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ABSTRACT

Argon gas is used to clean and de-clog liquid steel as it is being cast, but an unwanted by-
product of the process is the generation of 100 um to 1 mm radius bubbles in the final
slab. These degrade the quality of the steel, and it is desirable that they be broken up into
smaller bubbles of radius less than 100 pm before setting.

It 1s postulated that acoustics might be exploited to bring about this bubble fragmentation
in two ways: first, by exciting surface waves on the bubble wall of high enough amplitude
that smaller bubbles are pinched off from the surface; or second, through generation of
extreme volumetric pulsations which may couple with an asymmetry in the motion to then
give rise to shape oscillations sufficient to bring about eventual fragmentation. Order-of-
magnitude estimates of the acoustic pressure amplitudes required to bring about these
processes are calculated.
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INTRODUCTION

Argon gas is used to clean and de-clog liquid steel as it is being cast, but an unwanted
by-product of the process is the generation of 100 wm to 1 mm radius bubbles in the
final slab. These degrade the quality of the steel, and it is desirable that they be broken
up into smaller bubbles of radius less than 100 pum before setting.

It is postulated that acoustics might be exploited to bring about this bubble
fragmentation in two ways: first, by exciting surface waves on the bubble wall of high
enough amplitude that smaller bubbles are pinched off from the surface; or second,
through generation of extreme volumetric pulsations which may couple with an
asymmetry in the motion to then give rise to shape oscillations sufficient to bring about
eventual fragmentation. The first of these fragmentation techniques is demonstrated in
figures 1(a) to (c), photographed from a tethered bubble driven at its acoustic
resonance frequency at three increasing amplitudes. The second of these techniques is
demonstrated by Leighton (1994) in figure 4.29. Order-of-magnitude estimates of the
acoustic pressure amplitudes required to bring about these processes can be made by
determining the conditions in the liquid steel required to bring about a given amplitude
of wall oscillation.

Figure 1: High speed photographs taken of a tethered bubble being driven at its resonance frequency
at three increasing amplitudes. (a) shows a frame from the normal volumetric pulsation of the bubble,
(b) shows the bubble as it is driven at an amplitude greater than that required to stimulate surface
waves of the bubble wall, and (c) shows a microbubble pinched off due to the action of these waves.
To the right of all three pictures is a ruler in 1 mm steps to allow an optical cross-check of the
acoustic size estimate.



The dynamics of bubble fragmentation depend on the shape and stability of the bubble
wall. All other things being equal, surface tension (which is numerically equal to the
energy associated with a unit area of the interface) will cause a bubble to tend to a
spherical form, since that minimises the surface area required to bound a given volume
of gas, and so minimises the surface energy. There are various ways in which a bubble
can depart from the spherical form. There is for example the effect of buoyancy which
distorts the equilibrium shape. In addition, the bubble can be distorted by asymmetries
in the environment, such as the proximity of other bubbles or boundary walls, gravity,
shock fronts, and pressure gradients on scales small compared to the bubble radius.

The important phenomenon of transient cavitation is usually described as a procedure
in which a small bubble nucleus might, when a tension is applied to the liquid, expand
to a large sphere, and then undergo a violent collapse (creating, for example, gas and
liquid shocks, sonoluminescence etc.). Towards the end of the collapse, instabilities
might generate surface irregularities which, on rebound, could be accentuated to such
an extent that the bubble would break up. Such surface distortions are intimately linked
with the acceleration of the bubble wall.

Plesset (1954) studied the stability of a spherical surface using spherical harmonics to
describe wall perturbations of a gas bubble in a liquid of surface tension ¢ and density
p. The growth of these perturbations from an initially small size was the condition for
instability. Plesset showed that, if a, is the time-dependent amplitude of the
perturbation described by the superimposition of the spherical harmonic of order n on a
pulsating sphere of instantaneous radius R(r), then, with the substitution a,' = a,R%3,
the dynamics of the perturbation described by the 't spherical harmonic are given by
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The resonance frequency, ®,, of the n'h spherical harmonic mode (n = 2) of a gas
bubble (of equilibrium radius Ry) in a liquid is given by (Leighton, 1994):
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The small-amplitude behaviour of the surface oscillations on a pulsating bubble can be
found by formulating the pulsation mode and retaining only linear terms (Hsieh, 1972,
1974). This procedure generates a Mathieu relation from equation (1), and allows the
stability of the bubble wall when undergoing shape oscillations to be analysed.
However, the potential for bubble fragmentation in this manner depends on the
proximity of the bubble to surfaces, other bubbles etc. to provide an asymmetry in the
motion, which when coupled with large amplitude pulsations would cause the bubble
to become unstable. Thus the important variable in analysing the pulsation is the
maximum radial displacement, as if it is high enough it would suggest that an unstable
shape oscillation could be generated on the bubble, with therefore the potential for
fragmentation.



