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Abstract

Robot teleoperation systems have been limited in their utility due to
the need for operator motion, lack of portability and limitation to sin-
gular input modalities. In this article, the design and construction of a
dual-mode human–machine interface system for robot teleoperation
addressing all these issues is presented. The interface is capable of di-
recting robotic devices in response to tongue movement and/or speech
without insertion of any device in the vicinity of the oral cavity. The
interface is centered on the unique properties of the human ear as
an acoustic output device. Specifically, we present: (1) an analysis
of the sensitivity of human ear canals as acoustic output device� (2)
the design of a new sensor for monitoring airflow in the aural canal�
(3) pattern recognition procedures for recognition of both speech and
tongue movement by monitoring aural flow across several human test
subjects� and (4) a conceptual design and simulation of the machine
interface system. We believe this work will lay the foundation for a
new generation of human machine interface systems for all manner
of robotic applications.
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1. Introduction

Sensors, actuators and onboard intelligence have not yet
reached a level where robotic vehicles may function with com-
plete autonomy. Human operation and command is still neces-
sary for utility in unstructured environments, tasks where in-
dividual action is undesirable or infeasible and in situations
where a robot must assist and/or interface with people. The
fundamental goal of a teleoperation system is to facilitate such
control through uniting a human operator as the supervisor
with a robot as the task executor. Research in the field has
highlighted applications ranging from space robotics, terres-
trial and undersea exploration, handling of hazardous mate-
rials, surgical robots, dismantling of explosives, use in nu-
clear facilities, operating in inaccessible sites in rescue, sur-
veillance, home assistance, industrial mining and (military)
scouting (Melchiorri and Eusebi 1996). Given its breadth, ro-
bot teleoperation has benefited from the confluence of research
efforts in an array of fields including engineering, psychology,
education and medicine (Goldberg 2000).
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1.1. Human–machine interfaces for telerobotics

Almost any robotic teleoperation system will consist of three
fundamental components (Cui et. al. 2003): (1) the remote ro-
bot� (2) the communication link� and (3) the human–robot in-
terface. While all three have been extensively researched1, al-
most all existing systems rely on joysticks (operated by the
hands or more rarely with the head, chin and/or neck), com-
puter mouse devices or other mechanisms based on external
operator (physical) movement for the human–robot interface
(Cui et al. 2003� Kuan and Kuu 2003).

A number of researchers have recognized the importance
of creating smoother and more natural human interfaces for
robot teleoperation. Concepts for body-worn devices such as
exoskeleton mechanical devices (Chang et al. 1999), instru-
mented gloves (Tezuka et al. 1994�Harada et al. 2000), inertial
(Yun and Bachmann 2006) or electromagnetic (Bashashati et
al. 2006) motion tracking sensors on the arms, head or legs,
electroencephalographic (EEG) brain activity sensors (Millan
et al. 2004� Tanaka et al. 2005), and electromyographic (EMG)
muscular activity sensors (Ferguson and Dunlop 2002� Fukuda
et al. 2003) have all been explored. Additionally, camera-based
(vision) and laser interfaces (Hu et al. 2003� Kofman et al.
2005) have been developed to recognize hand gestures, track
arm motions or measure eye movement (Chen and Newman
2004) for assessment of operator intent and generation of ro-
botic control signals.

As an alternative to external movement, a great deal of work
has also highlighted the potential of the human oral cavity as
a source for control input (primarily in rehabilitative applica-
tions). Contemporary examples include inserting a track-ball,
joystick, plastic palate or ‘sip-and-puff’ straw into the mouth
of an individual with the tongue or lips providing control input.
Voice recognition software, arguably a subset of these oral-
cavity interfaces, also offers a promising technique for human-
robot interface. Although external noise can disrupt and mask
operator commands, several research groups have successfully
implemented voice recognition systems as an interface for ro-
bot teleoperation (Marin et al. 2002� Liu et al. 2005).

1.2. Limitations of current systems

While these developments offer a wealth of future promise
for robotic control, their utility at present has been restricted
largely to laboratory demonstrations in controlled environ-
ments. Major challenges which have limited the realization of
natural human–machine interface systems functioning in real-
world situations include:

1. Communications in particular has been the focus of a proliferation of recent
work due to internet and telecommunications advances (Siegwart and Gold-
berg 2000).

� Portability and robustness: Most existing interfaces con-
sist of components that are not robust enough, too awk-
ward or too bulky for human use outside of controlled
environments. Many sensors (e.g. cameras oriented for
motion capture) can be used only in indoor spaces which
have been prepared a priori and do not have external in-
terference (e.g. darkness or obstacles occluding vision
sensors, background noise disrupting voice recognition,
etc.). Furthermore, systems that require extensive sup-
porting and/or processing equipment (e.g. instrumented
gloves, physiological sensing, etc.) can be difficult to
transport and use in uncontrolled environments (out-
doors, unfamiliar locations, etc.), and may be unwieldy
for a human operator.

� Motion constraints: Most existing interfaces may be
classified as mechanical input devices� i.e. the user phys-
ically moves some component in order to generate a
control input signal. In assessing such systems, Kofman
et al. (2005) stated: ‘. . . contacting devices may hinder
dexterous human motion due to the presence of the de-
vices, sensors or attached cables’, and further observed
‘...mechanical robot-arm replicas, dials, joysticks, com-
puter mouse, and computer graphical interfaces require
operator motions that may be unnatural and must be
learned’. Constant bodily movements are also not fea-
sible in many situations (e.g. when the hands are oc-
cupied� Richardson and Rodgers 2001� Karlsen 20042),
and clearly exclude individuals with extremity impair-
ments who need to control assistive devices.

� Input modality: Interfaces typically allow for only a sin-
gle mode of interaction. This precludes the possibility
of interacting with the robotic device on more than one
level. Consider, for example, low-level versus high-level
input to maneuver a robot through a dense environment.
One could directly drive the robot, give higher-level di-
rections (‘move forward X meters, turn right,...’), or des-
ignate waypoints on a map (Wang and Liu 2004). Tran-
sition between different situations, different robots and
different environments is not feasible unless the inter-
face can accommodate this changing level of interac-
tion. A small body of research has attempted to ad-
dress this issue (Lim et al. 2003� Raneda et al. 2003�
Wang and Liu 2004� Marin et al. 2005� Urban and Ba-
jcsy 2005� Galindo et al. 2006) by combining voice
recognition with other modalities (Marin et al. 2005�
Urban and Bajcsy 2005). However, these solutions de-
mand the integration of several disparate input devices

2. In a recent document summarizing their needs (Karlsen 2004), the US Army
Tank and Automotive Command (TACOM) stated ‘Teleoperation is currently
the most reliable method for operating an unmanned ground vehicle. However,
there are a number of disadvantages to standard methods of teleoperation, in-
cluding the requirement for the soldier to give up his weapon in exchange for
a control device’.
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(e.g. cameras, microphones and/or joysticks� Wang and
Liu 2004), lasers and pressure sensors (Lim et al. 2003)
which incur further motion constraints, portability and
robustness issues.

Oral interface mechanisms offer some potential for address-
ing these challenges. However, they can be intrusive, may irri-
tate the mouth, impair verbal communication, present hygiene
issues and are limited in signal generation capacity. External
noise also limits voice recognition systems to controlled en-
vironments. Although microphone arrays designed to monitor
and filter out environmental noise offer some potential to ad-
dress this issue, these systems still suffer from the fact that
the speech capture microphone has no direct shielding since it
must be placed near or in front of a user’s mouth. In-ear mi-
crophones (Westerlund et al. 2001) are also available for col-
lecting speech data in high noise environments, yet this work
has seen no application in robotics and relies on a custom-
made device that may not be desirable when dealing with mul-
tiple users or field environment constraints. Finally all these
devices still offer only one input modality. In summary, we are
not aware of any human–machine interface system available
for robot teleoperation that is not hindered by at least one of
the aforementioned limitations.

1.3. Aim of research

The goal of our ongoing research is to develop a human–robot
interface which can overcome these challenges for seamless
teleoperation of robotic platforms in any real-world environ-
ment. In past work (Vaidyanathan et al. 2004� 2006� 2007) we
reported the development of a non-intrusive tongue-movement
machine interface. In particular, we demonstrated that tongue
movements within the human oral cavity create unique, subtle
pressure signals in the ear (referred to as tongue-movement-
ear-pressure or TMEP signals) that can be recognized with
a range of pattern recognition strategies (Vaidyanathan et al.
2007).

