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Summary

Key to the dynamics of the type of bubble collapse which is associated with such phenomena as sonoluminesence, and
the emission of strong rebound pressures into the liquid, is the role of the liquid inertia. Following the initial formulation
of the collapse of an empty spherical cavity, such collapses have been termed ‘Rayleigh-like’, and today this type of
cavitation is termed ‘inertial’, reflecting the dominant role of the liquid inertia in the early stages of the collapse. Whilst
the inertia in models where, at these early stages, spherical symmetry can be assumed can depend primarily on the liquid
density, experimental control of the liquid inertia has not readily been achievable without changing the liquid density,
and consequently changing other liquid properties. In this text, novel experimental apparatus is described whereby
the inertia at the early stages of the collapse of a conical bubble can easily be controlled. The collapse is capable
of producing sonoluminescence. The similarity between the collapse of spherical and conical bubbles is investigated
analytically, and compared with experimental measurements of the pressures generated by the collapse.

PACS no. 43.35.Ej, 43.30.Nb, 43.25.Yw

1. Introduction

Eighty years ago Rayleigh [1] published his pioneering anal-
ysis for the collapse of an empty spherical cavity under a
static pressure. Coupling this energetic collapse phase with
the explosive growth phase of a sufficiently small bubble
(as expounded by Blake, [2]) to a maximum size R..,
Noltingk and Neppiras [3, 4] characterised a particular type
of cavitation. In this, appropriately small bubbles in suffi-
ciently strong sound fields undergo growth to many times
their original size, and then subsequent rapid collapse. The
growth phase is to a first approximation isothermal, and the
collapse phase adiabatic, such that the bubble serves to con-
centrate the acoustic energy. Flynn [5] further distinguished
this socalled 'transient’ (or 'unstable’) cavitation from the
less energetic 'stable’ cavitation, where the bubble pulsates
about an equilibrium radius over many acoustic cycles. Flynn
[6] then analysed the energetics of transient collapse, through
consideration of the mechanical work done on the cavity by
the spherical convergence of the liquid, and the dissipation
of energy during the collapse process. An important feature
of high-energy cavitation was found to be the dominance of
inertial forces during the collapse, and this was taken for
many years to be the best definition available for transient
cavitation. However there was never an unequivocal basis
for ascribing such an energy concentration to the classical
interpretation of the phenomenon of ’transient cavitation’,
which involves sudden growth followed by rapid collapse
and rebound, after which the bubble fragments. Nevertheless
such collapses were experimentally associated with sono-
luminescence and spherical shock waves emitted by the re-
bounding bubble, and occurred in regimes (acoustic pressure,
frequency, initial bubble size) where the theories predicted
the dominance of inertial forces, The overwhelming evidence
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was such thatin 1985 Roy er al. concluded that “if one desires
a threshold for ‘violent’ cavitation, then sonoluminescence
is a fitting criterion since the violence of a transient collapse
is linked primarily to Rpax, which corresponds to the energy
stored in the liquid” [7], and that “light emission may serve
as an ideal indicator of what Apfel [8] calls the ‘threshold
for transient-violent cavitation’ .

Then in 1990 Gaitan and Crum [9] observed sonolumines-
cence over measurement intervals of thousands of acoustic
cycles from stable cavitation of a single bubble which did not
break up, and which exhibited no detecable surface wave or
streamer activity. Clearly such bubbles cannot be described
as ‘transient’. The term ‘inertial cavitation’ was introduced
to indicate those collapses in which the inertial forces domi-
nate, and which consequently would be expected to generate
energetic effects such as sonoluminescence: if the bubble
performs this once or a few times and then fragments on
rebound, the event is what was understood to be tansient
cavitation; if the bubble repeats the collapse intact over a
great number of cycles, then sonoluminescence from stable
cavitation has been achieved.

Whilst the questions of nomenclature raised by the dis-
covery of sonoluminescence from stable cavitation could be
fairly readily resolved, those relating to the origin of sono-
luminescence could not. Specifically, what is the mechanism
by which sonoluminescence is produced; and does it differ
when single bubbles undergo stable cavitation from when
multiple bubbles undergo inertial cavitation and, as a result
of surface instabilities, break up [10,11, 12, 13]? These will
not be discussed here, beyond saying that theories of such
origins have historically fallen (though not exclusively) into
three main categories [14]: thermal, mechanochemical, and
electrical. However the discovery that sonoluminescent light
pulses from stable cavitation are less than 50ps duration
with the ‘jitter’ in time between flashes to be much less than
50ps, led Barber et al. [15] to speculate on the nature of a

cooperative/coherent optical (or fluid) phenomenon involved
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Figure 1. (a) Diagram of the apparatus, showing the positions of the
pressure transducers, LPT and HPT; (b) insert showing the detail of
the cone tip.

