94. This value

was arrived at by experimentation, applying the method to

many whistle recordings. A lower value would make it easier

to pick up new tonals but decrease the noise robustness.12

The ANF is initialized at time t¼ 0 by distributing the

notch center frequencies evenly in the available frequency

interval, with the pseudo-Hessian, P(t), being initialized as a

diagonal matrix with elements equal to the reciprocal of the

estimated signal variance.

A simulated signal of two linearly chirping whistles in

additive noise, sampled at 50 kHz and with a duration of 1 s,

is used to demonstrate the frequency tracking capabilities of

the adaptive notch filter method. The first chirp has an ampli-

tude of 1. It starts at 15 kHz at 0.2 s and ends at 5 kHz at 0.6

s. The second chirp starts at 5 kHz at 0.4 s and ends at 20

kHz at 0.8 s. Its amplitude decreases linearly from 10 to 1.

To obtain a realistic onset, the chirps’ amplitudes are ramped

up linearly for 0.01 s.

Throughout this study, notch center frequencies are

smoothed using a 10 tap averaging filter prior to display.

This reduces sample-to-sample variations and is motivated

by the fact that the effective temporal resolution of the ANF

is not given by the sampling period, but is governed by

the analysis window. The window is exponential with an

effective width of approximately 1/(1� k)¼ 16.7 samples

for k¼ 0.94. Smoothing by a 10 tap rectangular window will

decrease the temporal resolution to 25.7 samples; this is still

far better than for the spectrogram-based methods. The aver-

aging length was chosen heuristically.

Figure 5(a) shows frequencies estimated from simulated

signal using a fourth order ANF. The frequencies oscillate

rapidly when not tracking, but when a whistle starts, it is rap-

idly detected by the frequency tracker and is successfully

tracked until it ends. When a whistle ends, its frequency

track returns to an oscillatory behavior.

Note that just before 0.5 s, the estimated frequencies for

the two tracks cross. Before the crossing, notch 2 follows the

upper frequency whistle, but at the crossing, it switches to

tracking the other whistle. Then at 0.7 s, notch 1 takes over

the whistle tracking from notch 2. The order of the tracks

does not influence the prediction error, so the algorithm was

modified to enhance its behavior through crossing points.

IV. TRACKING THROUGH NOTCH FREQUENCY
CROSSINGS

To track whistles through notch frequency crossings, an

improvement to the ANF-based frequency tracker that esti-

mates and employs the sweep rate of each notch frequency

evolution is developed. The frequency update rule Eq. (6) is

replaced by

x tð Þ ¼ In � bð Þ x t� 1ð Þ þ P tð Þww tð Þe tð Þ½ �
þ bx̂ t tj � 1ð Þ; (14)

where In x̂ t tj � 1ð Þ is a prediction of the current notch fre-

quencies, derived from previously estimated sweep rates and

b is a diagonal matrix that controls the balance between the

FIG. 5. Frequency tracks of the simulated signal, estimated using (a) an

ANF and (b) an ANF with improved tracking through frequency crossings.
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signal-driven and sweep rate-driven update terms. The ele-

ments of b are selected according to whether a frequency

estimate is in the vicinity of other frequency estimates, i.e.,

whether trajectories are about to cross. When there are no

frequency crossings, b¼ 0, and Eq. (14) is equivalent to the

standard frequency update of Eq. (6).

At each time step, the algorithm searches for notch fre-

quencies that are closer than a prescribed threshold, here

0.02 times the sampling frequency. If notches i and j are

closer than the threshold, we set bii¼ bjj¼ 0.5. When the fre-

quency separation exceeds another threshold value (0.03

times the sampling frequency is employed in this implemen-

tation), the algorithm restores bii¼bjj¼ 0 unless either of

the notches are close to another notch. To avoid hysteresis,

the frequency separation thresholds should be different.

Sweep rate estimation is conducted independently for

each notch. In spectrogram-based processing, the sweep rate

of a whistle track is typically estimated using first-order dif-

ferences between adjacent partitions. In the case of ANF, the

frequency estimates are available at a higher update rate, and

a sweep rate estimate should be based on several samples.