In this work, we introduce a dual mode human-robot teleop-
eration interface based on monitoring airflow in the aural cav-
ity. The interface is easily portable and requires no physical
movement from the human operator. It is capable of detect-
ing both tongue movement and speech for multiple levels of
control input using nothing more than a microphone-earpiece
housing. We present research results demonstrating the verac-
ity and operability of the system including: (1) an analysis of
the sensitivity of the human ear canals as acoustic output de-
vice� (2) the design of a new sensor for monitoring airflow in
the aural canal� (3) pattern classification algorithms and imple-
mentations for recognition of both speech and tongue move-
ment by monitoring aural flow across several human test sub-
jects� and (4) a conceptual design and simulation results on a
candidate robotic platform of each mode of the human-robot
interface.

2. Modeling of Air Flow Within the Human Ear
Canal

We have developed a model of the ear canal to establish the
veracity of using the ear as an output device and to dictate
proper sensor design. The acoustic sensitivity of the human
ear acting as an output platform has been studied from two
aspects: a static aspect and dynamic aspect. The former studies
the sensitivity created by the change of ear canal volume, while
the latter studies the sensitivity created by the airflow velocity
in the ear canal.

2.1. Ear canal pressure change due to volume variation

We have modeled the ear canal as a 2 cm3 volume cylinder as
specified by the American National Standards Institute (ANSI)
S3.7 and IEC 711 standard. When the tongue or cheek moves,
forces will be created around the walls of the ear canal, which
in turn changes the volume of the ear. The whole process is
approximated as adiabatic. Therefore, according to thermody-
namics theory, we have

PV � � C� (1)

where P is the air pressure in the ear canal, the summation of
atmospheric pressure P0 and induced acoustic pressure p� V is
the volume of the ear canal, the summation of the static vol-
ume and the variation due to tongue movements� � = 1.4 is the
specific heat ratio of the air� and C is a constant. The relation-
ship between the induced acoustic pressure and the variation
of ear canal volume can be obtained from Equation 1 as:

p � �� P
�V

V
� �� P0

�V

V0
� (2)

where �V is the volume variation of the canal and V0 is the sta-
tic ear canal volume. Based on Equation 2, a relative change in
canal volume as small 10�6 introduces an acoustic pressure of
77 dB (from a reference of 20 �Pa). Thus, with a volume vari-
ation of only 0.002 mm3 in our model, a significant acoustic
pressure is created inside the ear canal, justifying the premise
of its sensitivity as acoustic output device.

2.2. Ear canal acoustic pressure due to volume speed of
airflow

In Section 2.1, the pressure variation within the static ear canal
was evaluated. In actuality, the volume change within the ear
canal varies dynamically according to the airflow velocity. In
the following analysis, the airflow velocity is treated as a har-
monic signal with amplitude v/2 and angular frequency �. At
low frequency, the equivalent circuit for the 2 cm3 canal is
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Fig. 1. Sensor/earpiece housing for signal capture.

treated as an acoustic capacitor. Therefore, the absolute in-
duced acoustic pressure inside the ear canal due to airflow ve-
locity is:

�p� � �� P0

�V
� (3)

where v is the velocity, V = 2 cm3 and ù is the angular fre-
quency of the airflow when treated as harmonic vibration. Ac-
cording to Equation 3, an airflow velocity v of only 1 mm3

s�1 at 10 Hz results in an induced acoustic pressure of p =
1.13 Pa, which corresponds to 95.0 dB (from a reference of
20 �Pa.). Both of these models demonstrate the sensitivity of
the ear canal as an acoustic output device for human machine
interface.

3. Sensor (Earpiece) Design for Aural Flow
Monitoring

Our research team has designed and, through iterative proto-
types, significantly improved the performance of the earpiece
sensor housing to detect pressure fluctuations in the ear canal.
In previous experiments, the pressure sensor and circuitry were
housed in a custom-designed and molded earplug housing. We
have completed the design and fabrication of a new physical
housing suitable for use with any subject with no custom-made
components. The result is the earpiece shown in Figure 1.

The earpiece system is separated into two components. The
portion of the device that is actually inserted in the ear to pick
up pressure fluctuations is a soft foam shell with a tube that
connects the ear canal to the sensor and electronics housing.
Studies conducted for sensor placement (based on the acoustic
air flow models) dictated the shape and depth of insertion of
the microphone-earpiece housing. The tube capturing airflow
input to the microphone resides on the interior portion of the
housing within the ear canal. The tube capturing airflow in this
device resides within the ear at around 10 mm from the open-
ing of the ear canal. The sensor and electronics housing are

formed into a small molded shell, which is then fitted over the
back of the ear. The system has been demonstrated to provide
comparable performance and comfort to the first generation
system and is easily adaptable to a wide range of users. Fur-
thermore, due to the compliant soft foam insertion, the new
earpiece enjoys greater benefits with respect to shielding pres-
sure signals from environmental noise.

4. Measure of Aural Flow Resulting from
Initiating Actions

4.1. Speech

Figure 2 shows speech data collected by the sensor earpiece
housing in a high noise environment. Figure 2a shows data
collected with the sensor in Figure 1 located in the ear, while
Figure 2b shows data collected with the same sensor located
in front of the mouth. Both experiments were performed with
the same word and same background noise for comparison to
traditional speech recognition.

The two plots clearly illustrate the external shielding ca-
pability of the device when inserted in the ear, which high-
lights the superiority of the device in noisy environments com-
pared to other speech recognition systems. While other re-
search groups have investigated speech capture in the aural
cavity (Westerlund et al. 2001� 2002), this is the only work
we are aware of that has made use of a non-customized sensor.

4.2. Tongue movement

Tongue movement signals are more difficult to generate than
speech, and normally take several hours of practice for new
users. Based upon extensive feedback from test subjects, we
have defined four basic tongue movements for robotic inter-
face, which nearly all operators should be capable of generat-
ing (Vaidyanathan et al. 2007). These are: touching the tongue
to the top/front center of the roof of the mouth, and flicking
it gently forward (forward movement), touching the tongue to
the bottom/front center of the mouth, the front/right side of the
mouth, or the front/left side of the mouth and flicking it gently
up from any of these positions (backward, right and left move-
ments). Backwards, right and left tongue movements are illus-
trated graphically in Figure 3. While a broad range of actions
are possible and may be tailored to individual user preference,
most subjects have been comfortable with these movements�
we therefore refer to this set of 4 movements as the standard
interface.

Figure 4 shows a sample of raw data gathered from a micro-
phone embedded in the housing described above and inserted
in the ear of a subject as shown in Figure 1. The subject was
asked to make a right movement as previously described. Not
only does the trace offer a very clear indication of the onset of
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Fig. 2. Aural speech data displaying nine trials of the word ‘one’ within a high noise environment. (a) Sensor located in the ear
and (b) sensor located in front of the mouth.

Fig. 3. Three tongue initiating movements.

Fig. 4. Tongue movement data.

the motion, but its termination is also visibly evident, as nearly
all residual traces of the motion are gone after only 0.2 sec-
onds. The short time frame in which the activities occur allows
for quite rapid control input.

5. Signal Recognition Procedure

5.1. Speech

5.1.1. Characteristics of in-ear speech

The microphone-earpiece housing was used to collect speech
data from several subjects (Newton 2005). The speech data-
base was collected in an office environment and consisted of
twenty adult subjects (16 males and 4 females). Each subject
repeated a set of seven short isolated words for robotic com-
mand (down, up, right, left, pan, move, kill� based on feedback
from TACOM for a soldier to control a mobile robot in the
field) fifty times, resulting in 7000 trials. Data were collected
with an 8 kHz sampling frequency to ensure spectral informa-
tion of the quality of a telephone. Short words were selected
for the study as they were thought to be a better fit for the
robotic control. Words selected contained both voiced (such
as /i/ or /ay/) and unvoiced (such as /t/ or /f/) sounds, high
(such as vowels) and low (/t/ or /f/) energy sounds which made
the speech endpoint detection process challenging (Qiang and
Youwei 1998).

Although speech data normally contains frequency con-
tent above 2 kHz, we have observed that the ear canal en-
vironment acts as a low-pass filter and significantly damp-
ens speech information above 2000–2500 kHz. Figure 5 dis-
plays spectrograms obtained for one representative trial of the
word ‘right’ collected with the ear microphone placed inside
the ear canal and in front of the mouth. Shading in the spec-
trogram plots represents low and high energy levels of the
speech signal. Similar low-pass behavior was observed for all
words (Bulbuller et al. 2006). We also noted that some of the
recorded data included bodily-created noises such as gulps,
tongue clicks, lip smacks or coughs picked up by the sensitive
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Fig. 5. Word ‘right’ recorded via ear microphone.

microphone device. In addition, the microphone and the A/D
converter used also introduced a 50–60 Hz humming noise
from the collection equipment, and a DC bias.

