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Summary

Sizing bubbles using a two frequency technique which examines the coupling of a resonant subharmonic oscillation
to an imaging beam is not prone to some of the inaccuracies and ambiguities of other methods. This combination
frequency subharmonic signal is parametric in nature, and the amplitude onset threshold has been quantified for thirty
tethered air bubbles in water. This paper details work which aims to investigate the generation mechanism of a bubble’s
subharmonic oscillations, and presents results from theoretical consideration of three potential mechanisms: (i) The
possibility that at high amplitudes a bifurcation appears in a bubble’s volumetric pulsations; (ii) the potential for bubbles
driven at twice their resonant frequency to pulsate with a componentat their resonant frequency (whichis a subharmonic
of the driving field); (iii) that surface waves are responsible. The first two mechanisms are examined using a numerical
solution to the Gilmore-Akulichev model, and the third us ing plane surface theory. Whilst all three mechanisms show
the potential for generating subharmonic oscillations, the first two demonstrate onset thresholds four and three orders
of magnitude higher than the experimental threshold respectively. However, the threshold predicted using surface wave

theory shows very good agreement with the experimental results.

PACS no. 43.30.1.z,43.25.Yw

1. Introduction

The applications of bubble detection and sizing are required
in many seemingly diverse fields of study, including indus-
trial processes, medical science and investigations into the
oceanic environment [1, 2, 3]. Often the most appropriate
way of measuring bubbles utilises their strong acoustic scat-
tering properties caused by the large impedance mismatch at
their surface, and the fact that bubbles pulsate when driven
by a sound field with a resonance frequency vg given by:
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where Ry is the bubble’s equilibrium radius, p is the density
of the surrounding fluid, py is the hydrostatic pressure around
the bubble, ¢ is the surface tension, g is the shear viscosity
coefficient and & is the polytropic index of the pulsations of
the gas inside the bubble [4, 5]. Thus a knowledge of the
resonance frequency of the bubble can be used to infer its
size.

The acoustically driven pulsations of a bubble are inher-
ently nonlinear at high amplitude, a state which is typically
taken to indicate resonant activity. Thus the appearance of
nonlinear behaviour has been used as a more accurate mea-
sure of the bubble resonance frequency than by just examin-
ing the strength of the linear backscatter, which may not be
a maximum at resonance [6]. The most basic form of these
nonlinearities is the presence of harmonics of a tonal driving
frequency w,, with signals at 2w, 3wy, etc. However, in ad-
dition to these harmonic frequencies, ultraharmonic signals
at 3w, /2, 5w, /2 etc. and subharmonic signals atwp /2, wp /3
etc. have also been observed [7, 8]. The most prominent of
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these non-integer harmonic signals is the order 1/2 subhar-
monic, which differs from the basic harmonic behaviour in
that it is parametric in nature, i.. it is a threshold phenomenon
as the signal only appears above a particular driving ampli-
tude. The oscillation at w),/2 has been the subject of recent
research, as it has been observed to couple effectively with an
imaging beam giving rise to combination frequency compo-
nents: as the subharmonic oscillation arises through higher
order nonlinear behaviour, the combination frequency sub-
harmonic emission has been shown to be a much more accu-
rate indicator of a bubble resonance, and not to be prone to
the ambiguities of other methods [9, 10].

Clearly the combination frequency subharmonic emission
used in bubble measurement procedures must result from
some subharmonic component in the bubble oscillation. To
date, however, proof of the actual mechanism by which the
uncombined subharmonic emission arises from stable cavi-
tation is unavailable. Previously, however, it had been theo-
rised that the emission arises from bubbles which are driven
at twice their resonance frequency [11, 12], as small per-
turbation analysis demonstrates that a bubble will pulsate
slightly at its resonance frequency under these conditions:
this emission occurs at a subharmonic of the driving fre-
quency. Additionally it has been postulated that the emission
may be brought about by surface waves set up around the
bubble wall [13], although he noted that it is unlikely that

- these signals would carry to distance in the fluid as the vol-

ume of the bubble does not change.