in the mechanism. The discovery stimulated further discus-
sion as to the possible mechanism. Crum and Putterman [16]
stated that “As the phenomenon may be too fast for the es-
tablishment of local thermal equilibrium, we may be facing a
situation where focusing acoustic stress fields are transduced
directly into quantum excitations”. In this decade there have
been publications on how such brief light emissions can be
consistent with a range of simulations [17] and theories, in-
cluding gas shocks [18], rectified diffusion [19], electrical
discharge [20], quantum radiation [21], and jetting [22].
Key parameters which feature within these theories in-
clude the inertia of the liquid, and the motion and stabil-
ityfinstability of the gas—liquid interface. During inertial cav-
itation these are not normally accessible to control, or (in the
case of details of the bubble wall) measure. In this paper,
apparatus enabling more ready access to these parameters is
introduced. A gas pocket collapses into an otherwise liquid-
filled conical hollow. The cone has a circular horizontal cross-
section, which at its base sits on top of a liquid-filled tube of
the same diameter. As the bubble collapses, liquid can flow
from the tube into the cone (Figure 1). The actual apparatus
is shown in Figure 1a, where it can be seen that the tube is in
fact fashioned into a U-tube. This allows the following ex-
perimental protocol. At equilibrium, under 1 atmosphere, the
gas pocket occupies the upper few millimetres of the cone.
When the static pressure in the tube is reduced (through clo-
sure of the top-plate and application of the pumping train
indicated in Figure 1a), the bubble undergoes relatively slow
growth. Then the top-plate is opened, and a pressure step of
approximately 1 bar propagates down the U-tube, causing the
collapse of the bubble. The collapse is specifically designed
to be unstable, so that the bubble can be ensured to have un-
dergone fragmentation after the first rebound. The geometry
of the bubble is such that it collapses into the solid angle con-
ical section (30° half-angle) of a sphere. This not only allows
the imaging of a ‘cross-section’ of the luminescing bubble,
but also allows the positioning of pressure transducers within
the gas and within the surrounding liquid, since the centre of

the collapse is well-defined. However the liquid surrounding
the bubble does not continue in a conical geometry indefi-
nitely, but instead becomes one-dimensional, allowing ready
control of the inertia.

1.1. Theory

The basic considerations employed in later formulations of
the dynamics of the inertial collapse can be found in the pio-
neering paper of Rayleigh [1], who considered the collapse of
an empty cavity which remains spherical at all times, located
in an incompressible liquid. The empty cavity, at rest, is en-
visaged to be “as if a spherical portion of the fluid is suddenly
annihilated”, to quote Besant [23]. The cavity at this time,
when the wall velocity is zero, is assumed to have a radius
R, Since the cavity contains no gas, the liquid pressure py,
just outside the cavity is zero (if surface tension is assumed
to be negligible). Thus the work done by the hydrostatic
pressure Poo from that time until the cavity has contracted
to a radius R, which is given by 4mpeo (RS, — R?)/3, will
simply equal the kinetic energy of the liquid. This is found
by integrating the energy over spherical shells of liquid, of
speed 7, thickness Ar, and mass 4rr?pAr, where p is the
liquid density. Equating the work done to the kinetic energy
in this way gives

4m 3 3 1 1%, 2

—Peo (RE, — R?) = —/ 7 pdnr? dr. (1)
3 2 /g

If the liquid is taken to be incompressible, then at a given
instant the rate of mass of liquid flowing through any spher-
ical surface (radius 7) equicentric with the bubble must be
a constant. In time At a mass of liquid 4772prAt flows
across a surface at some general radius r outside the bubble.
Equating this to the flow at the bubble wall gives

#/R = R?/r?. (2)

By substituting equation (2) into (1), integration yields the
kinetic energy to be 2rpRR3, giving:

22 _ 2o (R _ '
R—3p 5 51 (3)

To find the wall velocity, R, the negative root of equation (3)
is taken since, because the wall motion is inwards, K must
be negative. Integration of equation (3) with respect to time
gives the collapse time g,y of the cavity:

RE=0
dR [ p
t = — =& 0.915R /[ —. 4
R /Rm R Poo ( )

The assumption that the liquid is incompressible means that
the derivation becomes invalid once the velocity of the cav-
ity wall approaches the speed of sound in the liquid. From
equatjon (3) it can be seen that this will always occur at some
point during the collapse of an empty spherical cavity. There-
fore Rayleigh suggested the presence of some permanent gas
within the cavity.
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Figure 2. Schematic diagram of the cone and tube, defining the
various model parameters.

Clearly there are key differences between the so-called
“Rayleigh” collapse, and the collapse considered in this pa-
per. Contrary to what might be supposed, the main difference
arises not through the geometry of the cone, but through that
of the tube, as the following analysis shows. The layout of
the cone and tube is shown schematically in Figure 2, with
a definition of the various model parameters. It should be
noted in the figure that the section of gas considered has a
flat base. When the geometry of the collapses was observed
experimentally, it appeared that the meniscus was flat over
the majority of the collapse: it was not until the bubble was
very small in the tip of the cone, that the meniscus adopted
a curved section. Therefore the gas in the apparatus does not
exactly represent the collapse of a solid angle section of a
spherical bubble. In the following derivation of the equations
of motion of the collapse, the meniscus is considered to be
flat throughout, because even at the smallest radii the bub-
ble is expected to achieve, the contribution to the internal
gas pressure due to the surface tension forces is negligible.
Adapting the calculation for a curved meniscus throughout
is not difficult, but less relevant to the initial conditions.

Since the cross-sectional area in the cone increases with
distance from the meniscus, the flow velocity of the in-
compressible liquid decreases in proportion. The parame-
ter R, is the vertical distance from the cone apex to the
meniscus (which, neglecting edge-effects, therefore has area
7 R2 tan?@), and 7, is the distance from the cone apex to a
circular element of liquid in the cone (of area 72 tan?@). If
the liquid is incompressible, then the volume of liquid cross-
ing all such areas in a time df must be constant. Equating
liquid fluxes gives:

R.dtnR? tan?f = r.dtnr? tan®0
= fofRe=RfrE. (5)

Equation (5) has the same form as equation (2), showing
that with respect to the inertia of an incompressible fluid, the
cone precisely models a section of spherical geometry. This
identity of geometric divergence however does not hold for
the fluid in the U-tube. Here there is no divrgence and, to a
first approximation, every element of fluid within the tube

accelerates to exactly the same degree as the fluid at the base
of the cone (if the fluid is assumed to be incompressible).
Therefore at the start of the collapse, when the bubble almost
fills the cone, the inertia of the liquid is very great. In the
conditions pertaining to the start of this experiment therefore,
when a pressure step of around one atmosphere is applied to
the end of the liquid column remote from the bubble, inertial
forces will clearly dominate pressure forces and an inertial
collapse will be achievd.