5.1.2. Data pre-processing

In order to prepare the data for processing, the DC offset
was first removed. Next, the data was passed through a 6th

order infinite impulse response (IIR) elliptic high-pass filter
to ensure a sharp cutoff behavior would remove the low
frequency equipment noise and preserve speech information
above 100 Hz. The frequency specifications of the selected
filter configuration were a stopband equal to (0, 60 Hz), pass-
band equal to (100, 4000 Hz) and passband ripple equal to 0.5
dB. We noted that the filter nonlinear phase characteristics did
not result in perceivable speech distortion.

5.1.3. Speech endpoint detection

Determining the beginning and the termination of speech in
the presence of background noise is a complicated problem,
except in cases of high signal-to-noise ratios (�30 dB or bet-
ter) which are rarely seen in real world applications (Deller et
al. 2000). Accuracy in the speech segmentation step is essen-
tial as numerous results have shown that the efficiency of ac-
curate endpoint detection has a significant and direct effect on
the performance of the associated recognition system (Qiang
and Youwei 1998�Ying et al. 1993). In addition, a noise-robust
endpoint detection algorithm must also be capable of deal-
ing with speaker-dependent disturbances like coughs, gulps,
tongue clicks, lip-smacks, etc. (Srydal et al. 1995), which we

have observed to produce an acoustic signature in the ear. The
collected speech also included mechanical and bodily-created
noises.

Two simple quantities are normally used in speech de-
tection algorithms: short-term energy and zero-crossing rates
(Deller et al. 2000). The zero crossing rate (ZCR) leads to a
simple scheme which allows users to track rough changes in
a signal frequency behavior by computing the rate at which
a zero-mean signal changes sign. Low frequency signals have
samples which tend to stay of the same sign longer than high
frequency signals. Thus, changes in the signal frequency con-
tent may be tracked by monitoring changes in the ZCR. Ra-
biner and Sambur (1975) proposed a speech endpoint detec-
tion scheme based on a combination of the short-term energy
and zero-crossing rates. The main advantages of this scheme
are that it is computationally inexpensive and can be imple-
mented for online speech segmentation� numerous variants
have been proposed to detect the speech endpoints over the
years.

This algorithm was customized to our in-ear speech end-
point detection problem (Bulbuller et al. 2006). The resulting
scheme is a two-step search algorithm where the short-time
energy quantity is first applied for a coarse segmentation task.
Second, the zero-crossing measure refines the coarse bound-
aries by considering the signal behavior around the initial end-
point estimates. The zero-crossing measure applied in the sec-
ond search is designed to help detect low-energy phonemes
at the beginning or end of the word, especially when dealing
with weak fricatives (such as /f/, /th/, /h/), plosive bursts (such
as /p/, /t/, /k/) or final nasals (such as /m/, /n/, /ng/). Figure 6
shows short-term energy and zero-crossing measures for a typ-
ical utterance of the word ‘left’ from ear-microphone data. In
this study we selected rectangular frames of 10 ms with 50%
overlap for the speech segmentation phase.

Coarse endpoint detection phase. The mean and the stan-
dard deviation of the short-term energy and zero-crossing mea-
sures are first computed during the first 50 ms of recording,
assuming there is only background noise in that interval, to es-
tablish a noise floor reference for each recording. Upper and
lower threshold values (shown as Tu and T l on the upper plot of
Figure 6) for the short-term energy and a threshold (shown as
Tzc on the lower plot of Figure 6) for the zero-crossing measure
are set based on the noise-only segment statistics and constants
determined by trial and error on the database under study, as
follows:

Tl � 8	 STEmin� Tu � 32	 STEmin (4)

STEmin � min[0�25�mean�STE)
 std�STE	] (5)

Tzc � min[0�25N �mean�ZCR	
 std�ZCR	] (6)

where N is the frame length� STE and ZCR represent short-
term energy and zero-crossing rate, and std(x) represents the
standard deviation operation, respectively.
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Fig. 6. Typical example of the use of short-term energy and zero-crossing rate in endpoint detection.

First, the short-term energy parameter is monitored to find
the first and second successive crossings of the upper thresh-
old Tu. Next, the scheme searches around these first and sec-
ond crossings to seek the coarse endpoints (shown as N1 and
N2), where the lower threshold T l is first exceeded. This ini-
tial search yields the tentative endpoints N1 and N2 shown as
dotted lines in Figure 6.

5.1.4. Endpoint detection refinement phase

In the next step of the algorithm, a fine search on the zero-
crossing plot is performed, moving toward the ends from N1

and N2 for no more than 10 frames, by examining the zero-
crossing rate to find three occurrences of counts above the
threshold Tzc. Finally, the final endpoint estimate is moved
backward and/or forward to the first threshold location cross-
ing if three such occurrences are found, as is illustrated with
N3 and N4 shown as solid lines in the bottom plot included in
Figure 6. Final endpoints remain at the initial estimates N1 and
N2 when three such occurrences over the zero-crossing thresh-
old are not detected. Finally, detected segments of duration 

100 ms are considered as false alarms and dismissed during
the search, as the words considered in this study have a longer
duration.

The overall endpoint detection scheme performs well on
average with the main exception that it produces some errors
detecting the word ending for ‘left’. This is most likely due to

the soft /t/ sound present as a result of the low-pass filtering
effect, resulting from the in-ear microphone setup which was
noticed in most of the recordings.

5.1.5. Speech feature extraction

Feature extraction is designed to convert the signal into a com-
pact set of parameters while preserving speech signal infor-
mation. First, the signal is divided into frames of 256 sam-
ples (corresponding to 32 ms) with an overlap of 100 sam-
ples (roughly corresponding to 40% overlap) from frame to
frame and a Hamming window is applied to each frame. Next,
features are extracted from each frame. We selected Mel-
Frequency Cepstral Coefficients (MFCCs), as they have been
extensively used as features in speech recognition (Davis and
Mermelstein 1980) and have been shown to outperform other
parameter types in speech recognition applications.

However, these features do not contain information re-
garding the speech signal dynamic evolution, which also car-
ries relevant information in speech recognition (Becchetti and
Ricotti 1999). Further improvements in recognition perfor-
mance can therefore also be obtained by taking into account
the dynamic characteristics of the MFCC features (Deng and
O’Shaughnessy 2003). The simplest approach to obtain these
dynamic features takes the basic difference of coefficients
between consecutive frames. The resulting delta-MFCC co-
efficients reflect cepstral changes over time. However, re-
searchers have also argued that the basic differencing operation
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Table 1. Confusion matrix for average word recognition rates (percent): average classification = 92.77%

Up Down Left Right Kill Pan Move

Up 92.5500 3.2125 2.3375 0.4375 0.3458 0.8208 0.2958

Down 0.3042 92.3333 1.7958 0.3250 2.3292 2.3500 0.5625

Left 2.1375 1.6875 87.6833 7.0792 0.6542 0.3625 0.3958

Right 0.4875 1.0750 2.6417 94.6708 0.4000 0.3792 0.3458

Kill 0.3125 1.7250 0.7917 0.4667 94.2292 2.2500 0.2250

Pan 0.0917 3.5500 0.9375 0.3375 1.8708 91.9458 1.2667

Move 0.6875 0.1000 1.4542 1.2875 0.2917 0.2167 95.9625

is too sensitive to random inter-frame variations and should be
replaced by a smoother estimate of the local time derivative
(Deng and O’Shaughnessy 2003). As a result, we used the fol-
lowing regression on the set of MFCC coefficients (Westerlund
et al. 2002) to generate the set of delta-MFCC coefficients:

dk �

M�
��1
��ck
� � ck
�	

2
M�
��1
�2

(7)

which is equivalent to passing the static MFCCs through a lin-
ear differential filter. Finally, delta MFCC parameters were re-
scaled to the range of the MFCCs to ensure better-conditioned
vector-quantized features.

5.1.6. Speech recognizer

Designing an isolated word recognition system first involves
extracting a set of characteristic speech feature parameters
from each word and tuning a specific classifier type. Hidden
Markov Models (HMMs) are used extensively in today’s mod-
ern automatic speech, and were selected as a tool for the first
analysis of in-ear speech data. This study implemented a dis-
crete observation left-to-right HMM (DHMM)� model sizes of
5–8 states were considered. Our experiments indicated that 8
states were sufficient to model the linguistic units of phonemes
present in the vocabulary.