This paper describes the results from work undertaken to
investigate the source of the subharmonic bubble signals. Us-
ing experimental techniques. which are described elsewhere
[10, 14], the amplitude threshold for the combination fre-
quency subharmonic signals has been accurately quantified
for thirty air bubbles in water resonant in the range 2000 Hz
to 3200 Hz. This must be the same onset threshold for the
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pertinent bubble oscillations at the subharmonic frequency,
which are the mechanism for the generation of the combina-
tion frequency subharmonic acoustic emissions. Using this
onset threshold value, three potential sources for the sub-
harmonic bubble oscillation are investigated. The first is the
possibility that a bifurcation occurs in the resonant volumet-
ric pulsations of the bubble giving alternate maxima in the
radius-time curves. The second possible mechanism looks
at the large bubble theory mentioned above, where bubbles
driven at twice their resonance frequency pulsate slightly at
their resonance, which shows as a subharmonic of the driving
sound field. The third mechanism involves the onset of sur-
face waves around the bubble wall. The first two mechanisms
were investigated using a bubble dynamics model based on
the Gilmore equation of motion, and the third applies theory
derived for flat surfaces to the problem, which is approx-
imately valid for the small wavelength surface oscillations
when compared with the circumference of the bubble.

2. Brief Summary Of The Experimental Results

The experimental work is extensively described elsewhere
[10. 14], and so only a brief outline of the methodology and
results will be presented here. For all the results discussed in
the text, the sinusoidal pressure levels of the driving sound
fields are given in Pa (0-pk), i.e. the amplitude of the sine
wave. The bubble measurement procedure used a two {re-
quency technique to investigate the response of air bubbles
in water, where the bubble is simultancously excited with
a pump beam and an imaging beam. The pump signal, at
Wy, is variable in frequency and is incremented through the
speculative location of the bubble’s resonant frequency in
discrete frequency steps. The imaging beam has a fixed fre-
quency (w;) which is considerably higher than the bubble
resonance frequency, being of the MHz order, and is used to
continuously insonify the bubble. When the bubble under-
goes the high amplitude nonlinear pulsations at resonance.
the two signals are coupled together. This is demonstrated in
Figure I(a) with data taken from a tethered bubble insonified
at resonance at a pump signal amplitude of 25 Pa. It can be
seen that the signal returned from the bubble consists of the
imaging frequency (which, as it is considerably higher in
frequency, plots so densely as to appear continuously black),
amplitude modulated by the pump/resonance frequency. This
gives rise to signals at frequencies of w; + wp and w; — wp.
Thus by investigating the returned signal content around the
imaging frequency for these sum-and-difference frequency
components the bubble resonance can be determined [15].

Ideally, the returned signal would contain only bubble me-

diated information, and thus would be able to distinguish
between direct sound transfer from the projector to the re-
ceiver, nonlinearities in the generation/measuring equipment
etc. It would also enable the bubble information to be investi-
gated in a ’quieter’ frequency window rather than in the high
ambient noise window around the bubble’s resonance.

It was discovered, however, that the appearance of these
direct coupled sum-and-difference signals was not an unam-
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Figure I. Returned signals from a bubble insonified at two frequen-
cies measured with a high frequency probe — the high frequency
imaging signal was set at 1.1 MHz, and the bubble resonance/pump
frequency at 2160 Hz. The data was sampled at 10 MHz on a LeCroy
9314L digital oscilloscope. Plot (a) shows the sum-and-difference
direct coupling by a bubble excited at 25 Pa (0-pk)., whereas plot (b)
shows the emergence of the subharmonic sum-and-difference sig-
nal from the same bubble driven at 40 Pa (0-pk). The high imaging
frequency plots so densely as to appear black in the figures.

biguous indicator of high amplitude bubble activity, as the
nonlinear mixing could be brought on through non-bubble
effects such as turbulence and the modulation of the high
frequency receiver source by the projector sound field [16].
Additionally, it was limited in its accuracy as bubbles insoni-
fied far off resonance could still contribute a direct coupled
signal. This is because the returned signal can be considered
as the output from a cyclo-stationary process, where it is a
measure of the acoustic cross section of a pulsating target.
Therefore if the bubble volume changes at all as a result of
the application of the pump sound field, which it will do off-
resonance, the returned signal will then comprise the imaging
signal amplitude modulated by the pumping frequency; this
will give w; £ wy, signal components. However, it was also
discovered that the bubble’s subharmonic oscillation also un-
derwent sum-and-difference coupling to give a much more
accurate and unambiguous indicator of the resonance of a
given bubble. This is demonstrated in Figure 1(b), which is
taken from the same bubble as shown in Figure 1(a), but
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Figure 2. Mesh plot of the returned signal through a bubble’s res-
onance using the full length combination frequency method. The
bubble was insonified at 190 Pa (0-pk) and the pumping frequency
was stepped in 25 Hz intervals.

insonified at the slightly higher amplitude of 40 Pa. Clearly
alternate high and low maxima in the modulation can be seen,
and it is this which gives rise to signals at w; + wp /2.