The kinetic energies of the liquid in the cone and the
column can be calculated for a given meniscus position R..
The vertical distance from the apex to the base of the cone
(where the cross-sectional area is Ap and the liquid velocity
is £) is Tmax. Following the arguments that gave equation
(5), the liquid velocity a distance r, below the cone apex is
";'C = érﬁlax/f‘f.

The volume of the liquid element there, of thickness dr,,
is m(rc tan 0)2dr.; its mass is pm(r.tanf)%dr.; and its
kinetic energy is therefore £ pm (v, tan 8)2dr.(érf,,, /T2)%-
Summing these fluid elements gives the total kinetic energy
of the liquid in the cone as

Tmax 1 2l 2
/ E,ovr(r,:tanﬂ)Q (51;%) dr,

R. ¢

Crp. =

1 e g
= Epwtan%‘ rfnaxs'Q/ % (6)

c

1 R ( 1 1
= pm tan®6 s :
2 pmtan o r..€ Rc -

I

All elements of the incompressible liquid column (of length
h) in the tube will have velocity of € so that the kinetic energy
of the liquid in the tube is

Dps = Aophé” /2. (7)

Clearly h is dependent on R,, since the liquid components
within the tube and the cone must always sum to equal V,
the total volume of liquid in the apparatus as:

Vo= %can?e(r;ax — B3 + Aoh

§ th — thf - %tanzfa(ﬂ? - Rg): (8)

where h; is the initial length of water in the tube alone, and
R; is the starting vertical position of the meniscus before
plate opening, It may be noted that the effective inertias of
the liquid in the column and the cone are equal when the
meniscus position is B, = R, such that

et =PkE: =

1 ; 1 : 1 i
§A0ph52 &= 5pfrtanQE?1";‘%52 (E - T'max) 9)
2
T
= R,=—T2_,
h + Tmax

Usually the length of liquid in the column at the end of the
collapse is about 2 cm shorter than its initial value, so treating
the parameter h as approximately constant and substituting
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Figure 3. Plot of meniscus velocity against: bubble radius for the
Rayleigh collapse of a spherical, empty bubble (R) (dashed); and
cone tip-to-meniscus distance for the collapse of a conical bub-
ble containing no gas §Rc) (dptted). The initial conditions are that

R =R, =052mm; R. = R = 0and h; = 371 mm. The fixed
apparatus dimensions are given in the text.

for the dimensions of the apparatus (A &~ 400 mm, rpax =
52 mm), this implies the inertias are equal when R,~6 mm.
This is usually several times the radius the bubble had prior
to expansion. Since @ . decreases with increasing R,
(equation 6), but ® i £ ; increases (since h increases with K.,
equations 7 and 8), it is clear that the inertia of the liquid in the
tube dominates the early stages of a typical collapse. Control
of h therefore enables control of the inertial forces at the start
of the collapse. However in the final stages of the collapse,
when it is desirable for the dynamic processes in the liquid
surrounding the bubble to more closely resemble the collapse
of a bubble in an unconstrained medium, with the appropriate
pseudo-spherical liquid convergence and divergence, this is
what the apparatus delivers,

Rayleigh’s model of an inertial collapse of a spherical
bubble will now be adapted for the conical case. The liquid
velocity at the base of the cone, £, is related to the bubble
wall speed, R, through /R, = R2/r2,,, (by considering
mass continuity, as in equation 5). Therefore balancing the
work done by the application of a pressure step of magnitude
Poo» at the end of the column remote from the bubble, with
the kinetic energy of the liquid (both in the tube and in the
cone) gives a modified form of equation (1):

7
3P0 tan’0(R3 — R3) = ®xp .+ ®xpy
: 2
1 (RE /1 1
_1 S 1
5T tan®f 7y .y (Tgwx - —— (10)
& 2
1 T 9 RCRQ
Z ; — —tan?@(R3 — R3S e
+ 5p (4oh; - 5 tan®0(R} - RY)) (Tgmx)

(explicitly substituting for the time dependent variable h us-
ing equation 8). The expression of the bubble wall speed, the

conical equivalent to the spherical expression (equation 3) is:

R2 _ Trznax 21 £ 29(R3 R3
c = RE Spoo an i C)

Equation (11) is plotted in Figure 3 and compared with the
Rayleigh collapse of a spherical bubble (setting R = R,
for comparative purposes). The initial bubble length R; was
taken to be the maximum meniscus displacement (rax)
of 52mm, and the tube contained an initial length of water
hi of 371 mm to mimic the experimental set-up. The value
for Ay is calculated as 2.8 - 1073 m?, The starting position
(R. = R = 0) cannot be shown on this logarithmic plot.
However it is clear that in the early stages of the collapse
the plots diverge (because of the contribution to the inertia
of the liquid in the column). As the collapse proceeds (i.e.
the vertical distance between tip and meniscus decreases),
the two plots tend to converge (as the meniscus velocity
increases).

