
Directivity and Sound Power Radiated
by a Source Under a Boundary Layer

M. G. Smith∗ and C. L. Morfey†

University of Southampton, Southampton, SO17 1BJ England, United Kingdom

DOI: 10.2514/1.19138

This paper considers the radiation of sound from compact 2-D or 3-D sources located in an otherwise rigid wall,

bounding a region of fluid flowing parallel to the wall. The sound radiation problem ismodeled using awave number

decomposition. Numerical results show how the radiated power and directivity depend on the freestream flowMach

number and the thickness of the boundary layer adjacent to thewall. The numericalmodel is validated by comparing

the sound power and directivity obtained in the limiting case of a thin boundary layer with that obtained from an

alternative analytical model in which the flow is uniform and there is slip at the boundary.

Nomenclature

c0 = speed of sound
�D = operator @=@t� U:r, which Fourier transforms

to j�! � kxU�
k = acoustic wave number, !=c0
kx, ky, kz = wave numbers in the x and y directions and in the

z direction in the region of uniform flow
M1 = Mach number in the region of uniform flow
p�x; y; z; t� = acoustic pressure field
~p�kx; ky; z� = acoustic pressure at a single frequency, Fourier-

transformed to wave number domain in the x and
y coordinates

q = particle displacement in the wall-normal direction
U = mean velocity vector
U�z� = velocity profile in the parallel mean flow
U1 = mean flow velocity in the region of uniform flow
u = acoustic particle velocity vector
�ux; uy; uz� = components of the acoustic particle velocity

vector
Wrad = radiated power
Zrad = radiation impedance
�0 = local fluid density
� = displacement impedance, ~p= ~q
! = angular frequency,

I. Introduction

M OST attempts to model the sound field of sources radiating
into a moving fluid have involved the assumption of uniform

flow: this applies whether the sources are located in the body of a
fluid [1] or at a wall [2–5]. Real flows have a boundary layer next to
bounding surfaces and this may be expected to modify the radiation
characteristics of a source in the surface. The effect of a boundary
layer was considered byDowling [6] in estimating lowwave number
sound radiated by turbulence in a low Mach number flow, but the
present approach ismore general; it allows the sound field in the fluid
to be calculated for all wave numbers and for arbitraryMach number
profiles and boundary-layer thicknesses.

The specific problem considered here is shown in Fig. 1. A 2-D or
3-D source radiates into a parallel flow comprising a boundary layer

and a semi-infinite region of uniformly flowing fluid. The aim is to
show how the source directivity and sound power radiation are
influenced by the freestream flowMach number and the thickness of
the boundary layer.

Although results are presented specifically for compact surface-
displacement sources, the method of solution can be applied to other
problems involving sound radiation in the presence of a boundary
layer, such as radiation from noncompact displacement sources at a
wall (e.g., vibrating plates) or radiation due tofluctuating body forces
on the fluid (e.g., sources of aerodynamic noise arising from
turbulent flow over the surface). The methods described in this paper
are thus potentially relevant to a range of aeroacoustic problems;
examples include active noise control systems in aeroengine intake
ducts, aerodynamic noise sources on airfoils, and the radiation
damping of vibrating airframe panels.

II. Governing Equations

In the analysis that follows, the governing equations for sound
propagation in a parallel shear flow at a discrete wave number are
derived from the Euler equations for an inviscid fluid. The linearized
momentum and continuity equations in vector notation, for small
amplitude perturbations of the parallel shear flow in Fig. 1, are [7]

�0� �Du� �u � r�U� � �rp (1)

1

�0c
2
0

�Dp��r � u (2)

where U is assumed to have the form U � �U�z�; 0; 0�, u has
components �ux; uy; uz�, andp is acoustic pressure. The unperturbed
values of localfluid density r0 and speed of sound are both allowed to
be functions of z in this derivation, but are taken as constant in the

numerical examples. �D is the operator @=@t� U � r.
Because of the assumed form of themean flow, Eqs. (1) and (2) are

homogeneous in the three time/space variables t, x, and y andmay be
Fourier-transformed to the frequency/wave number variables !, kx,
and ky. The convention used for the transform is that solutions of the
following form are sought:

p�x; y; z; t� � ~p�kx; ky; z�ej�!t�kxx�kyy� (3)

Other acoustic variables may be similarly transformed. In what
follows, the tilde denoting a transformed variable will be dropped for
clarity. Also, because solutions for these transformed variables will
be sought for constant kx and ky, the partial derivatives may be
replaced by ordinary derivatives.