A typical result from the experimental work is presented
in Figure 2. Here a bubble was tethered to a horizontal wire
at 15 cm depth in the focus of the transducers, and was simul-
taneously insonified with a 1.134 MHz imaging sound field
and a pumping sound field which went between 1525Hz
and 2500 Hz in discrete 25 Hz steps. The amplitude of the
pump signal was 190 Pa for each frequency, as the equip-
ment/transducer/tank combination had been previously cali-
brated to allow inversion of its frequency response. The plot
shows the measured response over a narrow frequency win-
dow (1.1332 to 1.1370 MHz), demonstrating the constant
imaging frequency over all forty pump outputs, as well as
several side lobes caused by an imperfection in the signal
generator. However, these lobes are located within 400 Hz
of the main beam, and so can clearly be distinguished from
signals relating to the bubble’s presence. To the right of this
imaging signal is a broken ridge which is similarly present
over all forty pumping signals — this is the 'sum’ side of the
coupled response corresponding to signals with components
at w; + wp, and shows a slow rise to a maximum value at
around w, /27 = 1800 Hz. Between the two bands is a sin-
gle peak which occurs at a pumping frequency of 1850 Hz.
This is due to the subharmonic oscillation from the bubble,
and is located at w; + wp/2. This clearly demonstrates the
accuracy benefit of using the subharmonic coupled signal
as an indicator of bubble resonance over the direct coupled
signal.

Using heterodyning techniques to speed up the data col-
lection and processing, the parametric characteristics of this
subharmonic emission were investigated to locate the pump-
ing signal amplitude at which the emission arose. This was
performed by stepping through the bubble resonance in dis-
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Figure 3. Plot showing the thresholds for sum-and-difference subhar-
monic excitation for various bubble sizes at 15 cm depth, measured
in Pa (0-pk). Each point represents a single measurement, the more
significant associated uncertainty being of the order +3Pa. The
graph also shows the line of regression to the data

crete 5 Hz steps at a constant amplitude level. calculating the
height of the returned signal at the speculative location of the
subharmonic signal component for each pump frequency, and
then repeating the scan at a slightly higher signal amplitude.
As the data collection and processing was completely auto-
mated, each amplitude scan took approximately 20 seconds.
and the bubble could be completely characterised in around
8 minutes. This was performed on thirty individual tethered
bubbles with resonance frequencies between 2000 Hz and
3200 Hz, and the amplitude locations of the subharmonic
onset threshold are shown in Figure 3, along with the line of
regression to the data.

This plot shows there is an apparently repeatable onset
threshold of around 40Pa with an associated error of the
order of £3Pa for each point due to small uncertainties in
the spatial positioning of the calibration transducer and the
individual bubbles. The least squares fit straight line shows
a rise in the threshold as the bubble resonance frequency
increases, although this apparent gradient may not be statis-
tically significant. The combination frequency subharmonic
emission was verified using free rising bubbles, and it was
found to exist and have a onset threshold of the same order of
amplitude, although it was impossible to accurately quantify
this threshold due to the transient nature of the events.

3. Theoretical Modelling And Simulation Results

3.1. A Bifurcation In The Volumetric Pulsations

As abubble is driven at high amplitude, there is a potential for
the volumetric pulsations to bifurcate as the system becomes
more chaotic in behaviour [17]. The first bifurcation would
manifest itself as two alternate maxima in the radius-time
trace, and give rise to a signal content at half the driving
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frequency. This possibility was examined using the Gilmore-
Akulichev model for bubble dynamics. This is a nonlinear
equation of motion which must be solved numerically, which
for these tests used a fourth order Runge-Kutta solution with
a step size control algorithm to maintain a user-specified
round-off error. The basic form of the equation is:

oo fels @
C R(l— _) crL
CL
302 U 1dH
- —1-— + ——,
2 3cr, cr dt

where U is the velocity of the bubble wall, R is the instanta-
neous bubble radius, ¢y, is the local speed of sound in the fluid
at the bubble wall and H is the enthalpy of the surrounding
fluid. The model was initially developed by Gilmore [18], fol-
lowing the Kirkwood-Bethe hypothesis [19] which assumed
that the speed of sound in the liquid varied as a function of
the bubble motion. The equation was extended by Akulichev
[20] to obtain the pressure field around the bubble. and by
Cramer [21], Church [22] and Choi et al. [23] to facilitate
the collection of numerical solutions. The model includes
for the three damping mechanisms: acoustic, viscous and
thermal, and can be used to study high amplitude bubble
behaviour, such as lithotripter shock wave pulses [24] and
rectified diffusion [22]. A full description of the equations
and implementation of the simulation process can be found
elsewhere [25].

