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Objective detection of evoked potentials using a bootstrap technique
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bstract

Evoked potentials are usually evaluated subjectively, by visual inspection, and considerable differences between interpretations can occur.
bjective, automated methods are normally based on calculating one (or more) parameters from the data, but only some of these techniques

an provide statistical significance (p-values) for the presence of a response. In this work, we propose a bootstrap technique to provide such
-values, which can be applied to a wide variety of parameters. The bootstrap method is based on randomly resampling (with replacement)
he original data and gives an estimate of the probability that the response obtained is due to random variation in the data rather than a
hysiological response.

The method is illustrated using auditory brainstem responses (ABRs) to detecting hearing thresholds. The flexibility of the approach is

llustrated, showing how it can be used with different parameters, numbers of stimuli and with user-defined false-positive rates. The bootstrap

ethod provides a new, simple and yet powerful means of detecting evoked potentials, which is very flexible and readily adapted to a wide
ariety of signal parameters.

2006 IPEM. Published by Elsevier Ltd. All rights reserved.
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. Introduction

Evoked potentials are the electrical signals generated by
he brain in response to sensory stimuli, most commonly
rom the ears, eyes or the somatosensory system. Usually,
he responses are interpreted subjectively, by visual inspec-
ion. However, this requires well trained professionals, and
s strongly dependent on the experience of the observer.
bjective, automated methods for detecting responses are

learly desirable, especially for screening (e.g. neonatal hear-
ng tests) and monitoring (e.g. during surgery).

One of the most widely used evoked potentials is the audi-
ory brainstem response (ABR) used extensively to determine
earing thresholds in patients that are unable or unwilling to
ooperate with behavioural testing. We will illustrate the pro-
osed method using this application, for which we give some

etailed results. However, the technique proposed could also
eadily be applied in other modalities.

∗ Corresponding author. Tel.: +44 23 80593221; fax: +44 23 8059 3190.
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The conventional way to analyze and interpret the ABR
s visual inspection by experienced audiologists, who usu-
lly identify significant peaks (the most important in the
BR are denoted with roman numerals I, III and V – see
ig. 1). However, this identification is subjective, and con-
iderable inconsistency has been found between different
xperienced professionals in estimating hearing thresholds
1,2] from the ABR. As a result of this, a number of meth-
ds and algorithms for automated ABR identification and
etection have been described in the literature. Some of
hese identify the highest amplitudes in latency regions where
eaks are expected to occur in normal subjects [3–5]. Oth-
rs are based on different statistical properties, either in
he time-domain (e.g. Fsp [6] and ± difference [7]), or in
he frequency domain (e.g. magnitude-squared coherence
MSC) [8], phase coherence [9], spectral F-test [10]). Some
f these methods provide an exact statistical criterion (p-
alue) when a response can be considered to be significant,

thers do not. The advantage of the former is that the false-
ositive-rate provides a clearly defined criterion for detecting
esponses, whereas for the latter empirically derived thresh-
ld criteria are used, so it becomes difficult to compare

reserved.
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ig. 1. The ABR for one subject (click stimulation at 30 dB SL). The vertical
ines at 5 and 15 ms show the region of the response that was used in analysis.
he parameter diff gives the range of the ABR within this interval. The
ymbol � indicates wave V.

echniques based on the trade-off between sensitivity and
pecificity.

In this work, we describe a bootstrap technique, which
llows the statistical significance to be estimated for a wide
ange of different parameters used in the objective detec-
ion of evoked responses, and does so in an easy and very
exible manner. The bootstrap method was introduced by
fron [11–13] as an approach to calculate confidence inter-
als for parameters in circumstances where standard methods
annot be easily applied. The bootstrap has subsequently
ecome well established as a powerful statistical tool, in
hich complex mathematical analysis is replaced by inten-

ive computational load. In recent years bootstrap methods
ave also been extensively used in biomedical signal process-
ng [14,15]. To the best of our knowledge this technique has
ot previously been used in the detection of evoked poten-
ials, though other uses of the bootstrap in evoked potentials
ave been reported [16–18].