A computationally simple calculation of the predicted

frequency x̂k t tj � 1ð Þ of the kth notch can be obtained by

modeling the frequency evolution in a short analysis window

as a linear function of time:

x̂k m tj � 1ð Þ ¼ sk;1 t� 1ð Þmþ sk;2 t� 1ð Þ; (15)

where m is a temporal index. The parameters sk ¼ sk;1; sk;2

� 	T
of this linear model are updated adaptively at each time by

minimizing the frequency prediction error ex,k(t),

ex;k tð Þ ¼ xk tð Þ � x̂k t t� 1jð Þ; (16)

using the Gauss–Newton RLS algorithm in a manner similar

to Eq. (6). The result is20,21

R tð Þ ¼
Xt

m¼1

kt�m
T

m2 m
m 1


 �
(17a)

sk tð Þ ¼ sk t� 1ð Þ þ R�1 tð Þ t 1½ �Tex;k tð Þ; (17b)

where R is the pseudo-Hessian for estimation of sk, and kT is

a forgetting factor for frequency trend estimation. Typically

it is appropriate to use a longer estimation window for trend

estimation than for ANF frequency estimation to reflect the

inherently more noisy character of trend parameters. Here,

kT¼ 0.99 is used.

One can show that by assuming t� 1, i.e., ignoring the

effects of initialization, the update Eq. (17b) can be simpli-

fied to20,21

sk tð Þ ¼ sk t� 1ð Þ þ 1� kTð Þ2
1� k2

T � t 1� kTð Þ2

 �

ex;k tð Þ: (18)

Equations (14), (15), and (18) together with the framework

for controlling the trade-off between signal-driven and

trend-driven update comprise the proposed method for

improved frequency tracking at crossings.

Figure 5(b) shows frequencies estimated by applying the

ANF with improved tracking at frequency crossings to the

simulated signal of Fig. 5(a). It is clear that the modified ANF

manages to track the whistles through the frequency crossing.

V. WHISTLE DETECTION

The proposed method applies detection after frequency

estimation. Whistle frequencies are estimated using the

adaptive filter described in the preceding text, and a method

for deciding when each notch is tracking a whistle will now

be described.

The proposed detection method works by thresholding

the diagonal elements of the inverse pseudo-Hessian matrix

P(t) at each time. The detection statistic employed for each

notch is the negative logarithm of the corresponding diago-

nal element of P(t):

ak tð Þ ¼ � log10 Pkk tð Þ; 1 � k � n: (19)

The detection statistics ak(t) provide a reliable quality mea-

sure of the tracking of each notch.21 Some motivation for

this is provided by the fact that in white Gaussian back-

ground noise, P(t), by construction, is similar to the Fisher

information matrix for estimation of x(t). The diagonal ele-

ments of the Fisher information matrix give the Cramer–Rao

lower bound, i.e., a lower bound on the variance of an

unbiased estimator. Strictly, it applies only to estimation of

deterministic parameters. It has been shown that the ANF

algorithm of Chen et al. attains the Cramer–Rao lower

bound,16 wherefore it can be said that Pkk(t) are related to

the variance of our frequency estimator. This establishes a

link between the employed detection statistics and the var-

iance of the frequency estimates, which in turn are directly

related to the quality of the tracking.

Figure 6(a) shows the detection statistics for the simula-

tion example of Fig. 5(b). A threshold of 2.2, indicated by a

FIG. 6. Detection applied to the simulated signal. (a) Detection statistics.

(b) Detected whistles.
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horizontal line, is used for all data, simulated as well as

recorded, presented here. This value was determined empiri-

cally using both simulated and real test signals. Experiments

not reported here showed that on simulated linear chirps in

additive noise, it corresponds to a whistle signal to noise ra-

tio of approximately -3 dB. This can also be observed in Fig.

6, where the detection statistic crosses the threshold line just

before 0.8 s. Here the amplitude of the tracked chirp is

approximately 1. Note that the pre-whitening stage ensures

that the threshold is independent of the signal gain, or spec-

tral content of the noise.