The output from the simulations are radius-time plots,
radiated pressure-time plots, pressure and temperature-time
plots and moles of gas within the bubble-time plots to allow
for the inclusion of gas diffusion across the bubble wall. For
the investigation of the volumetric pulsations, only the radius-
time curves are required, greatly speeding up the processing
time. The resonant frequency of a I mm radius bubble at 15
cm depth was calculated using equation (1) as 3308 Hz, and
this was used in the simulations. The tests were performed in
insonification amplitude steps of 10,000 Pa, from 10,000 Pa
to 200,000 Pa. As the program assumes the bubble to be at
rest at the start of each simulation, there is a transient decay
time at the beginning of each run before the steady state
results start, which necessarily slows the computation. The
steady state radius-time curves for the tests corresponding
to insonification amplitudes of 160,000 Pa, 170,000 Pa and
200,000 Pa are given in Figures 4(a) to (c).

From these results it is clear that a definite bifurcation
in the radius-time curves does exist, between 160,000 and
170,000 Pa insonification amplitude level. It is also apparent
that by 200,000 Pa a second bifurcation has occurred, as the
steady state solution shows four possible radius amplitude
levels. If the maximum value which the bubble radii reach
for each steady state section are noted for each increased
amplitude level, a bifurcation diagram can be plotted for the
volumetric pulsation mechanism, and this is shown in Figure
5. Thus the Gilmore-Akulichev model for bubble pulsations
does demonstrate a bifurcation for a bubble driven at its
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Figure 4. Gilmore Akulichev model of a 1 mm radius bubble driven
at its resonance frequency of 3308 Hz. (a) Detail of the steady state
radius time curve when the bubble was driven at 160,000 Pa (0-pk).
(b) Detail of the steady state radius time curve when the bubble was
driven at 170,000 Pa (0-pk). (c) Detail of the steady state radius time
curve when the bubble was driven at 200,000 Pa (0-pk).

resonant frequency, which for a 1 mm radius bubble occurs
at roughly 170,000 Pa insonification level. Therefore unless
the model is exceptionally insensitive this is unlikely to be the
generation mechanism for the observed signals at w; + wp/2.
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Figure 5. Bifurcation plot of the volumetric pulsation response for a
1 mm bubble driven at its resonance of 3308 Hz.

3.2. Large Bubble Theory

The second theory for subharmonic generation suggests that
such emissions might be the result of the acoustic field acting
on bubbles with an equilibrium radius twice the size of the
radius resonant with the sound field, i.e. that the bubbles are
being driven at twice their acoustic resonance frequency. This
theory was first introduced by Eller and Flynn [11], who for-
mulated a periodic solution to the Rayleigh-Plesset equation,
and then tested the stability of the solutions by adding a small
perturbation to the solution. This small perturbation is such
that the resultant radial equation of motion will still satisfy
the original Rayleigh-Plesset equation, but may not be peri-
odic. Their theory presents a threshold for the subharmonic
onset which is given by:

Prjy=——= (3)

where Pr 4 is the acoustic pressure threshold for the sig-
nal, and Aj,g is the logarithmic decrement representing the
damping of the pulsation. Using Eller’s equations [26] for the
three damping terms of a pulsating bubble it can be calcu-
lated that a 1 mm radius air bubble in 15 cm depth of water at
atmospheric pressure has a total non-dimensional damping
coefficient of 0.13 when driven at twice its resonance fre-
quency, and this gives a value for Aj,g of 0.41. Substitution
of this into equation (3) gives a subharmonic onset threshold
value of approximately 80,000 Pa.

This work was continued by Prosperetti [12] who used
similar theoretical techniques to predict the shape of the sub-
harmonic onset curve in an attempt to better measure the
damping characteristics of a pulsating bubble. He explains
the origin of the subharmonic signal as a nonlinear coupling
between different pulsation modes, with energy being trans-
terred from the mode directly excited by the driving signal to
the subharmonic mode. Prosperetti presents a plot (his Figure
3) which shows the onset amplitude of the subharmonic emis-
sion from a | mm bubble as a function of non-dimensional

Frequency (Hz)

Figure 6. Frequency response of the radiated sound field calculated
using the Gilmore Akulichev model for a I mm radius bubble driven
by 220,000 Pa (0-pk) sound field at twice its resonance frequency of
6616 Hz, to demonstrate the subharmonic onset using large bubble
theory.

driving frequency, and which demonstrates a minimum when
the bubble is driven at twice its resonant frequency, and with
a threshold of approximately 40.000 Pa.