The length of the liquid column in the tube required to
most closely correspond with the spherical collapse (hs) can
be determined. This calculation is only an attempt to find ap-
proximately good solutions: the inertia of this experimental
system can never exactly equal the inertia of the spherical
one since the radiation mass of a fluid element depends criti-
cally on the geometry of the fluid flow, and for the portion of
the fluid which enters the cone from the U-tube this geome-
try changes from parallel flow to converging flow. As such,
the inertia of the liquid in the U-tube decreases during the
collapse: since the discrepancy is greatest nearer the start,
the bias in the balancing calculation to find h, should be
made for the situation nearer the early, rather than the later,
stages of collapse. This is a sensible solution, since in the’
later stages the required length changes much more rapidly.

The parameter requiring balancing between the spherical
and conical collapses is the radiation mass. This is defined for
a spherical bubble of radius R in this “radius-force” frame
[14] from consideration of the kinetic energy of the liquid,
¢k, s and the velocity of the bubble wall:

[r (4mr?pdr)r?
17

- ¢K,s -

me = — =47R%p (12)
b

(evaluation of the integral being facilitated through use of
equation 2). In the conical apparatus in question, the bubble
fills the cone to R, below the apex, giving the liquid in the
cone an inertia of m,. The required parameter is the length
of fluid in the U-tube, h;, with a particular inertia m., such
that the total inertia of the liquid in the apparatus is the
same as that for the spherical case. The ratio of the conical
bubble volume to a spherical bubble of the same radius can be
readily determined as tan?f /4, so calculating these radiation
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inertias from the kinetic energies stated in equation (10), and
letting R = R, for equivalence, gives

tan®8

mMs = Me + My

o tan®f ¢xs  Pxp.c+ PrELt
1p2 152
i IR 172

= 7mR3ptan?d =

B WA 1
A : S 2
e (T‘max) [(Rc Tmax) Tmax + hs]

= N = Tmax: (13)

The liquid tube length of 4045 cm used in these experiments
is a compromise, giving more inertia than required during the
collapse. A greater length would reduce the maximum size to
which the bubble could grow prior to collapse (note that the
measured pressures of around 700 Pa result almost entirely
from the hydrostatic head), though the shape of the U-tube
is designed to minimise this limitation (Figure 1a).

In his consideration of a spherical collapse, Rayleigh [1]
went on to incorporate a permanent gas phase, such as is
found in this experiment, within the bubble. He proposed that
from an initial maximum radius K,,, when R= 0, the cavity
would collapse, and then rebound, and from thence oscillate
between a maximum and a minimum value, B = Rnayx and
R = Rpin respectively, the wall speed being zero at the two
extremes. In the absence of dissipation, clearly Rmax = Rm.
Noltingk and Neppiras [3] completed the formulation.

It is possible to set out an analogous calculation for the
collapse of the conical bubble. The meniscus is assumed
to be a flat based segment at all times, and we define the
pressure at the interface in the liquid to be pr,. When the top
plate of the apparatus has been opened (Figure 1a), there is
a step in this pressure at the bubble wall, and from this time
the value for pr, would be po + pgAh, where Ah is the
dynamic difference in height between the meniscus and the
water level in the open tube. The apparatus is designed in such
a way, however, that the water fills two legs of a U-tube to
roughly the same height, and therefore this height difference
is always less than 10 cm. This dynamic contribution to the
value of py, is < 1% of the static value, and can therefore be
neglected.

The energy balance before and after the start of the collapse
can now be considered. The increase of kinetic energy of the
liquid in the tube and cone must be equal to the work done
by the gas at the interface as the radius changes from R; to
R.. Due to the presence of gas inside the bubble, the second
term requires a knowledge of the pressures on both sides of
the meniscus, and hence an expression for the internal gas
pressure p,. At the start of the collapse, when R, = R;
and R, = 0, the gas within the bubble has pressure p, ; and
temperature 7}. If there is no heat flow across the bubble wall
(which is valid if the collapse speed is fast), the gas pressure
p, and bubble volume follow an adiabatic relationship. If
the vapour pressure is assumed to be negligible, equating the
initial conditions with those of a general meniscus position
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Figure 4. Plot of meniscus velocity against bubble radius for the two
empty cavity cases shown in Figure 3, plus the meniscus velocity of
the collapse of gas filled bubbles of final spherical radii 1 mm (+),
10mm (o) and 20 mm (*). The initial conditions are as described in
Figure 3.

gives:
Pg,i (ng tanzﬁ)nr =Py (%Rg tanif))'y

-
- pg=pg,i(§‘) - (19)
(o

Therefore the work done by the gas in the bubble on the
liquid interface can be written as:

R,
WD = /R- (p, — pr)7(R, tan®)® dRy,

Re R 3y
f Dyg,i (—:) —pr | 7(R,tan8)* dR,
R; Ry,

7 tan’d
= [pL(R? - R.) (15)
3
Pg,iR; 3(1=7) _ p3(1—%)
+(7—1}(R‘ R))

where R, has been used as the integration variable. Using the
kinetic energy terms derived earlier, the total kinetic energy
of the liquid can be equated with the work done thus:

7 tan%d

3 [PL{R? i

3y
Pg,ift; 3(1=7) _ p3(1-7)

BICES) (R‘ = )

1
= Spm tan?@ i, &
1 1 1 ;
. (—R— - ) =+ EAOphEZ. (16)