Figure 7 summarizes the overall steps involved in the de-
sign of the HMM classifier considered in our study. First, the
speech signal was split into overlapping frames by applying
a Hamming window of length N = 256 samples (correspond-
ing to 32 ms for a sampling frequency equal to 8 KHz) with
an overlap of 100 samples (corresponding to about 40%). Sec-
ond, the first 12 MFCCs and 12 delta-MFCCs were extracted
from each frame of the segmented speech, resulting in feature
vectors of length equal to 24. Third, DC bias from the MFCCs
was removed and delta-MFCCs rescaled to the range of the
MFCCs. Two-thirds of the data were used in the training phase

Table 2. 95% confidence intervals for average recognition
rates shown in Table 1

Word 95% confidence intervals (%)

Up 86.00 – 96.00

Down 86.00 – 95.33

Left 79.33 – 93.33

Right 92.33 – 97.00

Kill 91.00 – 97.33

Pan 86.67 – 96.00

Move 93.00 – 98.00

Overall Classification 91.10 – 94.29

to estimate the HMM parameters, while the last third was used
in the testing phase to evaluate the recognizer performance.
Thus, the codebook was generated from feature vectors con-
tained in the training set and used to generate the HMM para-
meters.

Recognizer results. Tables 1 and 2 show average classifi-
cation performances obtained and associated 95% confidence
intervals obtained after 80 experiments for the testing sets. Re-
sults show an overall recognition rate of 92.77%. Results also
show the worst performances are obtained for the utterance
‘left’ with an average recognition 4.3% below the next higher
word recognition rate. We noted that misclassified ‘left’ ut-
terances occurred for trials where ending boundaries did not
include the low energy ‘t’ sound which was supposed to be
present at the end of that word. As a result, we surmise these
errors were mostly caused by the incorrect detection of the
speech boundaries, due to the unvoiced low-energy ending
sound ‘t’ in that specific word (Kurcan 2006).

5.2. Tongue movement recognition

At this time, we have developed a strategy to accurately de-
tect and classify, in real time, changes in the air flow pres-
sure that occur in the ear canal caused by tongue movements,
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Fig. 7. Average distortion versus codebook size.

or tongue-movement ear-pressure (TMEP) signals. The strat-
egy to first detect the presence of an unknown TMEP sig-
nal and then classify the TMEP signal is shown in Figure 8.
We have developed a new Decision Fusion classification strat-
egy which improves upon the unique strategy described pre-
viously by Vaidyanathan et al. (2006� 2007). Our past work
used nearest mean classifiers, whereas the results presented in
this paper uses Gaussian classifiers. The decision fusion clas-
sification strategy is based upon classifying the TMEP signals
at the time-instants in which the maximum M-class discrimi-
nation occurs, fusing the resulting classification decisions into
a discrete decision vector and classifying the decision vector.
The time-instants of the TMEP signals are first ranked accord-
ing to their individual classification accuracies. During testing,
the time-instants with the highest ranks are classified indepen-
dently and the decisions are fused into a single decision fusion
vector. The resulting decision fusion vector is classified using
a discrete Bayes classifier.

The averaged classification results using our new Gaussian
classifier for 8 test subjects with ages ranging from 19 to 54
(who were given several hours to practice the signals), are pre-
sented in Table 3, which shows a confusion matrix enumer-
ating classification accuracies. The 4 TMEP signal classes –
left, right, up and down – are represented. The confusion ma-
trix part of the results can be interpreted by examining the first
row which shows that on average, 97.39% of the test TMEP
signals of class ‘left’ was classified correctly as belonging to
that class, 0.9% were misclassified as ‘right’, 0.84% were mis-

Fig. 8. Block diagram of the TMEP signal estimation and clas-
sifiction strategy.
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Table 3. Gaussian decision fussion classifier accuracy:
total accuracy = 97.51%

Left Right Up Down

Left 97.39 0.90 0.84 0.87

Right 0.84 97.37 0.53 1.26

Up 0.22 0.97 97.71 1.09

Down 0.38 1.52 0.52 97.57

classified as ‘up’ and 0.84% were misclassified as ‘down’. The
total accuracy is a compilation of each class accuracy.

5.2.1. Simple and compound tongue movements

The four simple tongue movements (left, right, up, and down)
were selected because they can be made quite easily by most
individuals and intuitively correspond to maneuvers to steer
a robot. We have assumed the robot being controlled lacks the
on-board intelligence to distinguish context dependent signals.
Consequently, each tongue action initiates a unique command
signal and four tongue movements can only result in only four
robot actions. The most obvious approach to increase the num-
ber of command signals is to increase the number of simple
tongue movements, for example, 45 degrees to the left-up, 45
degrees right-up, 45 degrees left-down and 45 degrees right-
down. The drawback of this approach is that the performance
will deteriorate due to the higher overlap in the resulting ear
pressure signals. Furthermore, the performance will also dete-
riorate because it becomes increasingly difficult for an opera-
tor to repeat, in a consistent fashion, tongue movements with
smaller differences.

We introduce an alternative strategy in which the number of
command signals is increased without increasing the number
of tongue movements. The most important reason for selecting
the four simple tongue movements is that the number of com-
mand signals can be increased by forming compound tongue
movements consisting of 2 simple tongue movements. For ex-
ample, the number of command signals can be doubled by re-
peating each tongue movement twice with a brief pause (max-
imum = �) between the 2 tongue movements. As an example,
the compound tongue action (Left/Left) (m = 1)/(m = 1) can be
formed by flicking the tongue twice to the left with a pause less
than t = �. With additional practice, cross compound tongue
movements such as Left/Right (m = 1)/(m = 2), L/U (m = 1)/(m
= 3), L/D (m = 1)/(m = 4), . . . ., D/U (m = 4)/(m = 4) can also
be included to increase the number of command signals to a to-
tal of 20 for more complex human–machine interface control
and communication. The total number of commands that can
be generated from M simple tongue movements in this manner
is (M + M 2), significantly more than a traditional joystick.

Fig. 9. Stream of simple and compound TMEP signals shown
as blocks.

Classification of compound TMEP signals. A compound
TMEP signal hm
n�k	 can be classified by first detecting and
then classifying the compound signal. The number of classes
of the TMEP signals will, therefore, be (M + M2). When M
= 4, the total number of signal classes is 20, which is quite
high for any pattern classification problem. It is well-known
in pattern recognition theory that the classifier performance
deteriorates when the number of pattern classes increase. We
propose a novel M-class signal classification strategy for clas-
sifying the (M + M2) TMEP signals, each simple TMEP sig-
nal and each component of a compound TMEP signal. Note
that although the number of simple and compound TMEP sig-
nals is (M + M2), the number of distinct components is only
M. Classification, therefore, involves first detecting whether a
simple TMEP signal or a compound TMEP signal movement
was generated.

To illustrate the procedure, consider a time segment con-
taining a stream of TMEP signals which includes both simple
and compound TMEP signals. Figure 9 shows a stream of one
compound TMEP signal Zn/Zn
1 and two simple TMEP sig-
nals Zn
2 and Zn
3. The signals, shown as blocks, are used to
mark the start and end points of the TMEP signals. Let � be
the time required to classify a signal after the end point f of
the signal is detected,� be the maximum permissible time be-
tween the two simple TMEP signals of a compound signal, and
kn be the nth sample after the end-point f n of Zn is detected.
Zn is detected as a simple TMEP signal only if

�kn � fn	 � �� (8)

Zn and Zn
1 are detected as a composite signal if

kn � en
1 and � 
 �kn � fn	 
 �� (9)

The advantage of increasing the number of commands by
forming compound tongue movements is that the same detec-
tion and classification algorithms designed for simple tongue
movements can be used to detect and classify each compo-
nent of the compound tongue movement. Most importantly,
the number of signals to be detected and classified does not
increase. Consequently, the performance will not deteriorate
with an increase in the number of command signals. If there
are no detection errors, the performance of a machine interface
using simple and compound TMEP signals will be identical
to that using only simple TMEP signals. The only drawback
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Fig. 10. A stream of real simple and compound TMEP signals.

is the introduction of a time delay for converting a simple or
compound tongue movement into a command signal after the
simple or compound tongue movement has occurred. The de-
lay is equal to� for a simple tongue action and a maximum of
� for a compound tongue movement. In practice, � is a para-
meter that depends on how comfortably a particular user can
make compound tongue movements. The additional delay of
� will therefore be quite acceptable given the rapid detection
and classification of the TMEP signals. Figure 10 shows an
example of a stream of real simple and real compound TMEP
signals which were detected and classified correctly using the
parameters � and �.