In the following, we first describe how we recorded our
BR data. Next, we described the bootstrap approach. We

hen provide the results from a Monte-Carlo study carried
ut to evaluate the performance of the technique in well-
ontrolled conditions simulating no stimulus response. Hear-
ng thresholds detected by ABRs are then found in 12 subjects
sing the bootstrap method, and compared to those deter-
ined by experienced professionals through visual analysis

f the evoked potentials. Finally, we discuss the results, and
ther potential applications of the proposed method, and
ome of its limitations.
. Data

ABRs were recorded from 12 normal-hearing adults sub-
ects (6 males and 6 females), who were aged between 18 and
Physics 29 (2007) 191–198

0 years. The ABR was recorded between the vertex and the
ape of neck, with a frontal electrode serving as ground. The
uditory stimulation was a rectangular click stimulus with
duration of 100 �s delivered by ER-2 insert phones (Ety-
otic, USA), at a click rate of 33.3 Hz. Stimulation started

t 50 dB sensation level (SL), decreasing in 10 dB steps to
dB SL. Here, ‘dB SL’ refers to the stimulus level above the
uditory threshold level of the subject, as determined from
onventional audiometry. The insert phones and associated
ables were screened to minimize electromagnetic artefacts.
he number of stimuli contributing to each coherent aver-
ged response was K ≈ 2000. Two recordings were made at
ach stimulus intensity, in each subject. The acquired raw
ignals were band-pass filtered between 30 and 2100 Hz in
rder to emphasize wave V – which is the most important
eature of ABRs (Fig. 1). In addition a notch filter (50 Hz)
as applied to remove mains noise. The signal was sam-
led at 5 kHz. The ABR was then obtained by coherently
veraging the ensemble of data segments following each
timulus. The bootstrap method then uses both the averaged
aveforms and the raw recorded signal, prior to averag-

ng. The latter, containing spontaneous background cerebral
ctivity, and noise as well as the ABR, will be referred to as
he ‘EEG’.

. Methods

From the evoked potential, we calculated parameters that
uantify the strength of stimulus response – these will be
escribed first. Their statistical significance is subsequently
ested using the bootstrap method.

.1. Parameters used in detecting ABRs

For click stimuli in adults, a time window of 10 ms or
2 ms is usually sufficient to record the ABR, because wave

occurs in normal individuals within 5–6 ms of the stimu-
us at high intensities and within 8–9 ms for intensities near
hreshold [19]. We kept the analysis window from 5 to 15 ms,
hich should in all cases include wave V. The four parameters
escribed below were then calculated from the ABRs. Each
f these provides a measure of the strength of the stimulus
esponse, and is calculated over the time-interval 5–15 ms.

diff [20], is the difference between the maximum and min-
imum value of the ABR, as shown in Fig. 1;
power is the mean power of the ABR:

power = 1

M

M∑

i=1

x[i]2 (1)

where x[i] is the amplitude of each sample in the ABR

signal and M is the number of samples in the analysis
window 5–15 ms (M = 50). Clearly, when a strong stimulus
response is present, the power of the coherent average will
increase.
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Fsp is an estimate of the signal-to-noise ratio of the evoked
potential, which has been used extensively in detecting
ABRs [6,21]:

Fsp = var(ABR)

var(SP)/K
(2)

where var(ABR) is the variance of the coherently aver-
age ensemble between 5 and 15 ms after the onset of the
stimulus, and var (SP) is the variance of the ensemble of
K (≈2000 in our application) stimulus-responses at a sin-
gle point. Thus, var (SP) is obtained from the ensemble of
signals before averaging, and represents the power of the
noise (background activity), and var(ABR) is found from
the coherent average and corresponds to the power of the
ABR. Since the variance of the EEG can be assumed to
be constant over the interval between stimuli, the single
point can be chosen arbitrarily; we chose 10 ms, others
have chosen 6 ms [6].
±difference is an alternative estimate of the signal-to-
noise ratio [7] and is found by first allocating the even-
numbered stimulus responses to one ensemble, and the
odd-numbered ones to another. The coherent average of
each of these two ensembles is then found. Hence,

±difference = std(Sum)

std(Diff)
(3)

where the numerator refers to the standard deviation of the
sum of the two averages, calculated over the time-window
from 5–15 ms following the stimuli, and the denominator
to the standard deviation of the difference of the two aver-
ages. Clearly, if there is a strong stimulus-response, the
sum of the averages will be much larger than their differ-
ence (where stimulus responses are cancelled), leading to
relatively large ± differences.

Following the calculation of these parameters, the statisti-
al significance of each is tested against the null-hypothesis
H0) of no stimulus-response.

.2. Bootstrap test

The bootstrap method [11–13,22,23] is based on repeat-
dly drawing random samples (with replacement) from the
riginal data. The parameter of interest is then calculated
rom these ‘resamples’, building up an estimate of the sam-
ling distribution of the estimated parameter (we use symbol
to denote any of the four parameters described above). The
ootstrap method allows confidence limits of the estimate to
e determined, or the statistical significance (with respect to
ome null hypothesis) to be tested – as in the current appli-
ation.

