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Robustness of the Filtered-X LMS Algorithm—
Part II: Robustness Enhancement by Minimal
Regularization for Norm Bounded Uncertainty

Rufus Fraanje, Stephen J. Elliott, Senior Member, IEEE, and Michel Verhaegen

Abstract—The relationship between the regularization methods
proposed in the literature to increase the robustness of the filtered-x
LMS (FXLMS) algorithm is discussed. It is shown that the existing
methods are special cases of a more general robust FXLMS al-
gorithm in which particular filters determine the type of regular-
ization. Based on the analysis by Fraanje, Verhaegen, and Elliott
[“Robustness of the Filtered-X LMS Algorithm—Part I: Necessary
Conditions for Convergence and the Asymptotic Pseudospectrum
of Toeplitz Matrices” of this issue], regularization filters are de-
signed that guarantee that the strictly positive real conditions for
asymptotic convergence or noncritical behavior are just satisfied
for all uncertain systems contained in a particular norm bounded
set.

Index Terms—Effort weighting, filtered-x LMS (FXLMS), leaky,
model uncertainty, output weighting.

I. INTRODUCTION

I T is well known that model errors may result in instability
of the filtered-x LMS (FXLMS) update rule. In [1] a strictly

positive real (SPR) condition on the model error for which the
FXLMS update rule asymptotically converges in the mean was
analyzed. But what can be done when the condition is not sat-
isfied and the FXLMS algorithm gets unstable? The solution
that lays at hand is to improve the model of the system, e.g., by
(online) system identification methods. However, this solution
may be computationally demanding in online situations, more-
over noise, nonlinearities, and undermodeling still contribute to
model errors.

This paper follows the alternative approach of making the sta-
bility of the FXLMS update rule less sensitive to model errors.
One simple and elegant way to accomplish this is to add leakage
to the FXLMS update rule. Leakage will bias the asymptotic so-
lution as in ridge regression or Tikhonov regularization, but also
relaxes the condition for asymptotic convergence, see, e.g., [2,
p. 248] and [3, a.o. see, p. 386]. Another approach, quite sim-
ilar to leakage, is adding a control effort weighting to the cost
function that reduces the power of the control signal, see, e.g.,
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[2, p. 246]. Besides the necessity of tuning a scalar parameter, a
drawback of leakage and control effort weighting, is that there
is no frequency selectivity in the regularization, resulting in too
much conservatism. For this reason, a robust FXLMS algorithm
has been proposed in [4] in which the model uncertainty is con-
sidered as a frequency dependent stochastic variable with zero
mean and known covariance. This robust FXLMS algorithm is
equivalent with a frequency dependent control effort weighting.
The control effort is reduced especially in the frequency bands
where the model uncertainty is large, such that also the condition
for asymptotic convergence is relaxed especially in these fre-
quency bands. Another robust variant of the FXLMS algorithm
is obtained by output weighting, i.e., the power of the control
signal filtered by the system is added to the cost function [5],
[6].

Though these four regularization approaches (leakage, con-
trol effort, output effort, and model uncertainty weighting) relax
the condition for asymptotic convergence of the FXLMS update
rule, they do not guarantee that the condition is satisfied. One
may increase the regularization by means of a scalar tuning pa-
rameter, but this tuning may be cumbersome and resulting in too
much conservatism. This paper presents a robust FXLMS al-
gorithm that guarantees the asymptotic convergence condition
is satisfied for all model errors contained in a particular norm
bounded set. This robust algorithm was suggested by a gen-
eral robust FXLMS algorithm structure in which the aforemen-
tioned regularization methods, except leaky FXLMS, can be
embedded. The general robust FXLMS algorithm is obtained by
adding to the cost function a term with the power of the control
signal filtered by a filter , that is to be designed. It is equiv-
alent to FXLMS with control effort weighting for ,
equivalent to FXLMS with output weighting for
and to uncertainty weighting for , where
an estimate of the spectral factor of the model error covari-
ance. Though leaky FXLMS does not fully fit into the general
robust FXLMS algorithm structure, the regularization is very
similar. In fact, for white noise reference signals with unit co-
variance matrix, the mean update equation of robust FXLMS
with effort weighting is the same as the mean update equa-
tion of leaky FXLMS. Following the notation introduced in [1],
briefly recapitulated in the following section, the relations be-
tween the various robust FXLMS algorithms are summarized
for the single-channel case in Table I.