5.2.2. Multi-channel tongue movement recognition strategy

In order to improve the classification accuracy, we have also
developed a new dual-channel classification strategy which
exploits information from the TMEP signals of the left and
right ear pressure channels. Clearly, this strategy will only be
effective if the signals from the left and right channels, cor-
responding to the same tongue movement, carry different as-
pects of the tongue movement. Furthermore, the information
from the two channels must also be complimentary. Figure 11
shows pairwise averaged estimates of several trials of the left
and right channel TMEP signals corresponding to the ‘down’
tongue movement for a test subject. It is interesting to note that
the signals in each ear are quite different for the same tongue
movement. It could, therefore, be concluded that the TMEP
signals of the left and right channels do indeed reflect differ-
ent aspects of a given tongue movement. The challenge is to
develop models that combine the complementary information
from the two channels in order to improve the classification
accuracies of TMEP signals.

Rather than presenting a formulation for a limited two-
channel strategy, we describe a more general C-channel for-
mulation for which the two-channel strategy is a special case
(C = 2). A multi-channel decision fusion model is introduced
for combining the information from the multiple channels. In
future work, this multi-channel strategy will be implemented

to combine tongue movement with other physiological signals
(EEG, etc.) to synergize with and augment existing human–
machine interface mechanisms.

Multi-channel decision fusion strategy. The multi-channel
decision fusion classification strategy is summarized in Fig-
ure 12. The N samples of the TMEP signal of channel c are
represented by: hc(k), k = 1, 2, . . . , N� c = 1, 2, . . . , C.

The classification of the individual channel signals is simi-
lar to the single channel decision fusion strategy described by
Vaidyanathan et al. (2007). The formulation presented in this
paper will therefore begin at the multi-channel decision fusion
stage. Let

D �k	 � C�
c�1

dc �k	 (10)

where dc(k) is the decision of the cth channel classifier at time
instant k and � represents the concatenation operation. That
is,

D�k	 � �d1�k	� d2�k	� � � � � dC�k	
�T

(11)

is the fusion vector formed by concatenating the decisions of
the C channel classifiers at the time kth instant. Note that each
channel makes an independent decision� therefore, dc(k), c =
1, 2, . . . , C are independent. The decision fusion vector D(k)
is a discrete random vector in which each element can take
one of M values. Let the probability density function (PDF) of
D(k) under category m be P[D(k)/m]. Then, the Bayes decision
function for class m can be written as

gm[D�k	] � ln Pm 
 ln P[D�k	
m] (12)

where Pm is the a priori probability of class m. The final deci-
sion mk at the kth time instant resulting from the fusion of the
C decisions at the kth time instant is given by

mk � arg max
m

[gm�D
c�k	]� k � 1� 2� ���� N � (13)

The discriminant functions can be derived explicitly by set-
ting

pc
k
a
m � P[dc�k	 � a
m]� c � 1� 2� ����C� (14)

The left side of Equation 13 is the probability that dc(k) =
a when the true class is m. The PDF of D(k) under the class m,
m = 1, 2, . . . , M, can then be written as

P[D�k	
m] � �c � 1C
�

pc
k
1
m

��[dc�k	�1]

	 �
pc

k
2
m

��[dc�k	�2]
� � �
�

pc
k
M
m

��[dc�k	�M]
(15)

where

��x � a	 �
��
�

1 if x � a

0 if x �� a
� (16)
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Fig. 11. Pairwise averaging estimates of the left and right TMEP signals corresponding to the ‘Down’ tongue movement.

Fig. 12. The multi-channel decision fusion strategy.

By substituting the PDFs into Equation 11, it can be shown
that the discriminant function for category m can be written as

gm[D�k	] �
C	

c�1



����
�[dc�k	� 1] ln�pc

k
1
m	


�[dc�k	� 2] ln�pc
k
2
m	


���
 �[dc�k	� M] ln�pc
k
M
m	



����


 ln Pm � (17)

In the following step, the N decisions are fused into an N-
dimensional decision fusion vector D. That is,

D � �k � 1Nmk � (18)

In a manner similar to the derivation of the Bayes discrimi-
nant function for D(k), it can be shown that the Bayes discrim-
inant function of D under class m is given by:

gm�D	 �
N	

k�1



����
�[mk � 1] ln�pk
1
m	


�[mk � 2] ln�pk
2
m	

���
 �[mk � M] ln�pk
M
m	



����


 ln Pm� (19)

where the left side of Equation 13 is the probability that mk=
a when the true class is m. The final multi-channel decision is
given by

m� � arg max
m

[gm�D	]� (20)

To summarize, for each channel, a decision is made at each
sampling instant using a scalar Gaussian classifier and the C
decisions are fused into a multi-channel decision fusion vector
of dimension C. The decision fusion vector is classified using
a discrete Bayes classifier in order to determine the class of
the TMEP signal at each sampling instant. Finally, the N de-
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Table 4. Single-channel left ear

(a) Up Down (b) Up Down

Up 98.12 1.88 Up 96.22 3.78

Down 7.78 92.22 Down 10.34 89.66

Class Acc = 95.17% Class. Acc = 92.94%

Table 5. Dual-channel decision fusion results

Up Down

Up 99.14 0.86

Down 1.32 98.68

Class. Acc = 98.91%

cisions are fused into an N-dimensional decision fusion vec-
tor which is classified by a Bayes classifier to determine the
class of the TMEP signal across all the sampling instant. A
ranking strategy (Vaidyanathan et al. 2007) can also be used
to select only those L (L 
 N) time instants that yield the best
decisions. Consequently, this strategy requires L 	 C scalar
Gaussian classifiers and L + 1 Bayes classifiers.

Multi-channel decision fusion algorithm test results. In this
study, dual-channel data was collected from a 27-year-old
male subject (with no training whatsoever) for two tongue
movements: up and down. A total of 100 signals per tongue
movement were collected from each channel. Using the ran-
dom partitioning method for dividing the signals into training
and test sets (Vaidyanathan et al. 2007), results were averaged
over at least 100 partitions.

The averaged classification results are presented in Ta-
bles 4 and 5, which show confusion matrices enumerating
classification rates and accuracies. Table 4 shows the single-
channel results for the (a) left and (b) right channels. Table 5
shows the dual-channel results for the multi-channel decision
fusion strategy. It is clear that the two multi-channel strategies
are superior when compared with the single best channel in
this preliminary study. We are confident that the improvement
would be more dramatic in a larger study. Furthermore, the
generalized formulation makes the strategies applicable to nu-
merous problems involving the classification of multi-sensor,
multi-category signals. We can also expect an improvement
in performance if information can be exploited from a larger
number of channels.

6. Design of Machine Interface

6.1. Introduction

In order to definitively establish the veracity of our system
for robotic operation, we designed and implemented a range

of simulation experiments to characterize its performance and
provide quantitative data on how error rates and misclas-
sifications in speech and tongue movement translate directly
into measurements of robot performance. The purpose of the
simulations was to address questions related to the perfor-
mance of the system for general robot maneuvering, assess
the incidence of collision avoidance or mishap due to mis-
taken recognition, measure system performance in the pres-
ence of degraded recognition rates and compare the two oper-
ating modes over several thousand trials.

Although the system has successfully been implemented
in real-time (Think-A-Move Ltd 2005, 2006� Koliousis 2007),
the collection of data for rigorous performance assessment is
not practical for a significant number of tests. Furthermore, it
is virtually impossible to distinguish between a human error
and a classification error with an actual operator in a virtual
or actual robotic test. A candidate platform was therefore se-
lected to parameterize the simulation based on envisioned field
use (for robotic scouting and reconnaissance) with simulated
performance based on data recognition rates from all test sub-
jects.

6.2. Robotic platform

The mobile robot called WhegsTM II (Quinn et al. 2002) was
selected as a candidate device for testing the performance of
the dual mode human–robot teleoperation interface. While the
utility of our interface lends itself to a breadth of platforms
for several applications, WhegsTM II is an ideal demonstration
robot for the interface given that it has shown the autonomy
necessary to perform tasks based on high-level commands and
has exceptional mobility with few low-level control inputs.
Specifically, the robot’s passive mechanisms lend it the mo-
bility to move over irregular and rugged terrain without the
need for force feedback control (which is not feasible for our
system) using only three low-level inputs (speed, heading and
body flexion angle) and without the need for complex control
software.