First the coherent average of the EEG is calculated by aver-

ging the K stimulus-responses, from which the parameters
to generalize, these will be denoted by θ) are found. We then
pply the bootstrap test, by selecting K random points any-
here throughout the recorded raw signal, and use these as

(
d
o
c
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tarting points in obtaining an ensemble of K corresponding
egments with same length as the stimulus-response. Thus,
t this step, we thus ignore the actual timing of the stimuli
nd use random ‘trigger points’. A uniform distribution of
tarting points covering the entire length of the recorded data
s used. The new ensemble of K segments is averaged to form
n ‘incoherent average’ (because it is not synchronized with
he stimulus-timing), for which the parameter θ is again cal-
ulated. The parameter, from the ‘bootstrap’ resample, will
e denoted as θ*. The bootstrap resampling process is then
epeated L = 499 times, and a ‘bootstrap distribution’ of θ*

s obtained. This provides an estimate of the sampling distri-
ution of the parameter θ* as would be expected if there is
o stimulus response present (H0). By comparing θ with the
umulative probability distribution of θ* (see Fig. 2), we find
he fraction of θ* that are larger than θ: this is the estimated
-value. If this is smaller than some chosen significance level
(say α = 5%), we reject the null-hypothesis of no response

Fig. 2, right) and consider the value of θ to be statistically
ignificant, i.e., a response has been detected. If all θ* < θ, we
ay p < 1/L (i.e., p < 0.002 in our case of L = 499). If p > α and
is towards the left of the distribution of θ* (Fig. 2, left plot)
e accept the null hypothesis of no response.

.3. Monte-Carlo simulation

In order to test the proposed methods, we first carried
ut a Monte-Carlo study, simulating signals with no stimulus
esponse. The aim was to determine whether the selected false
ositive rate (α = 5%) is actually obtained, when no response
s present. We used simulated signals in this task, in order to
btain the large amount of well-controlled test data required
or this task. We used an autoregressive (AR) model to simu-
ate the EEG signals. The AR parameters were estimated from
ne of the recorded signals by the Yule–Walker method. We
elected this ‘model’ signal by identifying the EEG recording
hose power spectrum was closest to the median power spec-

rum of the 12 recordings at 0 dB SL. This may be considered
he most ‘typical’ of all the recorded signals. We estimated
he AR model order of this signal according to the Final Pre-
iction Error (FPE) [24], from which an order of 16 was
elected. It was found that the FPE did not give a minimum
ut showed an initial sharp decrease, and after a ‘knee’ an
lmost flat section, where higher orders would lead to mini-
al improvements in FPE. The order chosen corresponds to

he point just after the ‘knee’. The estimated AR power spec-
rum does not show spectral peaks at the stimulus frequency
r its harmonics. We then simulated 500 EEG signals. All
our parameters (diff, power, Fsp, ±difference) were calcu-
ated from the coherent average of these signals (with trigger
oints at 30 ms intervals, and analysing the time-interval from
–15 ms following each stimulus) and tested the significance

with α = 5%) using the bootstrap method. Since this signal
oes not contain a stimulus response, false-positive detection
f a stimulus response is expected in approximately 5% of
ases. The false-positive rate from the simulation study gives
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ig. 2. Bootstrap distribution of diff* from one subject at two different stimu
arger than a given value of diff. The × marks the value of diff obtained from
f that value. The example on the left did not give a statistically significant

n indication of the ‘coverage error’ of the bootstrap method
hen applied to each of the parameters.
We then investigated the power of the proposed method

o detect responses when present. To this end we simulated
BR data by adding a ‘response’ to a random background
EG signal. The stimulus response used corresponds to the
oherent average from one of the signals recorded in a normal
ubject at 40 dB SL, which was then multiplied by a gain
actor to obtain the desired SNR. We did this for nine different
ignal-to-noise ratios (SNR = −20 dB to 20 dB in the steps
f 5 dB, calculated on the averaged signals, corresponding to
53 to −13 dB in the raw data). The background EEG signals
ere obtained by the same AR process used above. At each
NR, 500 simulated ABR data were generated. As before, the
our parameters were calculated and their significance tested
sing the bootstrap method. The fraction of these 500 signals,
t which p < 0.05 was determined, indicating the power of the
ethod.