The second of the possible fragmentation methods involves generating surface waves
on the bubble wall, which at high amplitude would then pinch microbubbles off. The
stability of interfaces undergoing periodic motion has been studied by Benjamin and
Ursell (1954), who investigated the waves on the free surface of a vertically-vibrated
cylinder of liquid. These waves were at half the exciting frequency, a phenomenon first
recognised by Faraday (1831), and it was discovered that waves at such a frequency
can be excited on a bubble wall. Surface oscillations on bubbles undergoing stable
cavitation were originally observed by Kornfield and Suvarov (1944). They often
manifest as an added 'shimmer' seen on the bubble surface, and can be detected
acoustically (Phelps and Leighton, 1996). These surface waves are parametrically
excited (i.e. there exists a driving pressure threshold below which the waves are not
excited) at half the driving frequency, and are strongly coupled to the pulsation mode.
Sorokin (1957), Eisenmenger (1959) and Phelps (1995) evaluated the radial
displacement amplitude R, necessary to excite these surface waves on a plane surface

to be:
3
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where n is the viscosity of the liquid. If the order of the mode is high, this plane-
surface result is applicable to perturbations on a sphere. Neppiras points out that for
large bubbles in pulsation resonance, the amplitude of pulsation is approximately
related to the acoustic pressure by
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where p; is the equilibrium pressure in the liquid, d, , is the dimensionless damping
constant and y the ratio of the specific heat at constant pressure to that at constant
volume for the gas. Neppiras (1980) combines equations (3) and (4) to give the
pressure threshold to excite surface waves on a resonant air bubble in water at 20 kHz
to be only 0.0025 bar, and to be 0.037 bar at 500 kHz. Phelps and Leighton (1996) use
this formulation to confirm the mechanism for the production of combination-
frequency waves involving the subharmonic of the bubble resonance, when two sound
fields (one being close to the bubble resonance) are used to insonify a bubble. They
give, as the acoustic pressure amplitude required of the resonant sound field to drive
the bubble sufficiently to generate Faraday waves on the wall, as:
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2. METHODS

A bubble may therefore fragment through the shedding of microbubbles from surface
waves, or through break up as a result of a large amplitude shape oscillation. The first
technique will tend to produce many bubbles, all much smaller than the mother bubble,



which may or may not survive; the second will tend to produce a smaller number of
bubbles, each of a similar size. Since both types of bubble fragmentation are associated
with the displacement amplitude of the oscillation of the bubble wall, then estimates
can be made of the acoustic pressure amplitudes required to generate such effects. This
is done for the excitation of surface waves through calculation from the analytical
solution, equation (5). However for fragmentation by shape oscillation, a numerical
solution of the Rayleigh-Plesset equation is required to indicate the acoustic pressure
amplitudes necessary to generate bubble pulsation amplitudes having the same order as
those which, in water, have been observed to couple with shape oscillations and cause
fragmentation. For both calculations key bubble parameters (such as the resonance
relation) need to be estimated, requiring the quantification of the relevant gas and
liquid parameters. Only some of these could be supplied by experts from the steel
industry, at Hoogovens Ijmuiden in The Netherlands. Others had to be estimated. The
two parameter sets are given below:

(i) Those provided in the problem specification:

Depth of the bubbles 200 mm

Density of liquid steel 7003 kg/m3
Surface tension of liquid steel 1.865 N/m
Dynamic viscosity 6.8 x 10-3 Ns/m?
Ratio of specific heats of Argon 1.65
Temperature of casting 1550 °C

(ii) Those assumed in the calculations:

Speed of sound in liquid steel 6100 m/s

(Assumed to be equal to the speed of sound in solid steel)
Heat capacity at constant pressure  0.52 x 103 J/kgK

(Only data available was for Argon at 25 °C)
Thermal conductivity 1.8 x 1002 W/mK

(Only data available was for Argon at 25 °C)

3. RESULTS AND DISCUSSION

Using both the accurate data provided for liquid steel and the less accurate assumed
data, the first calculation involved the calculation of the likely polytropic relationship
which best describes the compression of the gas inside the bubble. Unfortunately, this
calculation requires the heat capacity and thermal conductivity values to be well
defined, and so the accuracy of the estimates will be compromised somewhat by the
use of the assumed parameters. The results are shown in figure 2 over the radius range
considered.
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Figure 2: Polytropic index of the gas pulsations when driven at their resonance. This, however, uses
two of the poorly defined variables in its calculation.

It can be seen that the gas expands and contracts in a manner neither approximating
adiabatic (k = 1.65) or isothermal behaviour (x = 1.0), and that the polytropic index
changes considerably over the range of bubble radii used in the calculations. Using this

information, the resonance frequency of the different bubbles can be calculated, and the
results given in figure 3.
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Figure 3: Resonance frequency of Argon bubbles in liquid steel.

The plot shows that over the radius range, the resonance frequency of the gas bubbles
changes dramatically, from ~ 1300 Hz at the largest bubble size to ~ 13 kHz for the
smaller bubbles. The calculation of these resonance frequencies does not require the
use of the three poorly known variables, and thus the limits of its accuracy are solely
dependant on the estimates for the polytropic indices. However, because of the high
density of the liquid steel, the bubbles' resonance frequencies will change dramatically

over a small change in the depth of their formation, and the estimates given in figure 3
will be accurate for bubbles at 200 mm depth only.