Comparing Fig. 6(a) to Fig. 5(b), it is clear that the

detection statistic for a notch is above the threshold when it

is tracking a whistle and below it when not except near the

frequency crossing. Tracking several notches through a fre-

quency crossing is difficult, and the statistic frequently falls

below the threshold.

Simple heuristic rules can assist in the construction of a

suitable detection decision. In this case, a new detection is

not declared until the threshold is exceeded for a fixed num-

ber of samples, and a track is not terminated until a set num-

ber of statistics fall below the threshold. In this work values

of 500 and 50, respectively, were used for these parameters.

In the vicinity of crossings, trajectories may not be termi-

nated until the statistic is below the threshold for a greater

period of time, in this case 1 000 samples.

The resulting detections for the test signal are shown in

Fig. 6(b). When comparing it to Fig. 5(b), it is clear that at

all times when a whistle is tracked, a detection is reported.

The rules reported in the preceding text permit the detector

to bridge the gap caused by a temporary fall below the

threshold at the frequency crossing.

VI. CLICK COMPENSATION

Odontocete species (toothed whales) use short transients

known as clicks mainly for the purposes of echolocation. If a

transient is powerful enough that its magnitude spectrum in

the notch filter analysis window is comparable to the magni-

tude of the tracked whistle, the notch filter can lose the whis-

tle track. A similar artifact is observed when using Fourier

based methods to track whistles. The effect is illustrated by

Fig. 7(b), which shows frequencies obtained from a second

order notch filter applied to the data of Fig. 7(a), which rep-

resents a section of the recording of Fig. 1.

A waveform-based click detector is developed as a first

step to mitigating the influence of short-duration transients.

The detector compares the square of the current sample to a

short-time power estimate. If the ratio of these two values

exceeds a threshold, in this case 10 is used, the current sam-

ple is deemed to be a click. It is also deemed a click if any of

the 10 previous samples exceeded the threshold. This pre-

vents the tracker from being dragged off course by click

samples that do not quite meet the threshold.

The average power measure is calculated from a sliding

window which is longer than the transients of interest. Here,

a window of duration 1 ms, corresponding to 44 samples at a

sample rate of 44.1 kHz, is used. If the current sample is a

click, the average power measure is not updated.

If the current sample is a click, it is not useful for whistle

frequency tracking. We therefore replace it with its prediction

obtained by setting e(t)¼ 0 in Eq. (8). No other changes are

made to the algorithms for frequency tracking, sweep rate

estimation, and detection presented in Secs. III to V.

The frequency tracking example of Fig. 7(b) is re-run

with click compensation, and the results are shown in Fig.

7(c). The figure shows that click disturbances are greatly

reduced. Click detections are indicated by bars on the tempo-

ral axis of Fig. 7(c).

VII. RESULTS

We will now evaluate the performance of the proposed

method for whistle detection and tracking by application to

several recorded whistles. Results from application of the

competing Fourier based methods of Datta and Sturtivant3

and Mallawaarachchi et al.,7 both described in Sec. I, are

also presented.

Processing parameters are the same for all results pre-

sented here. Most of the parameters and settings applied to

the three methods have been specified in previous sections,

but some have not yet been given. Parameter values were

taken from the reports on the competing methods.3,7,22

Where the value of a parameter was not given, we optimized

it for best performance using simulated as well as recorded

data. For the proposed method, we use a notch filter with

n¼ 3 notches, so we can extract at most three simultaneous

whistles. Spectrograms for pre-whitening and for the analy-

sis by the spectrogram-based methods are calculated using

256 point Hann windows with 50% overlap.

FIG. 7. Click detection. (a) Spectrogram of recording with clicks. Estimated

frequency evolutions (b) without click detection and (c) with click detection.

The bars on the temporal axis indicate click detections.
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For Datta and Sturtivant’s method, track inertia with a

parameter of 0.95 is applied to improve whistle tracking

through frequency crossings during extraction. We allow a

maximum frequency jump of three bins between adjacent

partitions and discard detections shorter than 16 partitions.