.4. Application to recorded signals

The bootstrap tests were then applied to the data recorded
rom the normal subjects, and hearing thresholds were found
or each of the four parameters. The threshold was defined
s the minimum stimulus intensity at which p < 0.05 (with
< 0.05 for all higher stimulus intensities also). We also show
he change in hearing threshold when p < 0.01 is used. These
hresholds were compared to those determined by three expe-
ienced audiologists, who independently inspected the ABRs
isually. Furthermore, inter-observer reliability for the visual

a
a
b
e

nsities. The p-value gives the fraction of cases (out of L = 499) which were
iginal data, and the corresponding p-value gives the statistical significance
e (p = 0.65), but for the one on the right, a response is detected (p < 0.002).

nspections in this experiment was measured by Cohen’s
appa statistic [25]. Kappa is defined as the ‘proportion of
bserved agreement after correction for chance agreement’.
ts value is between 0 and 1, which accounts for the range
rom poor to excellent reliability.

Finally, in order to show how the bootstrap method can be
pplied with varying numbers of stimuli, and how this affects
he detection of responses, we broke each recording (roughly
000 stimuli) into blocks of n = 100 stimuli with no over-
aps between blocks. Then we extracted the parameters θ and
pplied the bootstrap test to every block, and thus obtained a
-value for each. We then found the fraction of blocks (over
ll 12 recordings) in which the response could be detected, at
ach of the six stimulus levels (0–50 dB SL in steps of 10 dB).
e then repeated this process for n = 200, 300 . . . 2000 stim-

li. This provides a quantitative measure of the improvement
n performance, as more stimuli are averaged.

. Results

.1. Monte Carlo simulations

The percentages of false positives in the simulated data
ithout a stimulus-response were 4.0% for diff, 3.4% for
ower, 4.4% for Fsp and 6.0% for ± difference. These values

re all close to the expected value of α = 5%, and within the
cceptable range of 3.2–6.8% given by the binomial proba-
ility distribution of 500 trials with probability of ‘success’
qual to 5% (95% confidence limits). Note that the four
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also showed a significant response.

Fig. 5 shows the average hearing threshold given by the
three observers (subjectively) and compares these to the
results obtained from the bootstrap method. Results are given

Table 2
Examples of p-values for the four parameters at different stimulus intensities,
ig. 3. Percentage of responses detected as a function of signal-to-noise ratio
SNR) of the raw data. Results correspond to K = 2000 averages (SNR = −20
o 20 dB in the coherent average).

arameters were all calculated from the same set of 500 sim-
lated signals.

The results of the simulation with added responses are
hown in Fig. 3. As expected, the percentage of detected
esponses consistently increases with the increase of the SNR
evels for all four parameters. For all parameters (diff, power,
sp and ± difference) results converge to 100% detection at
igh SNR, and to the expected α = 5% at low SNR. At mid-
ange SNRs, there is no significant difference between results
or Fsp and power (t-test, p > 0.05), but diff and ± difference
re better and worse, respectively (t-test, p < 0.05).

.2. Recorded ABRs

Subjective inspections: The three experienced audiolo-
ists determined the hearing thresholds by comparing the two
eplicate coherent averages of ABR data at the same stimulus
ntensity, and then finding the minimal stimulus level at which
consistent response was obtained. The results are given in
ig. 4, showing quite large variations between raters, consis-

ent with the observations in [3], and underlining the need for
bjective methods for response detection.

Inter-observer reliability was measured by the Kappa
tatistic [25]. The values of Kappa for all three pairs of judges
ere shown in Table 1. The common interpretation of the
eliability is that Kappa should be no less than 0.90 to be
egarded as high [1], i.e., for there to be a good agreement
etween judges. Clearly, this is not the case in Table 1.

able 1
appa values for all possible pairs of the judges

udges Kappa

& B 0.70
& C 0.63
& A 0.81

f

S
i

1
2
3
4
5

p
T

rom the ABR by three experienced audiologists (A, B, and C) through visual
nspection. For each subject, the three bars represent the hearing threshold
stimate of A, B and C respectively.