Having established the resonance frequencies of the individual bubbles, it is possible to
examine how they would theoretically behave when excited by a driving sound field at
their resonance. The first potential technique for breaking the bubbles up is to stimulate
surface waves on the bubble which would, at high amplitudes, lead to the generation of
daughter bubbles of much smaller size. This phenomenon is parametrically excited, i.e.
a threshold exists for the driving pressure amplitude above which the surface waves



occur. From plane surface theory this threshold can readily be calculated, but it
involves knowledge of the total damping of the bubble pulsations. This damping occurs
through three mechanisms, by acoustic radiation into the liquid, by viscous losses at
the surface and by thermal conduction into the liquid. As described earlier, the thermal
properties of the pulsation are badly defined through a poor knowledge of the high
temperature specific heat capacity and thermal conductivity parameters. However, the
viscous and acoustic losses are both much better defined, and a comparison of the

calculated values of the three damping coefficients is shown in figure 4 over the range
of bubbles considered.
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Figure 4: Magnitude of the three damping coefficients over the considered bubble range for an
Argon bubble in liquid steel.

Unfortunately, it is clear that thermal losses account for the majority of the damping
over the entire range, and so the results from the calculation of the surface waves
threshold should be treated as an order of magnitude estimate only. The threshold for
the onset of these waves is shown in figure 5.
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Figure 5: Acoustic pressure threshold for the onset of surface waves around an Argon bubble in
liquid steel.

The very low pressure amplitudes (which are at largest around 1 kPa) suggest that this
may be an effective way for fragmenting the bubbles. However, it should be noted that
in order to pinch off smaller bubbles from the surface oscillations, the bubbles must be
driven by a sound field considerably in excess of the threshold value. In addition, the
daughter bubbles which are fragmented from the resonant bubble tend to be very small



as they are formed from surface activity only, and so the technique may not yield the
required reduction in the original bubble size.

The second potential fragmentation technique involves driving a trapped bubble
suitably strongly at its resonance frequency to give rise to large volumetric changes,
such that any asymmetry in the pulsations would become magnified and lead to shape
oscillations, which in turn could cause the bubble to break up. This must be
investigated numerically by solving the nonlinear Rayleigh-Plesset model for bubble
dynamics, and this was performed on the two bubble sizes at either end of the
considered radius range. The bubbles were driven at their resonance frequencies by
sound fields of amplitude 100 kPa, and the radius time results are given in figures 6 (a)
and (b). Unlike the earlier surface calculations, these results do not require the use of
the poorly known thermal conductivity or heat capacity variables.
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Figure 6: Radius-time curves for Argon bubbles in liquid steel driven at its resonance frequency by a
100 kPa sound field, with the radius normalised by dividing through by its initial value and the time
converted into number of cycles of the insonifying sound field. Equilibrium bubble radius is (a) 100 p
m radius (b) 1 mm.

These two results show up some interesting points. The insonifying sound field, while
being higher in amplitude than the theoretical surface wave threshold results, is still not
beyond the ability of modern transducers to generate, and this sound field is shown to
give rise to considerable volumetric pulsations. The two bubbles achieve maximum
radii during the pulsations of 2.0 times and 2.3 times their equilibrium values for the
100 pum and 1 mm bubbles respectively (or between 8 and 12 times their equilibrium
volume). To investigate whether this radial deviation is sufficient to allow bubble
fragmentation, the modelling was repeated with an air bubble in water, whose
properties are better understood qualitatively. Air bubbles of 1 mm radius have been
observed to fragment when excited at 100 kPa insonifying pressure (as evidenced in
figure 4.29 from Leighton 1994), and the results from modelling this situation are
shown in figure 7.
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Figure 7: Radius time curves for a I mm radius air bubble in water driven at its resonance frequency
by a 100 kPa sound field.

In this case it is apparent that the bubble radius amplitude reaches approximately 2.4
times its equilibrium value. This is only marginally higher than the 1 mm Argon bubble
in liquid steel results of 2.3 times its equilibrium value, and it can be concluded that the
absolute sound levels experienced by the Argon bubbles, if coupled with an asymmetry
in the bubble motion, should lead to fragmentation. This break up method will give rise
to daughter bubbles with a more random size distribution than of those formed by the
extreme surface activity discussed earlier. However, the capability of a bubble to
deviate from its spherical shape, which is also necessary for fragmentation, is
determined by the relative strength of the surface tension forces. The surface tension of
water is 25 times smaller than that of liquid steel, and so the shape deviation which is
also necessary for fragmentation may require a greater insonifying amplitude to effect.
The greater density of liquid steel will also tend to promote fragmentation through
extreme shape oscillations.

4. CONCLUSIONS

The estimations suggest that, at sound pressure amplitudes which can be generated in
liquid steel with current technologies, it should be possible to produce the
fragmentation of injected argon bubbles.
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