WhegsTM II has the mobility and autonomy necessary to
take advantage of both the high-level and low-level commands
of the dual mode interface. WhegsTM II with tactile antennae
has been shown capable of autonomously flexing its body and
varying its speed appropriately to surmount rectangular steps
(Figure 13) (Lewinger et al. 2005). In that experiment, the
path was narrow and the operator controlled the heading of
the vehicle with a joystick. With an interface possessing the
capabilities of our dual-mode system, an operator could give
WhegsTM II the high level speech command ‘climb the stairs’
and then use tongue movements to steer the vehicle while mon-
itoring its progress remotely. In this way, an operator using
our dual mode interface could use WhegsTM to help perform
meaningful tasks such as searching a burning building for sur-
vivors while the operator’ hands are free to carry survivors to
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Fig. 13. WhegsTM II flexing its body as it climbs over a kerb.

safety. WhegsTM II is also an excellent platform for perfor-
mance assessment for future scouting and exploration applica-
tions (Karlsen 2004) which are being commercially pursued at
this time.

The footprint of WhegsTM II is 47 cm long by 36 cm wide
and it weighs 3.86 kg. It has a two-piece aluminum frame and
it can flex 30 degrees up and down about its middle axle. It has
torsionally compliant devices in all six of its axles. The whegs
have internal linear springs (2280 N m�1) that permit them
to comply radially. Its radial wheel-leg-spoke length is 10 cm
when no load is applied. It uses a 90 W Maxon motor with a
26:1 integral transmission to propel it, two small hobby servos
for steering, and a larger hobby servo to activate the body joint.
Its two 7.2 V battery packs are placed on its rear body segment
such that its center of mass is in the rear and it can lift its front
body half. Speed, steering and body joint motion are controlled
via a hobby RC system. WhegsTM II can run at 3 body-lengths
per second. Using its body flexion joint, it can readily climb
a series of obstacles that are 1.38 spoke-lengths high and 0.8
body-lengths deep. It can also run as a quadruped on its middle
and rear whegs while holding its front airborne.

6.3. Simulation parameterization

Two simulated missions were tested with the interface con-
trolling the WhegsTM II robot, each suited to a different mode
of interface. The first was an open environment search where
the robot was required to reach a set of waypoints akin to
an outdoor mapping mission (suited to higher-level interac-
tion with speech commands) while the second directed the ro-
bot to move through a dense obstacle-rich indoor environment
(suited to lower-level interaction with tongue commands). Pa-
rameters of the robot programmed into the simulation included
its footprint (size), speed, acceleration and turning capacity
(ability to change heading), which were gathered experimen-
tally. Terrain was specifically not considered in the simulations

due to the capacity of WhegsTM II to passively adapt its gait
to various substrates and move over obstacles. Parameters of
the interface included in the simulation were based on data
gathered from test subjects enumerated in Sections 3, 4 and
5. Specific information included: operator time to generate a
signal (t = 0.2 s for tongue movement, t = 0.25 s for speech),
minimum operator reaction time between signals (�t = 0.2 s
for tongue movement,�t = 0.5 s for speech), recognition accu-
racy and rate of misclassification. Note that recognition accu-
racy for tongue movement was based on data from individual
users for whom the device had been calibrated, while speech
data was taken as an average for the entire data set for all users
assuming no specific calibration for each user.

The processing time of the pattern classifier for both tongue
movement and speech was judged to be negligible in the simu-
lations. For tongue movement, the scalar classifiers (which can
be implemented in parallel), are simple univariate classifiers.
Each discriminant function, one for each class, requires only
one simple multiplication and one difference operation during
use. Furthermore, the decision fusion classifier described in
Section 5.2 was specifically designed to make a recognition
decision based on only a small segment of data. For the deci-
sion fusion part, there is only one discriminant function which
requires multiplying L terms and summing L – 1 terms. Testing
has shown typical values of L = 50 for most users. For speech,
HMM classifiers have a well-established history of working in
real-time, specifically in the case of our commands which were
limited to monosyllabic words with a 0.5 s pause between user
inputs. Consequently, neither command mode requires enough
floating point operations to add significant delay in real-time
operation.

6.4. Robot control through speech interface

A first generation conceptual design of the human–machine
interface system for the first mode of operation, control of
the WhegsTM II robot based on aural speech recognition, has
been completed. We propose a straightforward system de-
signed around four words for motion control. These are cen-
tered on the words ‘up’, ‘down’, ‘left’, and ‘right’. These four
words can be coupled to create an intuitive interface such that a
‘right’ command corresponds to a right movement, with ‘left’
following naturally. Note that the passive mechanisms of the
robot are expected to adjust to handle terrain fluctuations. For
control, each left/right command may indicate half a cycle of
a sinusoidal input to the steering angle of the vehicle. The de-
vice will thus turn a fixed increment on each left/right input,
and subsequently resume a straight path in accordance with
the new heading. Repeated commands may increase the direc-
tion of the turn. Forward and reverse motions are controlled
with ‘up’ and ‘down’ commands (which were selected rather
than ‘forward’ and ‘backward’ in order to keep monosyllabic
commands). An ‘up’ command inputs a forward velocity sig-
nal while a ‘down’ movement results in a backwards velocity
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input. The forward/backward velocity is altered in a fashion
where each additional command would increase or decrease
speed by a fixed increment. Finally, in the proposed interface, a
‘kill’ command executes an all stop for the robot. All enumer-
ated commands would be very straightforward to implement
in a standard communication setup.

Note that seven words were actually recognized in our
study: up, down, left, right, move, pan, kill. These words were
chosen as a set of commands a robotic operator may give to
a Whegs robot moving in the field for missions suggested by
Karlsen (2004). The commands ‘kill’, ‘move’ and ‘pan’ would
allow even greater versatility by allowing an all stop command
as well as the potential to switch control devices (e.g. ‘pan’
may switch venues to control a camera on the robot with com-
mands of ‘up’, ‘down’, etc.).

6.4.1. Open environment control simulation in speech mode

A version of this control interface was implemented in simula-
tion to prove that the current speech recognition accuracies are
sufficient for robotic control. Speech recognition errors were
included based on the accuracies presented in Table 2. For ex-
ample, if a ‘right’ command was performed, a 94.7% probabil-
ity of the robot receiving this signal was assumed, with a 2.6%
probability of the robot receiving a ‘left’ command and a 0.4%
probability of a ‘down’ command. If the recognition returned
a directive that was not used in the simulation (e.g. ‘pan’), the
robot did not acknowledge the command and continued on its
previous course of action.

Figure 14 shows the results of a simple simulation where
this interface was implemented to direct a robot to reach a se-
ries of (20) waypoints in a planar (200 m	 200 m) work space.
The + symbols represent the waypoints with the path of the ro-
bot shown. The waypoints were spaced arbitrarily across a 200
m amplitude sinusoidal path with a period of 80 m. In each
case, the control logic steering the robot or virtual operator
was provided the planar position of each successive waypoint
and the robot’s position. The virtual operator maneuvered the
robot towards the next waypoint based on the previously dis-
cussed commands to align the robot direction with a line-of-
sight vector to the next waypoint as an actual operator would.
The reason this was done in simulation was to generate perfor-
mance data over several thousand repetitions of the task and
due to the difficulty of separating operator and classification
errors.

A waypoint was considered reached if the robot success-
fully executed a stop within 20 cm of that waypoint. It should
be noted that the location of the next waypoint was withheld
from the virtual operator until the current waypoint had been
reached. Although the WhegsTM robot turning radius and the
small time delay for speech commands did not allow straight
line motion to some waypoints (which would have been possi-
ble for a robot with differential steering), as can be seen from

Fig. 14. Open environment robot waypoint navigation.

the figure, the robot successfully reached all 20 waypoints.
In order to assess the impact of any erroneous operator com-
mands, this particular simulation was repeated 1000 times. In
every case, the robot successfully reached all waypoints with-
out fail. While some commands were mistaken by the inter-
face, the time span and accuracy at which commands may be
given allowed rapid correction. Note that we have also con-
trolled the robot for the same simulation using tongue move-
ments (Vaidyanathan et al. 2004), but this required a higher
degree of operator interaction.

6.5. Robot control through tongue movements

At present, we have identified more than ten distinct repeat-
able movements of the tongue that provide traceable pressure
signature which can be captured by the microphone-earpiece
housing. The control interface can thus be tailored to any
set of movements appropriate to the robot being controlled.
In practice, however, larger amounts of movement involve
higher levels of complexity and a steeper learning curve for the
operator.