The theory given here is general and applies to 3-D problems; the
equivalent expressions for the 2-D case are obtained by setting
ky � 0, and their numerical implementation requires a single rather
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than double spatial Fourier transform. For computational and
presentational reasons, most of the results shown are for 2-D
problems.

Fourier transformation of Eqs. (1) and (2) provides a set of four
simultaneous equations that may be solved for the four acoustic
variables ux, uy, uz and p:

�0

�
�Dux � uz

dU

dz

�
� jkxp (4)

�0 �Duy � jkyp (5)

�0 �Duz �� dp

dz
(6)

1

�0c
2
0

�Dp� jkxux � jkyuy �
duz

dz
(7)

where the Fourier transform of �D is given by

�D� j�! � kxU� (8)

Using Eqs. (4) and (5) to eliminate ux and uy from Eq. (7), and
leaving Eq. (6) unchanged, leads to the following coupled equations
in uz and p:

duz

dz
�� 1

�0 �D

��
�D2

c20
� k2x � k2y

�
p� jkx�0uz

dU

dz

�
(9)

dp

dz
���0 �Duz (10)

Combining the z derivative of Eq. (10) with Eqs. (8) and (9) to
eliminate uz and duz= dz leads directly to the second-order
differential equation in p derived by Pridmore–Brown [8].

These equations are difficult to solve for two reasons. Firstly, for
the sound radiation problem, a solution is, in principle, required for
all values of kx. However, from Eq. (8) it may be seen that for

kx > !=U1 or, equivalently, for kx=k > c0=U1, �D becomes zero at
some point through the boundary layer (a critical layer [9,10]).When
this happens, Eq. (9) appears to have a singularity, although actually
it may be shown that the equations remain finite [11]. Secondly,
Eq. (9) requires the evaluation of the mean velocity derivative
dU= dz, which can become infinite in some circumstances, for
example, at the wall if a 1=7 power law profile is used to model a
turbulent boundary layer or when the boundary-layer thickness is
allowed to become small (i.e., the limiting case of a uniform flow
with slip at the boundary).

Useful alternative equations that largely circumvent these
problems are obtained by using either the normal particle

displacement q� uz= �D or the “displacement impedance” ��
p=q� �Dp=uz as variables, in place of particle velocity uz.

Differentiating q with respect to z and using Eq. (9) to eliminate
duz= dz leads to the following simultaneous equations for q and p:

dq

dz
�� 1

�0 �D
2

�
�D2

c20
� k2x � k2y

�
p (11)

dp

dz
���0 �D2q (12)

These equations do not involve the mean velocity gradient, but

Eq. (11) does have a singularity when �D becomes zero. Continuity of
particle displacement across a thin shear layer may be derived

directly from Eq. (11) providing �D is not zero anywhere within the
layer. At wave numbers where a critical layer occurs, however,
dq=dz becomes infinite and q becomes discontinuous across the
layer.

Alternatively, differentiating�with respect to z and using Eq. (11)
to eliminate dq=dz leads to the following governing differential
equations for � and p:

d�

dz
� 1

�0

�
�D2

c20
� k2x � k2y

��
�
�D

�
2

� �0 �D
2 (13)

dp

dz
���0 �D2 p

�
(14)

It can be shown that these equations do not have a singularity at a

critical layer, because�= �D remainsfinite as �D tend to zero [11]. They
also have the advantage of not involving dU= dz.