Using the substitution for h defined in equation (8) and re-
placing € using the continuity relationship as before, gives
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an expression for the speed of the bubble wall as:

R§ _ rmax>4 7 tan?4
R, 3

pg.i RS R \3(r=1)
_ gt a4 _
(7-1) (R) '
1 1 1
{QPAG[<E_T )T?nax_,_h'i

=1

_iﬁ 2 3 _ p3
o tan0 (B Rc)”. (17)

po(Bi - RY)

Therefore if pg ; is set to zero, and the gas content of the
bubble is effectively removed, equation {17) becomes equa-
tion (11) from earlier. This is shown in Figure 4, for the same
experimental conditions as those used in Figure 3. The plot
shows the meniscus velocity for the two empty cavity condi-
tions described earlier, as well as those corresponding to gas
inclusions in the cone tip whose final radii (Ry) were 1 mm,
10 mm and 20 mm. These final bubble radii are not the same
as the equivalent conical radii, as used throughout this pa-
per; but rather radii of spherical bubbles, as it was observed
experimentally that the final inclusions adopted a spherical
form which sat at the tip of the cone. Whilst bubbles of the
size (Ly~1 mm) typically used in the experimental investi-
gation closely follow the empty cavity collapse, the collapse
of bubbles with larger Ry is cushioned significantly by the
gas.

As described earlier, the conical bubble starts the collapse
with a zero wall velocity and a maximum radius R;, with the
gas within the bubble having pressure p, ; and temperature
T;. The wall velocity will next be zero at the minimum radius
Rpin, when the pressure and temperature of the gas within
the bubble are at a maximum, pg max and Timayx respectively.
Assuming no break-up, the bubble will then rebound to reach
a maximum size of Ryax, which if no losses are included
will also equal R;. The positions of maximum and minimum
radius are found by setting R, = 0 in equation (17), such
that

(v-1)
3 pay _ PeiBl ((RNTTV ) _
{pL(R" R-5((7) 1))
(Rc = Rmax: Rmin)v (18)

As expected, one solution to equation (18) gives the position
of Rmax = R;, the initial radius. The other solution occurs
at R, = Rnin. Simple estimates in the limit of R, <€ R;
can be made by simplifying equation (18), to give:

The only value which is unknown in this expression is p, ;
the initial bubble gas pressure. This can be estimated from
the final, post-collapse conditions, as follows (provided mass
loss or gain from the bubble is negligible). As described
above, after the plate has been released and all the energy has

0.03
‘\
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E 0.02} b4 equation 19
@ \
e \
B ™ /
g 0.015 .
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.E 0017
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Figure 5. Calculation of the minimum radius attained by a 6mm
final radius bubble calculated using the approximation in equation
(19) {dashed), and using an exact expression calculated iteratively
(unbroken).

been dissipated from the collapse, experimental observations
have shown a spherical bubble lying at rest just below the
tip of the cone. The difference in state between this bubble
and the initial (before plate opening) bubble are governed by
an isothermal relationship in volume and pressure, as both
states will be at the initial temperature 7. As such:

T 4
pg,i§R§ tan’9 = py, E?TR;
4 (R;\*
(F) pL, (20)

Pt = Can®o ;

where Fy is the spherical radius of the final bubble in the
cone tip. It is assumed that the static liquid pressure on the
bubble prior to growth, equals the pressure step pz which
collapses the bubble. Equation (20) again ignores the con-
tribution to the internal pressure of the bubble due to the
difference in height of the liquid in the two legs of the U-
tube, and also any contribution due to the Laplace pressure
(which for a Imm radius bubble, will be ~ 0.1% of the static
pressure contribution). A more complete but mathematically
exhaustive form of the theory has been performed which in-
cludes the height difference, but the results show that there
is a negligible change in the collapse conditions from the
approximate version considered here,

However, although the estimate for R, calculated from
the assumption that Ry, < R; described in equation (19)
is valid for large initial meniscal displacements, a more exact
solution is available through calculation of Ry, iteratively
using Newton-Raphson’s method. This divergence is illus-
trated in Figure 5 for a bubble of final radius 6 mm, where it
can be seen that as the initial bubble size becomes smaller, the
estimate in equation (19) produces higher values for Rpip
than would be expected. This becomes important in calcu-
lating the maximum tip pressures in the bubble later on,
although for Jarge bubbles the approximation is valid. The
maximum pressure achieved in the collapse, at a time when
R. = Rpyin, can be found by assuming the collapse to be
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adiabatic, and replacing the expression for p, ; derived in
equation (20):

R\
Pg,max = Pg,i (R z ) (21)

37175 o
- o (B)] b1

and, following the same reasoning, the maximum tempera-
ture reached in the bubble can be expressed as:

R. 3(y—-1)
Tinax = T; (R 1 ) {22)

4 (R f 8
tan? 9 \ R; )
Several workers have adapted the Noltingk-Neppiras model
to estimate the likely pressures and temperatures attained
during an inertial collapse, for such purposes as defining and
investigating the threshold conditions (in acoustic pressure
amplitude, temporal characteristics of sinusoidal or Gaussian
pressure waves, etc.) required to bring about inertial cavita-
tion [24, 25, 26, 27, 28]. In many cases it is assumed that
the bubble reached the conditions for the start of the collapse
following an initial isothermal growth phase [29] from a seed
nucleus. In all other experimental situations to date it has not
been possible to separate out the collapse from the growth
phase. With the conical bubble, the slow isothermal growth
is practical, the facility being there to hold the bubble at max-
imum size indefinitely. The experiment therefore eliminates
the uncertainty of the growth phase, and allows the condi-
tions at the start of the collapse (usually not amenable to
ready measurement) to be measured accurately. Previously
for example, even the maximum radjus prior to collapse has
had to be estimated [3, 6, 28, 29, 30]. In addition, the current
apparatus allows sensors to be placed in the liquid close to
the bubble wall, and, to a certain extent, within the bubble
itself.