We propose a straightforward system designed around the
standard interface described earlier (four movements) for con-
trol of the WhegsTM II platform. The up/down/left/right tongue
movements in this interface controlled the robot in a paral-
lel fashion to the up/down/left/right voice commands, but with
shorter command input corresponding to the speed of tongue
movement. Beyond forward/reverse and left/right motions, ad-
ditional commands may be necessary to control the robot. In
order to correlate robot actions to additional movements, we
propose the use of compound tongue movements as described
in Section 5.2.1. Three inputs beyond motion commands are
necessary to complete the WhegsTM II control interface. In or-
der for the robot to navigate harsh terrain, the operator must
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be able to specify ‘flex up’ and ‘flex down’ commands to the
body flexion joint and, of course, an ‘all stop’ command to
halt robot motion. In the proposed interface, two compound
bottom movements execute an all stop command, while bot-
tom/top and top/bottom tongue motions correlate to up and
down body flexion respectively. Finally, it is very important
to note that the tongue movements to be used are very gen-
tle, and will not tire or fatigue the tongue any more than
speech.

6.5.1. Constrained environment maneuvering simulation

The second implemented simulation consisted of the robot
moving through an obstacle-rich indoor environment where
speed of movement and clutter would necessitate lower-level
tongue control. While collisions with obstacles occasionally
occur with virtually all existing interfaces, it is critical that
they be kept to an absolute minimum. Thus, we conducted
a series of simulations using performance parameters of the
WhegsTM II robot in order to test the ability of our interface
for maneuvering in cramped environments (e.g. such as hall-
ways or between furniture). The same virtual operator was
tasked to maneuver the robot through such an environment us-
ing tongue movements with the aural robotic interface. Sig-
nal recognition accuracies for each movement were measured
for eight individual test subjects using the Gaussian decision
fusion classifier to provide a realistic appraisal of the robot’s
performance.

Figure 15 shows the results of one such simulation. In the
simulation shown, the WhegsTM II robot, under the control of
a test subject, was placed in an environment comprised of a va-
riety of obstacles forming a narrow canyon only slightly wider
than the vehicle itself. The robot begins the simulation in the
lower left portion of the figure (at the origin) with the goal of
maneuvering out of the constrained environment through the
narrow passage on the lower right portion of the figure. The
path of the robot as it moved through the room is shown, with
the robot itself illustrated at key positions along the path. The
arrows overlaying the robot show its heading at the illustrated
positions along its path. In addition to maneuvering through
the room, the virtual operator was also tasked to stop the ro-
bot completely at each of the illustrated points to ensure the
ability of the system to stop the robot at a desired location was
incorporated into the simulation.

Of critical importance to note is that while some tongue
movement commands were mistaken by the system (approxi-
mately 20 commands were identified incorrectly in the simu-
lation shown), and despite the very narrow corridors the robot
maneuvered through, no collisions between the robot and ob-
stacles were recorded in the simulation. The high rate of recog-
nition accuracy and speed at which tongue commands may be
given allow for immediate correction, thus all potential colli-
sions may be avoided. For a collision to occur, three or more

Fig. 15. Robot constrained environment navigation.

commands would likely have to be mistaken in sequence at a
very specific moment, which is less than a 0.001% probabil-
ity for most subjects. This particular simulation was repeated
1000 times with data from all of our test subjects. Collisions
were recorded less than once per 1000 runs for every test sub-
ject. The nature of the interface system coupled with the tiny
possibility of any repeated error allows for a virtually error-
free operation, even in restrictive environments. Furthermore,
in the very rare event of a collision, resuming the original path
is a very easy task.

As a final test aimed at understanding the control system’s
ability to correct erroneous commands should signal recogni-
tion degrade, a series of simulations were run with induced
errors in the pattern recognition strategy. For example, in one
case, errors were induced to reduce the pattern recognition of
a ‘left’ movement to 80% accuracy with the principle recog-
nition error being a ‘right’ movement. When this system was
implemented in the same simulation shown in Figure 15, ap-
proximately 10% of the trials resulted in at least one collision.
Thus, even with radically reduced recognition accuracies, the
consequences of misrecognized commands still rarely result in
a collision.

7. Conclusions

The goal of this paper was to demonstrate the utility of a new
concept for human–machine interface in robot teleoperation.
While extensive research has been performed in robot teleop-
eration to date, nearly all interfaces are limited in their utility
outside controlled environments due to the need for operator
motion, lack of portability and singular input modalities. We
introduce the first system we are aware of that addresses all
these issues. The system is capable of tracking tongue move-
ment and speech to indicate operator desire by monitoring
airflow in the ear canal, thus no external operator movement
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is required. The system is unobtrusive, trivial to carry3 and
leaves the operator free to execute any other activity while
wearing/using the system. The only sensor necessary is a sim-
ple microphone and earpiece housing which is small enough
and comfortable enough to be worn in the ear indefinitely. Fi-
nally, the system allows for multiple levels of operator input
in one device with only one sensor (i.e. without the addition
of any sensing or processing equipment). To our knowledge,
our research team is the only group that has investigated the
aural cavity as a monitoring venue for machine interface, has
proposed the only system whereby both tongue movement and
speech may be tracked without insertion of any device in the
oral cavity and has developed the only machine interface with
multiple input modalities that requires only a single sensor in
a single device.

Speech and tongue movement each has complementary
strengths which could be synergized in a comprehensive sys-
tem. We have observed tongue movement to be faster, quieter,
and (in most cases) more intuitive to the user for direct device
motion control when compared to speech. Aural speech cap-
ture provides the benefits of trivial calibration and no training
on the part of the user, yet demands a higher level of robot
autonomy.

In conclusion, new contributions in this paper include:

� an analysis of the sensitivity of human ear canal as
acoustic output device�

� the design of a new sensor for monitoring airflow in the
aural cavity�

� expansion of our tongue-movement control concept
to include speech recognition through monitoring of
airflow in the aural cavity�

� implementation of signal capture and recognition algo-
rithms to accurately identify and classify speech through
monitoring of airflow in the aural cavity�

� a strategy for detecting and classifying simple and com-
pound tongue movements based on airflow in the aural
cavity for robust hands-free robot teleoperation�

� a multi-channel decision fusion pattern classification al-
gorithm to accurately identify tongue movements in one
or both ears based on aural flow monitoring� and

� simulation results on a mobile robot system demonstrat-
ing the feasibility of hands-free teleoperation by detect-
ing both speech and tongue movements through moni-
toring of airflow in the aural cavity.

3. While the current system utilizes a light (
 2.5 kg) laptop computer to
host data processing and pattern recognition algorithms, a small circuit board
(less than 5 cm 	 5 cm) has been designed capable of hosting all processing
hardware for complete man-portability.

Future work involves synergizing both the speech and
tongue movement modes of interface to develop a cohesive,
robust human/robot interface that will allow one to control and
task robotic platforms without causing additional weight, and
without the addition of any bulky or encumbering equipment.
In the longer term, two distinct modes of operation with the
device are envisioned whereby several devices (e.g. a power
wheelchair, household appliances, stationary mechanical assist
devices, etc.) may all be directed given the breadth of possibil-
ities for control input.

At this time, functional prototypes working in real-time
have been constructed for both speech (Koliousis 2007) and
tongue movement (Think-A-Move Ltd 2005, 2006). Commer-
cial applications being pursued based on this work include mil-
itary scouting robots (Karlsen 2004) and rehabilitation/assist
equipment, including interfaces for power wheelchair control.
Although the device is not universally applicable for any situ-
ation (e.g. when force feedback is required) we believe it rep-
resents a significant contribution to human–machine interface
and has the potential to lay the foundation for an entirely new
generation of robot teleoperation systems.

Acknowledgements

We would like to express our gratitude to Dr Massood Tabib-
Azar and Joseph Zarycki for construction of the data acquisi-
tion system, Mica Newton for speech data collection, Thomas
Allen for gathering performance data on the WhegsTM II robot,
Robert Karlsen and the US Army TACOM for support and mil-
itary field performance/application insights, Think-A-Move,
Ltd. and our test subjects at the Naval Postgraduate School
and Case Western Reserve University.

References

Bashashati, A. et al. (2006). An experimental study to investi-
gate the effects of a motion tracking electromagnetic sensor
during EEG data acquisition. IEEE Transactions on Bio-
medical Engineering, 53(3), 559–563.

Becchetti, C. and Ricotti, L. P. (1999). Speech recognition the-
ory and C++ implementation. John Wiley & Sons, West
Sussex, UK.

Bulbuller, G., Fargues, M. P. and Vaidyanathan, R. (2006).
In-ear microphone speech data segmentation and recogni-
tion using neural networks. Proceedings of the 2006 IEEE
Workshop on Digital Signal Processing.