The hearing threshold was then estimated for each sub-
ect, using the bootstrap technique. The p-values calculated
or each of the four parameters, at each of the stimulus inten-
ities are shown in Table 2 for one subject. The minimum
timulus intensity at which a significant response (p < 0.05)
s consistently obtained, is considered the hearing threshold.
or example, for diff, a response was detected from 10 dB
p < 0.05) upward. For higher stimulus-intensities, the results
re also significant. So the hearing threshold for diff, Fsp
nd ± difference is considered to be 10 dB in this case, and
hat of power 0 dB. In general, the higher stimulus intensi-
ies provide stronger responses and lower p-values. However,
here were a number of exceptions to this (not shown), and
isual inspection of responses confirms that in some record-
ngs the responses are somewhat less evident at slightly
igher stimulus intensities. Note that for these cases we
efine hearing threshold to be the lowest stimulus intensity
t which p < α, and for which all higher stimulus intensities
or one subject

timulus
ntensity (dB)

diff p power p Fsp p ± p

0 0.236 0.006 0.144 0.744
0 0.002 0.004 <0.002 0.026
0 <0.002 <0.002 <0.002 0.004
0 <0.002 <0.002 <0.002 <0.002
0 <0.002 <0.002 <0.002 <0.002
0 <0.002 <0.002 <0.002 0.002

-values are obtained from the bootstrap test using roughly 2000 stimuli.
he p-values marked in bold indicate the hearing threshold.
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ig. 5. Mean hearing thresholds of 12 subjects for 3 subjective visual inspec-
ions (A, B, C) and 4 objective parameters (diff, power, Fsp, ±difference,
espectively). The objective hearing thresholds are determined with signifi-
ance levels α = 5% and 1%.

or α = 5% and α = 1%. The parameter power appears to be
he most sensitive, finding responses at lower stimulus inten-
ities than any of the human examiners (p < 0.05, sign test,
ower at α = 5% compared against examiners A and B, but
ot C). The parameter power was also found to give a signifi-
antly (p < 0.05, sign test) lower thresholds than ± difference;
o significant difference was found between the remaining
arameters. As expected, the thresholds for α = 1% are higher
han those for α = 5%.

We also investigated the effect of the number of epochs
stimulus responses) recorded, on the ability to detect a
esponse using the bootstrap approach. We therefore applied
he bootstrap tests to progressively increasing numbers of

timuli. Fig. 6 illustrates the results for the parameter power.
s expected, the fraction of cases in which the ABR is
etected increases with increasing stimulus intensity and also
ith the number of sweeps. At 40 and 50 dB SL, 800 stimuli

ig. 6. The fraction of cases in which the ABR was detected is shown as
function of number of epochs (stimuli) and the parameter power. The

ootstrap method (p < 0.05) was applied with increasing numbers of stimuli,
nd stimulus intensities between 0 and 50 dB SL. Note that for this result
he signals were broken down into non-overlapping blocks of n stimuli, such
hat for example at n = 100 each of the 12 subjects provided 20 blocks, but
t n = 2000, only a single block.
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ere enough to detect the response in all of the 12 subjects
ith the parameter power (see Fig. 6); 1100 stimuli were

equired for diff and Fsp. For ± difference, 2000 stimuli at
0 dB were required to achieve 100% detection.

. Discussion and conclusion

The need for objective methods to detect evoked responses
as clearly illustrated by the example of the ABR presented
ere. There was considerable disagreement between the sub-
ectively selected hearing thresholds given by the three expe-
ienced audiologists (A, B, C) and this was reflected in the
elatively low values of Kappa. Techniques for the automated
etection of evoked responses usually involve the calculation
f a parameter, for which a threshold is then selected, above
hich the response is deemed to be present. The selection
f this threshold may be based on experience and experi-
ental work e.g. [26]. The bootstrap technique presents a

ery attractive and flexible alternative, by providing a simple
eans of estimating the statistical significance (p-value) of
parameter. It does so by comparing the parameter-value

o that expected under the null-hypothesis of no stimulus
esponse.

The use of the bootstrap method circumvents potentially
ntractable statistical analysis, which would otherwise have to
e carried out, in order to obtain a closed-form solution for the
tatistical analysis of each parameter. Such analyses would
lso usually involve assumptions regarding signal statistics,
hich it may be difficult to justify or test, for each recording.
onventional statistical analysis is also complicated in this
ork by the autocorrelation of the signals, such that succes-

ive samples are not independent. This, for example, is the
eason why the Fsp does not correspond to the F-statistic, with
he degrees of freedom corresponding to the number of sam-
les analysed [6]. One approach to overcome this is to find
hresholds based on ‘worst case’ assumptions for the degrees
f freedom, from which a critical (threshold) value for the
sp of 2.25 (α = 5%) [6] has been suggested, when using 250
weeps. We compared this to the mean value of the 95th per-
entile (corresponding toα = 5%) of the bootstrap distribution
f the Fsp, which gives 1.81 (mean value from the 12 sub-
ects over all stimulus intensities). It would thus appear that
he threshold of Fsp = 2.25 is too high for α = 5% - in accor-
ance with the worst-case assumptions made in deriving it.
hen the number of stimuli was increased to 2000, the boot-