fr— LT,

2. Apparatus

The basic apparatus consists of a steel U-tube, of 60 mm
internal diameter, partially filled with degassed water (Fig-
ure 1). The internal pressure within the tube can be reduced
through connections to a vacuum pump above the level of the
liquid in the longer leg of the tube, which is terminated by a
spring-loaded plate [31]. Once the valve to the vacuum pump
is closed, the raising of this plate using the lever returns the
pressure exerted on the tube contents to atmospheric. The
shorter leg is terminated by a transparent hollow cone of 30°
half-angle. When under atmospheric pressure, this leg and
cone are filled with water, except for a bubble of milllimetre-
order diameter which is injected into the apex of the cone
down a length of rubber tubing which is temporarily fed
through the length of the U-tube. When the pressure in the
U-tube is reduced, this bubble grows, to violently collapse

into the apex of the cone when the plate is raised. This col-
lapse could generate sonoluminescence.

The cone being transparent (45 5% of photons produced
at the tip reaching the cone exterior), various optical instru-
ments could be deployed to study the collapse, though not si-
multaneously, including video photography at 50 frames per
second (f.p.s.) using a Hadland Photonics HSV and two syn-
chronised stroboscopes, of 20 us flash duration. Operating at
25 f.p.s., a CCD camera (Photonic Science DS 800) imaged
not only the cone (weakly-illuminated from behind by a flat
beta light produced by painting phosphorous over a tritium
source), but also the sonoluminescence. The CCD camera
system produces each frame by interlacing two fields, each
of 40 ms duration, each being 20 ms out of phase with the
other. Therefore, in keeping with the 25 f.p.s. video record-
ing, there is a frame every 40 ms, but in every such frame
there is some information gathered over 60 ms. Each field
integrates the light for only 18.4 ms (the remaining 1.6 ms
being taken up by blanking filters). The persistence on the
intensifier system is less than 3 ms for the exposures used,
and so will not affect the images presented here. Both cam-
eras (HSV and DS 800) were connected to a video recorder
(Panasonic NV-FS 88 HQ) using S-VHS videotape.

Time-resolution and limited quantification of the sono-
luminescence could be made using a photomultiplier tube
(EMI 9893B/30) supplied with 1640V (Brandburg 475R
power supply), giving a dark count of 9s™*. The voltage
signal for the LeCroy 9314L oscilloscope, with a sampling
rate of 100 MHz, was provided across the variable resistor
(10 Q-100k€Y). A single photon would therefore produce
a trace resembling an exponentially-decaying oscillation at
frequency 1/(27vLC) = 43MHz, where L = 89 nH is the
inductance, and C' = 149 pF the capacitance, of the system.
An optimal resistance of 300 {2 compromised adequately in
control of signal amplitude and decay time.

None of the optical instruments described above could
be deployed simultaneously because of their differing ambi-
ent light requirements. However instrumentation to measure
the pressure, and indicate the level, of the liquid could be
deployed simultaneously with them. These instruments are
mounted in the 62 mm tall polymethylmethacrylate (PMMA)
extension to the shorter leg of the U-tube (Figure 1a). Within
this extension, a pressure transducer (RS341-979), the cen-
tre of its 5.1 mm diameter placed 5cm below the start of
the cone, recorded the pressure fluctuations within the liquid
close to the bubble. Such fluctuations measured by this ‘lig-
uid pressure transducer (LPT)’ include: the pressure reduc-
tion before release of the plate (cross-checked with a pressure
gauge fitted to the pumping train); the pressure wave which
propagates through the U-tube in response to the opening
of the plate; and the rebound pressure pulses emitted by the
bubble (the latter sometimes being of a magnitude beyond
the linear range of the LPT (0-0.21 MPa), outside of which
no calibration could be obtained from the manufacturers).
The extension was removed when rebound pressures great
enough to permanently affect its performance were planned.
The characteristic response time of the LPT is 0.5 ms, indi-
cating the limits of its temporal resolution.
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The apex of the cone was designed to itself take inserts
(shown in Figure 1), of 47 mm length and 25 mm outer di-
ameter, containing a 30° half-angle conical space which, at
its 13 mm diameter base, is commensurate with the aper-
ture caused by the truncation of the main cone. The stresses
at the cone tip resulting from the bubble collapse, be they
gas pressures or the result of jets, are sufficient to damage
PMMA cone tips. Such is to be avoided, if only to remove
the possibility that a contribution to the luminescence might
otherwise be triboluminescent in origin. Therefore for col-
lapses capable of damaging PMMA cone tips, such as those
reported in this study, polycarbonate cone tip inserts were
used, which though tougher are less transparent. Though the
apparatus could still generate collapses capable of cracking
polycarbonate, the results presented in this paper did not do
s0. Though conical inserts were used in all measurements of
sonoluminescence, a second type of insert could be employed
(Figure 1b). This insert truncates the cone 5.25 mm before
the apex by placing there a transducer (Keller PA-8, termed
here High Pressure Transducer, HPT, and having 30 kHz res-
onance) which the manufacturers calibrate up to 1000 bar:
However here only the central circular area (6.05 mm diam-
eter) of the full 13.0 mm diameter face of the transducer is
exposed.