Chang, S., Kim, I. and Borm, J. H. (1999). KIST teleoperation
system for humanoid robot. Proceedings of the 1999 IEEE
International Conference on Intelligent Robots and Systems
(IROS).

Chen, Y. and Newman, W. S. (2004). A human-robot inter-
face based on electrooculogrophy. Proceedings of the 2004



18 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / Xxxxxxxx 2007

IEEE International Conference on Robotics and Automa-
tion (ICRA).

Cui, J. et al. (2003). A review of teleoperation system con-
trol. Proceedings of the 2006 Florida Conference Recent
Advances in Robotics (FCRAR).

Davis, S. and Mermelstein, P. (1980). Comparison of para-
metric representations for monosyllabic word recognition
in continuously spoken sentences. Proceedings of the 2006
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP).

Deller, J. R., Hansen, J. H. L. and Proakis, J. G. (2000).
Discrete-time processing of speech signals. IEEE Press,
New York, USA.

Deng, L. and O’Shaughnessy, D. (2003). Speech process-
ing: a dynamic and optimization-oriented approach. Mar-
cel Dekker, New York, USA.

Ferguson, S. and Dunlop, G. R. (2002). Grasp recognition
from myoelectric signals. Proceedings of the Australasian
conference robotics and automation.

Fukuda, O. et al. (2003). A human-assisting manipulator tele-
operated by EMG signals and arm motions. IEEE Transac-
tions on Robotics and Automation, 19(2), 210–222.

Galindo, C., Gonzalez, J. and Fernandez-Madrigal, J. (2006).
Control architecture for human-robot integration: applica-
tion to a robot wheelchair. IEEE Transactions on Systems,
Man, and Cybernetics B, 36(5), 1053–1067.

Goldberg, K. (2000). The Robot in the Garden. MIT Press, US.
Harada, T., Sato, T. and Mori, T. (2000). Human motion track-

ing system based on skeleton and surface integration model
using pressure sensors distribution bed. Proceedings of the
2000 Workshop Human Motion (HUMO ’00).

Hu, C. et al. (2003). Visual gesture recognition for human-
machine interface of robot teleoperation. Proceedings of the
2003 IEEE International Conference on Intelligent Robots
and Systems (IROS).

Karlsen, R. (2004). Hands free teleoperation via physiological
signal recognition. US Army Tank and Automotive Com-
mand (TACOM).

Kofman, J. et al. (2005). Teleoperation of a robot manipulator
using vision-based human-robot interface. IEEE Transac-
tions on Industrial Electronics, 52(5), 1206–1219.

Koliousis, D. S. (2007). Real-time speech recognition sys-
tem for robotic control applications using an in-ear micro-
phone. M.Sc. Thesis, Electrical Engineering, Naval Post-
graduate School, Monterey, CA, USA.

Kuan, C. and Kuu, Y. (2003). Challenges in VR-based robot
teleoperation. Proceedings of the 2003 IEEE International
Conference on Robotics and Automation (ICRA).

Kurcan, R. S. (2006). Isolated word recognition from in-ear
microphone data using hidden markov models (HMM).
M.Sc. Thesis, Electrical Engineering, Naval Postgraduate
School, Monterey, CA, USA.

Lewinger, W. A. et al. (2005). Insect-like antennal sensing for
climbing and tunneling behavior in a biologically-inspired

mobile robot. Proceedings of the 2005 IEEE International
Conference on Robotics and Automation (ICRA).

Lim, S., Lee, K. and Kwon, D. (2003). Human friendly in-
terfaces of robotic manipulator control system for handi-
capped persons. Proceedings of the 2003 IEEE/ASME In-
ternational Conference on Advanced Intelligent Mecha-
troncis (AIM).

Liu, P. X. et al. (2005). Voice based robot control. Proceedings
of the 2005 IEEE International Conference on Information
Acquisition.

Marin, R. et al. (2002). Automatic speech recognition to tele-
operate a robot via web. Proceedings of the 2002 IEEE In-
ternational Conference on Intelligent Robots and Systems
(IROS).

Marin, R. et al. (2005). A multimodal interface to control a ro-
bot arm via the web: a case study on remote programming.
IEEE Transactions on Industrial Electronics, 52(6), 1506–
1520.

Melchiorri, C. and Eusebi, A. (1996). Telemanipulation: sys-
tem aspects and control issues. Proceedings of Model Con-
trol Mechanisms in Robotics.

Millan, J. R. et al. (2004). Noninvasive brain-actuated control
of a mobile robot by human EEG. IEEE Transactions on
Biomedical Engineering, 51(6), 1026–1033.

Newton, M. (2005). In-ear speech data collection. US Naval
Postgraduate School, Monterey, California, USA.

Qiang, H. and Youwei, Z. (1998). On prefiltering and endpoint
detection of speech signal. Proceedings of the 1998 Inter-
national Conference on Signal Processing (ICSP ’98).

Quinn, R. D. et al. (2002). Improved mobility through ab-
stracted biological principles. Proceedings of the 2002
IEEE International Conference on Intelligent Robots and
Systems (IROS).

Rabiner, L. R. and Sambur, M. R. (1975). An algorithm for
determining the endpoints of isolated utterances. The Bell
System Technical Journal.

Raneda, A., Vilenius, J. and Huhtala, K. (2003). Teleopera-
tion interfaces for a remote controlled hydraulic mobile ma-
chine. Proceedings of the 2003 IEEE/ASME International
Conference on Advanced Intelligent Mechatronics (AIM).

Richardson, A. and Rodgers, M. (2001). Vision-based semi-
autonomous outdoor robot system to reduce soldier work-
load. Proceedings of the 2001 SPIE, Unmanned Ground Ve-
hicles III.

Siegwart, R. and Goldberg, K (eds.) (2000). Robots on the
Web. IEEE Robotics and Automation Magazine, 7(1).

Srydal, A., Bennett, R. and Greenspan, S. (1995). Applied
Speech Technology. CRC Press, Florida.

Tanaka, K., Matsunaga, K. and Wang, H. (2005). Electro-
encephalogram-based control of an electric wheelchair.
IEEE Transactions on Robotics, 21(4), 762–766.

Tezuka, T. et al. (1994). A study on space interface for teleop-
eration system. Proceedings of the 2003 IEEE International
Workshop on Robot and Human Communication.



Vaidyanathan et al. / A Dual Mode Human-Robot Teleoperation Interface Based on Airflow in the Aural Cavity 19

Think-A-Move Ltd. (2005). A hands-free human/robot inter-
face for soldiers in the field. Phase I SBIR final report. US
Army Tank and Automotive Command (TACOM).

Think-A-Move Ltd. (2006). http://www.think-a-move.com/
videodemos.html.

Urban, M. and Bajcsy, P. (2005). Fusion of voice, gesture, and
human-computer interface controls for remotely operated
robot. Proceedings of the 2003 International Conference on
Information Fusion.

Vaidyanathan, R. et al. (2004). Human-machine interface
for tele-robotic operation: mapping of tongue movements
based on aural flow monitoring. Proceedings of the 2004
IEEE International Conference on Intelligent Robots and
Systems (IROS).

Vaidyanathan, R. et al. (2006). A dual mode human-machine
interface for robotic control based on acoustic sensitivity of
the aural cavity. Proceedings of the 2006 IEEE/RAS-EMBS
International Conference on Biomedical Robotics and Bio-
mechatronics (BioRob).

Vaidyanathan, R. et al. (2007). A tongue movement com-
munication and control concept for hands-free human-

machine interfaces. IEEE Transactions on Systems, Man,
and Cybernetics, 37(4), 533–546.

Wang, M. and Liu, J. N. K. (2004). A novel teleoperation para-
digm for human-robot interaction. IEEE Conference on Ro-
botics, Automation and Mechatroncis.

Westerlund, N., M., D., and I., C. (2001). In-ear microphone
equalization exploiting an active noise control. Proceedings
of Internoise 2001.

Westerlund, N., Dahl M. and Claesson I. (2002). Speech recog-
nition in severely disturbed environments combining ear-
mic and active noise control. Proceedings of Internoise
2002.

Ying, G. S., Mitchell, C. D. and Jamieson, L. H. (1993). End-
point detection of isolated utterances based on a modified
Teager energy measurement. Proceedings of the 1993 IEEE
International Conference on Acoustics, Speech, and Signal
Processing (ICASSP).

Yun, X. and Bachmann, E. R. (2006). Design, implementa-
tion, and experimental results of a quaternion-based kalman
filter for human body motion tracking. IEEE Transactions
on Robotics and Automation, 22(6), 1216–1227.