trapped critical value was 1.75. As expected the increased
egrees of the freedom of the denominator lead to tighter
ounds on the Fsp. Furthermore, it was found that the critical
alues (α = 5%) varied quite considerably between individu-
ls, indicating that universally valid threshold values for Fsp
robably cannot be justified. The criterion for ± difference [7]

as also tested with 2000 stimuli. This was found to be 3.19

mean value) when using the bootstrap distribution, which is
onsiderably higher than the value of 2, given by Wong and
ickford [7] based on experimental studies.
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The bootstrap analysis thus shows that the threshold values
or the parameters depend on the number of stimuli used
for a given level α), and vary quite considerably between
ndividuals. The latter is probably due to varying signal and
oise ratios, and band-widths of each recording. Thus, clearly
ny fixed threshold for parameters such as Fsp or ± difference
ould lead to false-positive rates that differ between subjects.
The bootstrap method makes few assumptions about the

ata, which is one of its main benefits. A ‘significant’
esponse to stimulation may be considered to be one in which
he parameter θ of the coherent average has ‘surprisingly’
arge (or small) values. The bootstrap method allows this to
e tested directly, by comparing the θ from the coherent aver-
ge, to the θ* of the incoherent averages obtained from the
ame data. If there is nothing ‘special’ about the signal seg-
ents following the stimulation, θ and θ* would be similar;

f θ is very different to θ*, there is clear evidence of signal
omponent that is time-locked to the stimulus. The bootstrap
ethod is thus intuitive in testing for a significant response,

nd does so without assuming a statistical distribution for
he samples in the signals. It does assume that the signal is
rgodic, such that samples drawn randomly from the record-
ng represent the ‘random process’ generating the data.

In using the bootstrap method, the significant level (α) has
o be chosen. In this work we used α = 5%. If this is reduced
o 1%, the hearing threshold for the case illustrated in Table 2
ould remain the same for diff, power and Fsp, but increase

o 20 dB for ± difference. Overall, the increase in threshold
s small (Fig. 5). Clearly the drawback of reducing the false-
ositive rate is the concomitant increase in false-negatives.
hich of these errors is more important depends on the

pplication: for example, in monitoring depth of anaesthesia
27] a significant mid-latency auditory evoked responses may
ndicate that the patient is awakening, which might require
rompt intervention by the anaesthetist. Thus high sensitivity
o the presence of a response (and hence high α) is desirable.
n the other hand, in screening tests for hearing loss, a false
ositive response may lead to missing a hearing impairment,
nd a low false-positive rate is desirable.

The bootstrap technique can deal with varying numbers of
timuli, while maintaining pre-defined false-positive rates. In
ig. 6, it is evident that at 40 and 50 dB SL, 800 stimuli were
nough to detect the response, which is rather less than the
000 recommended in the literature. Thus, in normal hearing
ubjects, at these levels of stimulus the duration of the test
ould be considerably reduced, as already indicated by Don
t al. [21].

In this work we illustrated the bootstrap approach using
BRs. It also can be applied in other modalities (e.g. visual,

omatosensory, and event-related). Bootstrap methods have
een used previously in finding confidence limits for the SNR
nd inter-ocular amplitude ratio in visual evoked potentials

18], and various parameters in somatosensory evoked poten-
ials [16], as well as in assessing ROC curves [28] for steady-
tate auditory evoked potentials. However, it does not appear
o have been used previously for detecting the presence of an

[

[
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voked response. In the current work we are not proposing
hat the bootstrap method should replace established statis-
ical criteria for detecting responses [29,30]. However, the
ootstrap method can be applied in testing the significance
f parameters that are not readily analysed by conventional
tatistical approaches, such as the Fsp or ± difference.

The bootstrap approach presented allows the statistical
ignificance of arbitrary signal parameters to be assessed and
hus provides a very powerful tool for the future development
f evoked-response analysis, including the selection of new
nd optimized parameters for response detection. It allows
esponses to be detected at a user-defined false-positive rate,
or an arbitrary number of stimuli, and takes the statisti-
al characteristics of each individual recorded signal into
ccount. In addition to evoked responses, it could also be
pplied to other applications in which coherent averaging is
sed, such as high-frequency ECG analysis.
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