To solve the radiation problem for outgoingwaves using Eqs. (13)
and (14), initial values for � and p are specified at the edge of the
boundary layer in the uniform flow, and the equations are used to
integrate through the boundary layer to thewall. An arbitrary value of
p� 1 may be used for the pressure. The initial value for � in the
mean flow is obtained by setting d�=dz� 0 in Eq. (13), as required
for outgoing waves in the uniform flow region, to give

���j�0 �D2

kz
(15)

where the appropriate square root is selected by choosing kz, the
wave number component in the z direction for the outgoing wave in
the region of uniform flow, to be given by

jkz �
��������������������������������������������������������
k2x � k2y � �! � kxU1�2=c20

q
(16)

For sufficiently large kx and ky, kz becomes imaginary: waves are
cut off in the region of uniformflowanddecay away from the surface.
In the uniform flow, outgoing waves can propagate and carry energy
only for values of kx and ky that lie inside the ellipse defined by�

kx
k

�
2

�
�
ky
k

�
2

�
�
1 � kx

k
M1

�
2

(17)

III. Sound Radiation from a Vibrating Surface

In this section, sound radiated by a source under a boundary layer
is modeled using a wave number decomposition of the vibrating
surface. Solving Eqs. (13) and (14) by integration through the
boundary layer gives solutions p�kx; ky; z� and ��kx; ky; z�, for any
required values of kx and ky, based on the arbitrary initial value of
p� 1 at z� �. The solution for p must then be normalized to give
the particular solution that also satisfies the boundary condition at the
vibrating wall.

Boundary layer 
thickness, δ

x

y

z

Shear flow profile, U(z)
2-D strip source

3-D piston source

Uniform flow, U∞

Fig. 1 Boundary-layer flow in the x direction over a surface at z� 0
with either a piston or strip source.

SMITH AND MORFEY 2631



For the 2-D solutions presented here, the equations were
integrated using a fourth-order Runge–Kutta routine in MATLAB,
with the error tolerance parameter adjusted to ensure good
convergence of the solutions. For 3-D problems, the numerical
integration for each wave number pair was carried out using a
FORTRAN subprogram based on an InternationalMathematical and
Statistical Library (IMSL) Runge–Kutta–Verner fifth-order and
sixth-order routine; thismethod gavemuch faster computation times,
but required care to ensure that correct solutions were obtained when
integrating through a critical layer.

The wall velocity distribution uw�x; y� is transformed to give its
wave number spectrum uw�kx; ky�; for a point source located at
�x0; y0�, this is given by

uw�kx; ky� � ej�kxx0�jkyy0� (18)

Unit amplitude is assumed for convenience in Eq. (18); the
amplitude is normalized out in the results presented next. In terms of
the radiation impedance of the surface and the given wall velocity,
the required particular solution must satisfy

p�kx; ky; 0� � uw�kx; ky�Zrad�kx; ky� (19)

where the radiation impedance of the surface is given from the
displacement impedance at the wall by

Zrad�kx; ky� �
��kx; ky; 0�

j!
(20)

Outside the boundary layer z > �, the pressure is related to the value
at z� � via

p�kx; ky; z� � p�kx; ky; ��e�jkz�z��� (21)

where kz is given by Eq. (16).
The complex amplitude of the radiated pressurefieldp�x; y; z� and

the radiated sound power Wrad may be obtained from the following
inverse Fourier transforms [12].

p�x; y; z� � 1

�2��2
ZZ

p�kx; ky; z�e�j�kxx�kyy� dkx dky (22)

Wrad �
1

2�2��2
ZZ

Re�Zrad�kx; ky��juw�kx; ky�j2 dkx dky (23)

The double integral inEq. (22) extends over all wave numbers, and
a numerical solutionmust be truncated somewhere outside the ellipse
defined by Eq. (17). This truncation limits the accuracy with which
the sound field in the immediate vicinity of the source can be
resolved. This limitation does not apply to Eq. (23), because
Re�Zrad�kx; ky�� is zero outside the ellipse.