There appears to be a factor of two difference between
the two onset thresholds. However, as both of the theoretical
calculations presented above start from a linearised solution
to the Rayleigh-Plesset equation, which is not an accurate
model for such high amplitude bubble pulsations, a better es-
timate is possible. The Rayleigh-Plesset model assumes the
bubble to be surrounded by an incompressible medium, and
thus does not allow for acoustic radiation from the bubble into
the fluid. This is an important damping mechanism of the vol-
umetric pulsations [5]. Using the Gilmore-Akulichev model
described earlier, which allows a variable speed of sound at
the bubble wall, to numerically investigate the phenomenon,
a potentially more accurate idea of the threshold location can
be calculated. The same bubble parameters as those investi-
gated in the earlier volumetric tests were used, except that the
bubble was driven at 6616 Hz, twice the resonance frequency
of a | mm radius bubble. The tests show the threshold to be
at approximately 20,000 Pa, and data showing this signal is
presented in Figure 6. The plot shows the Fourier Transform
of the radiated sound field, and a clear signal approximately
50dB lower than the backscattered response to the driving
sound field is visible at 3 kHz. The plot shows the radiated
sound pressure measured in decibels with an unspecified ref-
erence value, as only the relative heights of the peaks are
important. However, while this is still lower than the earlier
estimates and the volumetric pulsation threshold, it is clear
that the threshold is still three orders of magnitude higher
than the experimentally measured onset of the w; + wp/2
signal.

3.3. Onset Of Surface Waves

The earliest reported observation of a one-half subharmonic
oscillation was made by Faraday [27]. He was investigat-
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ing the motion of water over vibrating plates, in an effort
to characterise the "beautifully crispated appearance’ of the
liquid layer. To be able to fully observe the motion of the
fluid layer, he built a board eighteen feet long, upon which a
liquid layer 3/4 inches deep could be excited vertically. He
observed the sloshing motion of ’heaps’ of the liquid, such
that "each heap (identified by its locality) recurs or is re-
formed in two complete vibrations of the sustainin g surface’.
This result was confirmed by Rayleigh [28]. Neppiras [13]
listed surface oscillations as a possible source of the subhar-
monic signal as they "are excited parametrically, generally at
half the excitation frequency.” But he argued that ’as the os-
cillations involve little or no volume change, it seems certain
that they could not couple strongly enough into low-viscosity
liquids to account for the strong signals observed’.

Calculating the driving amplitude onset threshold for these
surface waves involves solving a Mathieu differential equa-
tion, and this has been evaluated numerically for a plane
surface [29, 30]. This theory is extendible to bubbles pro-
vided that the wavelength of the surface disturbances is small
compared with the circumference of the bubble [4]. Having
established the surface wave amplitude threshold, it is rea-
sonably simple to extend the theory to calculating the driv-
ing pressure amplitude. Eisenmenger [30] shows the origin
of the Mathieu differential from the Navier-Stokes equation,
demonstrates that the solution with the lowest pressure am-
plitude threshold predicts waves set up at half the driving
frequency, and gives a threshold value of the plane surface
displacement h, which will give rise to these surface waves
of:

where w4 is the acoustic driving frequency, and all the re-
maining symbols have their usual meanings. At 3 kHz, which
is the rough frequency at which the experimental tests were
performed, Eisenmenger also allows us to calculate the ratio
of the surface wavelength to the bubble circumference, which
can be evaluated as 0.09. Thus the surface displacements are
more than 10 times smaller than the circumference, and so the
plane surface assumption is approximately valid. Eller [26]
presents a way of relating the acoustic pressure to the radial
amplitude of a bubble, which when combined with equation
(4), and equated at the bubble's resonance frequency gives a
surface wave onset pressure threshold of:

6 d 2
Pp 4 = —HEPoCtot Y == (5)
Ro ap-wo

where d; ;4 is the total non-dimensional damping coefficient.
For a 1 mm bubble driven at resonance as described in the
earlier simulations, this onset threshold can be calculated
as 39 Pa. This is obviously very close to the experimentally
measured values.
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Figure 7. Plot showing the thresholds for subharmonic excitation
for various bubble sizes at 15cm depth, and their line of regres-
sion (dashed). The plot additionally shows the surface wave onset
threshold (unbroken), calculated from plane-surface theory.