3. Results

Figure 6 shows the CCD records of sonoluminescence from
a range of collapses. In these figures, the cylindrical insert
is clearly visible: its dark edges (spaced 25.1 mm apart, the
diameter of the insert) are clearly visible, arrowed in Fig-
ure 6b frame 1. Midway between these arrows the tip of the
cone, hollowed out of this insert, is visible as a dark region,
as it scatters the back-lighting away from the camera. Sono-
luminescence is recognised as bright light sources within the
cone, which appear on the video recording at the same time
as the explosive sound that follows the release of the vac-
uum. Care must be taken in interpretation of such images.
First, genuine sonoluminescence will have the same tempo-
ral characteristics as will its reflection in PMMA surfaces.
Second, persistence of sufficiently bright sources on intensi-
fied images may be longer than the interframe time, making
it impossible to distinguish between persistence in the lu-
minescence and persistence in the camera system. Third,
the presence of two regions of luminescence in one frame
does not imply that they occurred simultaneously, only that
emission (or persistence) occurred from both regions within
the frame exposure. All measurements from Figure 6 are
+0.5 mm.

The luminescence generally appears in three regions.
Firstly (and most commonly) it fills the cone from the apex
to a distance of some 2 mm below it, as shown in Figure 6a.
The second region is shown in Figure 6b. The system detects
no luminescence at the cone tip, but rather in an elliptical
region some 4 mmx2 mm, its centre being about 6 mm be-
low the tip. The region is not symmetrical about the axis
of the cone, but when it appeared in this form the location

Figure 6. Sonoluminescence imaged in the cone tip (interframe time
= 40 ms, but each frame is interlaced as detailed in the text). Weak
back-lighting is provided so that the tip of the cone is shown in
silhouette. (2) Luminescence is seen only at the tip. Pre-collapse (i.e.
fully-expanded) bubble volume was 177 ml. The volume of water in
the device was 1100 ml, and initial (pre-growth) bubble volume was
0.065 ml. (b) Luminescence appears as an off-axis ellipse with slight
fringe below. Pre-collapse (i.e. fully-expanded) bubble volume was
154 ml. The volume of water in the device was 1100 ml, and initial
bubble volume was 0.065 ml. The boundaries of the insert, 25.1 mm
apart, are arrowed in frame 1. (c) A fringe of luminescence occurs
at the base of the insert. Pre-collapse (i.e. fully-expanded) bubble
volume was 28 ml. The volume of water in the device was 1100 ml,
and initial bubble volume was 0.76 ml. (d) Luminescence occurs at
several sites (at cone tip as in (a), as an ellipse as in (b), and thirdly
a fringe as in (c)). Pre-collapse bubble size was 77 ml, and initial
bubble size was 0.065 ml. The volume of water in the device was
1100ml. (e) One small bright spot of luminescence occurs on the
axis of the insert, approximately 5 mm below cone tip. Pre-collapse
(i.e. fully-expanded) bubble volume was 49 ml. The volume of water
in the device was 1100 ml, and initial bubble volume was 0.76 ml.

was asymmetric in the same direction (i.e. to the right in
this picture). This suggests that the source of the asymmetry,
which defines the direction of the anisotropy, lies in the ap-
paratus itself. The third region comprises a line some 8 mm
below the cone apex (Figure 6¢). The base of the insert oc-
curs in this region, raising the possibility that this might be
sonoluminescence, or that luminescence generated below the
frame is scattered from the PMMA. Figure 6d does show lu-
minescence from the three regions mentioned above during
the same collapse. However the 'line’ appears more well-
defined, and occurs only directly below other luminescing
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Figure 7. Pressure traces recorded simultaneously by pressure trans-
ducers LPT (in the tube) and HPT (at the tip) showing rebound
pressure pulses (labelled ‘1°, 2, etc. and ‘B’, ‘C’, etc.) and refiec-
tions of these pulses within the apparatus.

regions which may provide light for scattering, in a manner
similar to 6b. Therefore in Figures 6b and 6d the detection of
light from the line’ region may well result from scattering,
and cannot be categorically taken to indicate sonolumines-
cence from the line. During one collapse luminescence was
imaged from none of the above locations, but instead from
only a relatively concentrated location some 3 mm below the
cone appex (Figure 6e).

Figure 7 shows the pressure traces recorded by the LPT and
HPT simultaneously. The HPT trace enables ready identifica-
tion of the times when the gas pressure is greatest, labelled ‘1’
(initial collapse), ‘2’ etc. The corresponding pressure pulses
emitted into the liquid on rebound are detected shortly after-
wards (the interval being the propagation time) in the LPT
trace (‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’"). The passage over the LPT
of the initial shock wave which follows from the opening of
the plate is labelled ‘A’. The other peaks (‘a’, ‘b’, ‘c’) corre-
spond to reflections of the above already-mentioned pulses
within the apparatus [32].

Figure 8 shows the maximum amplitudes of the HPT trace
corresponding to the first collapse (i.e. equivalent to ‘1’ in
Figure 7) for different pre-collapse bubble sizes. Transducer
pressures are indicated on the left axis. A bubble of initial
volume 0.9 ml under atmospheric pressure grows to a pre-
collapse size as given on the horizontal axis under a partial
vacuum. The manufacturer’s calibration for the HPT was
used, which assumes an even pressure is applied over the
face of the transducer. However as described earlier, only a
6 mm diameter central region of the bubble was exposed by
the PMMA insert.