This corresponds to a minimum detection length of 2 048

samples. The exact peak detection thresholds were not given

in Refs. 3 and 22, but it is stated that the thresholds should

be set using the mean and standard deviation of each parti-

tion of the denoised spectrogram. We have set the peak

detection threshold equal to the mean plus three times the

standard deviation. For ridge extraction from the detected

peaks, a lower threshold of two standard deviations above

the mean was used.

For Mallawaarachchi et al.’s method, the initial peak

detection threshold is calculated from the mean and standard

deviation of the denoised spectrogram. Following Malla-

waarachchi et al., we use a threshold of 1.75 times the stand-

ard deviation above the mean. Region growing uses a

threshold of 0.95 times the detection threshold. Whistle trac-

ing and Kalman filter post-processing are then applied

according to Ref. 7. Additionally enforcing a maximum fre-

quency jump of 10 bins between neighboring partitions in

the same manner as for Datta and Sturtivant’s method

reduced the number of false alarms while leaving the true

detections unaffected. Requiring a minimum detection

length of 16 partitions had the same effect, so these modifi-

cations were introduced.

The dolphin whistle recordings are sampled at 44.1 kHz.

The spectrogram of the first recording, which contains three

single Atlantic spotted dolphin (Stenella frontalis) whistles

in strong background noise, is illustrated in Fig. 8(a). Fre-

quency tracks of whistle detections from the proposed

method are given by Fig. 8(b). The algorithm has detected

all three whistles in their entirety and has not produced any

false alarms.

Figure 8(c) shows that Datta and Sturtivant’s method

has detected only half of the first whistle and missed the rap-

idly sweeping part of the second whistle. However, it has

picked up the weak potential whistle around 2.8 s. A very

faint additional whistle at 0.8 s is detected by the method,

but the extracted frequency track appears to extend outside

the edges of the whistle. It is difficult to see the detection at

0.9 s in the spectrogram. Consequently, Datta and Sturti-

vant’s method has failed to extract all stronger whistles in

their entirety, but managed to pick up some more faint whis-

tles. In our experience, this behavior is typical of Datta and

Sturtivant’s method.

The results of Mallawaarachchi et al.’s method are pre-

sented in Fig. 8(d). It has fully extracted the three whistles

and also the faint additional whistle at 0.8 s. However, there

are some spurious edge effects on the frequency tracks. Note

that the reason that Mallawaarachchi et al.’s method can

track the rapidly swept part of the second whistle is that it

uses a higher maximum frequency jump between partitions

than Datta and Sturtivant’s method.

The proposed method gives a new set of frequency esti-

mates every sample, while the spectrogram-based methods

give a new set for every spectrogram partition. Small

sample-to-sample frequency variations give the ANF fre-

quency estimate curves their “thick” appearance when plot-

ted on a dense temporal axis as in Figs. 8 and 9.

The second recording, discussed in Sec. II and shown in

Fig. 1, has several simultaneous strong bottlenose dolphin

(Tursiops truncatus) whistles and many strong clicks. Figure

9(a) shows that our proposed method extracts many of the

whistles that can be visually identified from the spectrogram.

FIG. 8. Analysis of the spotted dolphin recording. (a) Spectrogram. (b)

Detections from the proposed method. (c) Detections from Datta and Sturti-

vant’s method.3 (d) Detections from Mallawaarachchi et al.’s method.7
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It appears undisturbed by clicks and extracts the two long

whistles that last from 0.6 to 2.0 and 1.2 to 3.0 s, respec-

tively, in their entirety and through frequency crossings.

Moreover, all its detections can be matched to whistle tracks

that can be visually identified in the spectrogram. The meth-

ods of Datta and Sturtivant, see Fig. 9(b), and Mallawaarach-

chi et al., see Fig. 9(c), both give false alarms at low

frequencies. They also fail to extract many of the whistles,

and only extract parts of the two long whistles mentioned in

the preceding text. Mallawaarachchi et al.’s method can

only extract one simultaneous whistle, but this result is more

surprising for Datta and Sturtivant’s method, which can

extract multiple simultaneous whistles. One cause of this

failure is the masked equalization operation, which attenu-

ates multiple whistles if their frequency separation is less

than the width of the frequency mask. The masked equaliza-

tion is however necessary for click attenuation. None of the

methods appear disturbed by the clicks.