4. Discussion And Conclusions

It is clear that of the three potential mechanisms studied for
the source of the subharmonic signal, the onset threshold
for surface waves set up at half the driving frequency most
closely matches the experimentally observed results. Figure
7 shows the theoretical threshold calculated over the range
2000 to 3200 Hz overlaid with the experimental results, and
the plot shows good agreement between the theory and the
experimental data, although there is a slight offset apparent,
which may be because of the plane surface approximation in
the threshold calculations.

In order to further check that these surface waves are
present on a resonant bubble, close-up video photography
was employed to record the pulsation characteristics of
a driven tethered bubble. The experimental apparatus was
placed into a clear PMMA (polymethylmethacrylate) water-
filled tank inside a dark-room, and a bubble carefully tethered
to a loop fashioned in a vertical wire. This bubble was then
continuously insonified at its resonance frequency, and was
simultaneously filmed using a Kodak Ektapro 1000 imager
and processor fitted with a Monozoom 7E close-up lens as
manufactured by Cambridge Instruments. The bubble was
illuminated using a Griffin Model 65 Xenon stroboscope
triggered by the video processor, with a flash time of 12 us.
The film was taken at 30 frames per second, and typical re-
sults are shown in Figures 8(a) and (b), for a bubble driven
at resonance with a sound pressure level below the thresh-
old necessary to generate a subharmonic emission, and for
the same bubble insonified with a pressure amplitude above
the subharmonic threshold. It is clear from Figure 8(b) that
surface waves are evident around the bubble wall, which sup-
ports the theory that they are responsible for the w; + wp/2
signal. Also visible to the right in the two video frames is a
ruler placed to facilitate optical cross-checks of the acoustic
resonance estimates.

The greater width in the frequency domain of the w; + Wy
signal compared with the w; + wp/2 signal suggests that the
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Figure 8. (a) Close-up video frame of an tethered bubble driven at
resonance below the amplitude threshold necessary to generate a
subharmonic emission. (b) Video frame of same bubble being driven
above the subharmonic threshold, showing surface waves around the
bubble wall. To the right in both pictures is a mm scale.

damping time constant associated with surface waves is less
than that which relates to volumetric pulsations. Results pub-
lished elsewhere [31], which show the variation in the height
of the w; £ wp and w; + w,,/‘Z signals as a function of the
delay time included between the start of the insonification
and the data acquisition, indicate that the maximum height
of the w; £ wy, /2 signal is only reached after approximately
400 cycles of the driving sound field, while the w; & w,
signal maintains a constant height independent of this tran-
sient decay time. This implies that the damping mechanisms
associated with the two signals are different, and that the
subharmonic oscillation is very lightly damped as the start
up transients persist over considerable time.

It was earlier discussed that the subharmonic emission
should not propagate into the medium as no volumetric
changes are brought about by the passage of surface waves
around the bubble wall. However, the w; & w) /2 signal mea-
sured in the combination frequency tests at a distance from
the bubble does not propagate in the same manner as the
backscattered subharmonic signal. The ability of the sub-
harmonic oscillation to couple efficiently with the imaging
frequency to give strong sum-and-difference signals can be
explained by looking at the mechanisms by which the two
signals are nonlinearly mixed. Whereas monopole acoustic
radiation by the subharmonic requires a volume change, its
ability to couple to the imaging signal is a function of the

geometric cross-sectional area of the bubble, and thus re-
quires no volume change. If the returned signal from the
two frequency insonified bubble is thought of as the output
from a cyclo-stationary process, as detailed earlier, it is ap-
parent that the strength of the backscatter is proportional to
the cross-sectional area of the target presented to the beam.
Therefore if the surface waves cause a modulation of this
cross-sectional area at the subharmonic frequency, a signal
containing aw; £wp/2 component will be returned. This can
be illustrated using the results presented earlier in Figure 2,
and in further results taken with the high frequency data col-
lection and processing equipment which are published else-
where [16]. The maximum heights of the w; £ wp/2 signals
are between 20 and 25 dB lower than the imaging frequency
ridges, which correspond to a subharmonic frequency mod-
ulation in the cross-sectional bubble area of between 0.3 and
1 %. A comparison with the amplitude of the surface waves
shown in the photograph given in Figure 8(b) shows this area
modulation to be of the right order of magnitude.
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