The integrands in Eqs. (22) and (23) may also only be evaluated at
a finite number of wave number points. In the solutions presented
here, the continuous Fourier transforms were approximated by
discrete fast Fourier transforms in MATLAB using equally spaced
wave number values. The discretization implies a periodic source,
with image sources outside the spatial region of interest that perturb
the sound field near the edge of the main spatial domain. Accurate
solutions in the region around the true source were obtained by
calculating the integrand for a large number of closely spaced wave
number values to give a solution over a correspondingly large spatial
domain, thus pushing the image sources further away. For example,
for a 2-D problem with M1 � 0:3, 8192 points in the range �3<
kx=k0 < 3were used. Some dampingwas also included by giving the
speed of sound a small imaginary part; this helped to suppress the
effect of image sources and other inaccuracies caused by the peaks in
radiation impedance near coincidence that are discussed in the next
section.

In any implementation of this method it should be noted that FFT
routines commonly assume a Fourier decomposition based on the
opposite sign convention to Eq. (22). This means that the evaluation

of the inverse transform in Eq. (22) actually requires the forward FFT
routine to be used, and use of an inverse FFT routine leads to a
solution that is flipped in the spatial domain.

In Eq. (23) it is assumed that power is conserved as the sound
propagates through the boundary layer. This issue is not trivial
[11,13] and will be demonstrated in a separate publication.

IV. Radiation Impedance and Radiated Power

This section considers the sound power radiated by a source, first
for the case where the boundary-layer thickness shown in Fig. 1 is
taken to be infinitesimally small and then with the effect of a finite
boundary-layer thickness included using the method set out in the
previous sections.

A. Zero Boundary-Layer Thickness, �=�� 0

For a uniform flow with slip past the wall, a simple 3-D extension
of the expressions given by Morse and Ingard [1] shows that the
radiation impedance of the surface may be written

Zrad�kx; ky� �
j�c�! �U1kx�2

!
���������������������������������������������������������
c2�k2x � k2y� � �! �U1kx�2

q (24)

The real part of the radiation impedance normalized by �c defines
the radiation efficiency of the wall at a single wave number. This
quantity for a uniform 0.6 M number flow is plotted as a solid line in
Fig. 2 as a function of kx; ky is zero here. Coincidence peaks occur at

kx
k

� 	1

�1	M1�

and waves propagating upstream (negative kx) are generally radiated
more efficiently than those propagating downstream.

Noting that Re�Zrad� is only nonzero inside the ellipse defined by
Eq. (17) and also that, from Eq. (18), juwj � 1 for all kx and ky,
Eq. (23) gives the radiated power as

Wrad

� 1

2�2��2
Z

k=�1�M1�

�k=�1�M1�

Z
ky1

�ky1

j�c�!�U1kx�2

!
�������������������������������������������������������
c2�k2x � k2y� � �!�U1kx�2

q dky dkx

(25)

where
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Fig. 2 Radiation efficiency atM1 � 0:6 for four values of �=� and for

uniform flow. Radiation efficiency is zero outside the range shown;

ky � 0.
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ky1
k

�
���������������������������������������������������
1 � kx

k
M1

�
2

�
�
kx
k

�
2

s

Equation (25) is difficult to evaluate analytically, but alternative
derivations for the 2-D and 3-D problems have been published by
Leppington and Levine [2] and Levine [3]. They show that, relative
to no flow, the power of a compact source radiating into a uniform
flow of Mach number M1, W�M1�, is given by

(2-D line source)

W�M1�
W�0� � 1� �1=2�M21

�1�M21�5=2 (26)

(3-D point source)

W�M1�
W�0� � 1� �1=3�M21

�1�M21�3 (27)

Figure 3 compares plots of these expressions with the results of
numerical integration of Eq. (25). As expected, because both
methods are exact, there is perfect agreement between the spatial
domain and wave number domain solutions.