Figure 1 shows that around 1.3, 1.7, 2.0, and 2.5 s, a

whistle exhibits a rapid frequency sweep. The proposed

method can track the whistles through these rapid frequency

sweeps, but both spectrogram-based methods fail. This is

because these sweeps are so rapid that the whistle’s energy

is split between several frequency bins. This could be allevi-

ated by selecting a shorter spectrogram partition length but

that would lead to a decreased frequency resolution, which

would make peaks from slowly sweeping whistles less appa-

rent. It would also make the analysis less noise robust; the

whistle peaks would not be as high above the background

noise. This is an example of the fundamental trade-off

FIG. 9. Analysis of the bottlenose dolphin recording of Fig. 1. (a) Detec-

tions from the proposed method. (b) Detections from Datta and Sturtivant’s

method.3 (c) Detections from Mallawaarachchi et al.’s method.7

FIG. 10. Analysis of a human whistled speech utterance: “ata” in whistled

Turkish. (a) Spectrogram. (b) Detections from the proposed method. (c) Detec-

tions from Datta and Sturtivant’s method. (d) Detections from Mallawaarachchi

et al.’s method.
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involved in selecting spectrogram parameters and an effect

of the limited time-frequency resolution of the spectrogram.

Most authors use 256- or 512-point spectrograms for

whistle analysis of recordings sampled at rates of 44.1 or

48 kHz;3,5–7 our selection of 256 points is typical. Compared

to the 256-point spectrograms employed here, the ANF

method uses a much shorter temporal window, resulting in a

higher temporal resolution. Therefore it is more effective at

extracting rapidly swept whistles.

Our last sound example demonstrates that the pro-

posed method also performs well on non-marine mammal

whistles. It is a high quality recording of a human whistled

speech utterance, namely, the whistled emulation of “ata”

from the word “Yatan” of the whistled Turkish language.

The recording is sampled at 22.05 kHz. All parameters are

the same as for the above dolphin whistles sampled at

44.1 kHz.

Figure 10(a) presents a spectrogram of the whistled

utterance. Compared to the dolphin whistles, the human

whistles have stronger harmonics and a larger bandwidth rel-

ative to the sampling frequency. When whistling, some flow

noise is also generated. The flow noise has a broadband char-

acter and is responsible for the apparent increase in back-

ground noise level when a whistle is present.

As shown by Fig. 10(b), the proposed method extracts

nearly all of the fundamental and most of the second har-

monic. Again, it displays no false alarms. Figure 10(c) shows

that Datta and Sturtivant’s method fails to extract the second

harmonic and reports low frequency false alarms. Figure

10(d) shows that Mallawaarachchi et al.’s method7 detects

only the first part of the fundamental.

VIII. CONCLUSIONS

An automatic whistle analysis method based on adaptive

notch filters has been described. The whistle detection and

frequency estimation method presented here has been shown

to be applicable to real-world whistle recordings of different

characteristics recorded in different settings. Consequently,

it is suitable for use in an automatic whistle processing sys-

tem. The performance of the method was compared to two

spectrogram-based methods, and it was found that the pro-

posed method is both capable of extracting several simulta-

neous whistles and of accurately extracting all whistles of

sufficient signal-to-noise ratio provided that there are enough

notches in the filter. The results also showed that the method

can track simultaneous whistles through frequency crossings

and produce an unbroken detection from whistles as long as

1.8 s. The detection methodology reported here was found

satisfactory, producing detections that correspond to the

known start and end times of simulated whistles and not

reporting any false alarms on real data. An interesting direc-

tion for future research is to develop an improved detector

based on the proposed detection statistics. Moreover, a draw-

back in common to the proposed method and the two com-

peting spectrogram-based methods applied here is that they

all report whistle detections on periodic non-whistle calls,

which spectrally can be characterized as fundamentals with

strong harmonics. Perhaps the most important direction for

future research is to develop a method to avoid such non-

whistle detections or alternatively to separate whistles and

periodic call detections in a post-processing stage.
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