The transducer manufacturer was unable to assist in es-
timation of the true pressures if the face is only partially
exposed. In the absence of such guidance, if it is assumed
that a partially-exposed face underestimates the pressure by
the proportion of coverage, this would suggest that the true
pressure at the truncated cone apex is (13.0/ 6.05)2 = 4.6

Figure 8. Maximum pressure amplitudes reached at the cone tip
as measured by HPT (equivalent to ‘1" in Figure 5 but scaled ap-
propriately) compared to both equation 21, which uses an estimate
for Rumin, and a solution using Rmin Obtained iteratively using the
Newton-Raphson method.

times the value given in Figure 7, more so when the high
pressure region on the transducer covers less than the 6 mm
diameter exposed face (for example, if the bubble contracts
to less then 3 mm radius, or involutes to form a jet smaller
than this). The total volume of liquid in the apparatus was
1050 ml. Plotted also on the figure are the predictions for
the maximum gas pressure attained during the collapse. Two
curves are plotted: one is calculated from equation (21) and
uses equation (19) as an approximation for Rmin, the other
uses values of Rmin calculated iteratively using the Newton-
Raphson method.

Other information contained within the LPT trace comes
through the evidence of repeated collapses and rebounds.
The high speed video evidence clearly shows fragmentation
within the first 20 ms of the first rebound [32]. However the
pressure transducer always shows repeated rebounds for at
least 80 ms after the initial rebound. The conclusion is that,
whilst the meniscus does become unstable, some coherent
action of gas bodies occurs at the apex: either the bubble
fragments on rebound but then coalesces as the cloud of
fragments are forced together in a subsequent collapse; or
the pressure pulses detected on the HPT and LPT result from
some co-operative pulsation of the fragments; or the whole
bubble does not fragment uniformly, but instead produces a
large number of smaller bubbles whilst retaining the single
original bubble otherwise intact.

Figure 9 shows the variation, as a function of the liquid
volume within the apparatus, of the number of discernible
arrivals in the sonoluminescent burst associated with the first
rebound emission. Counts for liquid volumes of 1150 ml or
less represent lower estimates only, as the record from the
photomultiplier contained regions within each burst where
arrivals occurred more closely than the resolution limit of
50ns. For such intervals the lower limit of the count was
estimated by assuming one arrival per 50ns interval. The
liquid pressure at the first rebound is shown. For each lig-
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Figure 9. The variation, as a function of the liquid volume, of the
number of discernible arrivals in the sonoluminescent burst associ-
ated with the first rebound emission. The liquid pressure at the first
rebound is also shown. Dark count: 95~ ", Photocathode conversion
efficiency: 20%. Proportion of photons not absorbed by polycarbon-
ate and PMMA: 44%. The overall photon collection efficiency of the
system, given the 9 mm diameter photocathode placed 24 cm from
the cone tip subtends a solid angle of 0.0011 steradian, is therefore
(0.0011/4m) x 0.44 x 0.2 x 100% = 0.00085%.

uid volume, two experiments were performed. Although the
aliasing described above should be recalled, Figure 9 can
be compared with the results of Chendke and Fogler [33],
who measured the amount of sonoluminescence from multi-
bubble ultrasonic cavitation as a function of varying hydro-
static pressure. They found that whilst high static pressures
tended to suppress bubble growth, a smaller increase in static
pressure would increase the sonoluminescence by enhancing
the collapse phase of the bubble. In the present experiment
there is, in addition to these two effects, the change to the
inertia associated with the collapse which varying amounts
of liquid will produce.

4. Discussion and conclusions

It must be emphasised at the outset of this discussion that the
bubble collapse studied here is not identical to the collapse
of a segment of a spherical bubble. When the radius (the dis-
tance from the cone apex to the meniscus) is large, most of
the bubble wall (that is, apart from the regicn where it meets
the PMMA) is planar and, as discussed in the Introduction,
the question of the stability of a planar interface is quite
different from that of a spherical one. Unless instabilities
generated at an earlier stage have become pronounced at the
later stages, then the spherical approximation may be good
when the bubble volume is small. The key points are that this
system does produce sonoluminescence; involves an unstable
bubble collapse whereby the production of a large number of
small bubble fragments at the interface nevertheless leaves a
bubble relatively intact at the end; and involves two distinct
classes of feature. In quantity and timing, both the sonolu-
minescence commensurate with the initial collapse, and the

pressure waves emitted into the liquid by rebound of the main
bubble, are repeatable (within the limits of replication of ini-
tial parameters of the collapse). As such, and in line with
current theory, these features are taken to have their origin in
the dynamics of the mother bubble.

Though interesting, the question remains as to what use
the experimental system described in this paper might have to
research in bubble collapse. The collapse generates sonolu-
minescence, but the experiments reported here at the moment
support no one mechanism for its production over another.
The agreement between the measured collapse pressures and
those predicted by the adiabatic theory is surprising, since
such theory is perhaps the simplest description of a bub-
ble collapse capable of generating sonoluminescence. The
pressures exerted on the sensor are likely to require theories
incorporating inhomogeneous pressure distributions within
the gas, distortions of the bubble wall, or liquid impact for a
full description. Nevertheless at the foundation of the widely-
adopted mechanical index [27, 28, 34] is a similar calculation,
relating to the temperature attained by the gas; and underly-
ing all of these are the pioneering calculations of Rayleigh,
Neppiras and Noltingk, which decades on still have current
application.
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