B. Arbitrary Boundary-Layer Thickness, �=� > 0

The case of boundary layers of finite thickness is now considered.
Here the radiation impedance is obtained by numerical integration of
Eq. (13) through the boundary layer for each wave number. Figure 2
shows the effect on the real part of the radiation impedance of
boundary layers varying from 0.01 to 10 wavelengths thick.
Components propagating upstream with wave numbers in the range
1=�1�M1�< kx=k < �1 are strongly affected by the boundary
layer; these waves are cut on in the uniform external flow but cut off
at the wall and have to tunnel through the boundary layer. It is
interesting to note that waves propagating downstream with

1

�1�M1� <
kx
k
< 1

are cut off independently of the boundary-layer thickness, because
power can never propagate in the region of uniform flow and the real
part of the radiation impedance is thus always zero in this range of
wave numbers.

Figure 4 shows, for the 2-D case, the effect of the increasing
boundary-layer thickness on the power radiation of a line source. The
effect of the flow in increasing the power output is reduced as �=�
increases, and for a boundary layer one wavelength thick, the power
of the source is virtually independent of the Mach number.

V. Radiated Pressure Field

Before examining the effect of nonuniform flow, it is useful to
consider the far-field pressure produced by a source radiating into a
uniform flow. This may be obtained by numerically evaluating
Eq. (22) using the solutions obtained fromEqs. (19) and (21). For a 2-
D case, this means evaluating

p�x; z� � 1

2�

Z
�uw�kx�Zrad�kx�e�jkzz�e�jkxx dkx (28)

where the radiation impedance is given by Eq. (24), the source wave
number spectrum, uw�kx�, is given by Eq. (18), and the z wave
number, kz, is given by Eq. (16); ky is set to zero in each case.

Figure 5 shows the effect of a 0.3M number uniform flow over a
line source as predicted by Eq. (28). The zero flow case, Fig. 5a,
shows the expected cylindrical spreading, with the 3 dB contour
separation distance progressively doubling as expected for this 2-D
problem. In the presence of flow (Fig. 5b), convective amplification
increases the sound pressure level upstream and decreases the level
downstream relative to the no-flow levels.

For nonuniform flow, the sound field is obtained by evaluating
Eq. (22) numerically, using the solutions obtained from the
numerical integration of Eqs. (13) and (14). The effect of boundary
layers 0.1 and 1.0 wavelengths thick is shown in Figs. 6a and 6b.
Compared with the uniform flow solution in Fig. 5b, the effect of
convective amplification is modified in the upstream direction by
refraction of sound away from the surface to create a shadow zone,
and in the downstream direction the sound pressure is increased due
to channeling of the sound by the boundary layer.

Figures 5 and 6 show the effect of a boundary layer on the pressure
field in the x–z plane for 2-D sources; similar effects can be shown for
3-D sources. Because plotting a full 3-D solution is not practicable,
Fig. 7 shows, as an example, the pressure field in the x–y plane at the
wall, z� 0, for a point source under a boundary layer one
wavelength thick. In the immediate vicinity of the source, the
pressure contours are approximately circular, as for the zero flow
case, but at larger distances, the shadow zone upstream and the
downstream channeling of sound are apparent.

As noted in the Introduction, the method described in this paper
may be applied to noncompact sources. As an example, Fig. 8 shows
the sound field radiated by a 2-D piston source with nondimensional
width of ka� 6:25. In the absence of flow, a source of this size
radiates a primary lobe normal to the surface and has a single side
lobe on either side of the primary lobe [14]. Figure 8 shows that the
effect of aflowwith a very thin boundary layer is to direct the primary
lobe in the downstreamdirection and to produce a second side lobe in
the upstream direction.
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VI. Conclusion

A flow over a vibrating surface affects both the sound power
radiated by the surface and its directivity. The presence of a boundary
layer affects both of these characteristics, and this paper sets out a

method for modeling these effects. Results are presented for
acoustically compact piston sources in 2-D and 3-D.

It has been shown that a boundary layer only 1=100 of a
wavelength thick can significantly change the efficiency with which
sound can be radiated directly upstream and that thicker boundary
layers both reduce the sound power output and substantially modify
the sound field produced by the source.
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the �x direction; �=�� 0:001.
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