The paper is organized as follows. Section II derives the gen-
eral (multichannel) robust FXLMS algorithm and the condi-
tion for its asymptotic convergence. Section III derives the filter
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TABLE I
SUMMARY OF ROBUST FXLMS ALGORITHMS (SINGLE-CHANNEL CASE)

that guarantees asymptotic convergence for all model er-
rors contained in a particular given norm bounded set. A sim-
ilar procedure is taken to derive the filter that, in addi-
tion to asymptotic convergence, also prevents critical behavior.
Critical behavior is the initial increase of the error before de-
caying to zero. It is a transient effect that may happen when
the model is not perfect, even though the adaptive algorithm is
stable, cf., [1]. The derivations build further on the analysis in
[1]. As in [1], the focus is on convergence in mean, the anal-
ysis of mean-square convergence, i.e., the power of the error is
bounded, involves a lot of algebra for the general multichannel
case, and is postponed for future research. Section IV illustrates
the robust methods by a simulation example.

II. THE ROBUST FXLMS ALGORITHM AND

ITS CONVERGENCE BEHAVIOR

A. Comments on Notation

Let us briefly recapitulate the notation and problem setting
from [1]. The disturbance source signal is a discrete time

-dimensional wide-sense stationary zero mean white noise
signal with unit covariance. The primary disturbance path is de-
noted by , where is the set
of all causal and asymptotically stable systems and

the unit forward shift operator. The secondary disturbance
path is denoted by and the reference signal
path by (both should have no zeros on the
unit-circle). The residual disturbance signal and the measured
reference signal are determined by the relations

(1)

(2)

respectively, where denotes the filtering of by
and is a control signal that is to be determined
using measurements , . More specifically,

where is a FIR operator

(3)

with taps. For ease of notation, we will col-
lect the controller coefficients in a parameter vector

, where
and denotes the vector stacking

of the columns of . Further, define the regression matrix
as

(4)

where is a Kronecker product filtering and

(5)

With these definitions, it can be verified, after some algebra, that
.

B. Robust FXLMS Algorithm

The robust FXLMS algorithm is derived similar to the
FXLMS algorithm, cf., [1], using the robust cost function

(6)

where to be designed and the number
of rows of . By defining where

, we have . Hence, the robust
FXLMS algorithm can be considered as the FXLMS algorithm
applied on a system with augmented residual channels. This in-
volves that the secondary plant is replaced by and
the residual signal by . The augmented regression matrix

is defined as

(7)

where . Then, the augmented residual
signal can be written as

and the gradient of with respect to as

Setting the gradient to zero and solving for yields
the optimal robust solution

(8)

where , and
. Note, that will be nonnegative def-
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inite and “pushes” away from the optimal nominal solution
in the direction of zero.

Now, the robust FXLMS algorithm, that updates a current es-
timate of in the negative gradient direction estimated
in LMS sense, can be stated as

(9)

where is the estimate of . The
additional term in (9) determines the difference
between the FXLMS and the robust FXLMS algorithm.

Under the assumption that is small enough, such that ,
, , and can be supposed as “semi-sta-

tionary” and statistically independent of , the mean update
is given by

(10)

with and . By
assuming is small enough, also the remaining variation in
after convergence due to nonzero , can be neglected.

Note, that the derivation and the analysis for leaky FXLMS
is very similar, when replacing the cost function by

, using in the optimal solu-
tion and the resulting update equation is given by

, c.f., e.g., [7].
It is observed that the dynamics of the mean update (10) of the

robust FXLMS algorithm is the same as for the FXLMS algo-
rithm where is replaced by . Because
has nonnegative real eigenvalues, the eigenvalues of

will usually have larger real part than the eigenvalues of
such that the condition for convergence is relaxed. How-

ever, except for being a scalar times identity, it is difficult
or even impossible to relate the eigenvalues of and
to the eigenvalues of . To say more on the relation
between (that determines ) and asymptotic convergence,
the asymptotic analysis of [1], will be applied.

C. Convergence Analysis of Robust FXLMS

Because the robust FXLMS algorithm is equivalent to the
FXLMS algorithm applied on the augmented system, in [1, The-
orem 2] can be directly applied to derive conditions for asymp-
totic convergence. This yields the following theorem, which
proof follows by transformation of [1, Theorem 2] to the aug-
mented plant.

Theorem 1: Let
be the essential

spectrum of , defined in [1].
i) If for all , then for each

there exists a step-size (sufficiently small)
such that the robust FXLMS update equation (9) asymp-
totically converges in mean.

ii) If for and for at least one
it holds that , then for each

there exists a step-size (sufficiently small)
such that the robust FXLMS update equation (9) does not
diverge.

iii) If for at least some , then
there exists a (sufficiently large) such that for
each the robust FXLMS update equation (9)
diverges for any step-size .

Hence, to determine asymptotic convergence, the real
part of the eigenvalues of the matrix

have to be examined for or
equivalently, the real part of the eigenvalues of

(11)

Though the matrix is nonnegative definite (usu-
ally positive definite) for it cannot be said that
the minimal real part of the eigenvalues of

is always greater than the minimal real part of
the eigenvalues of (cf., [8, p. 1]). Though, this
would be usually the case. For equals a scalar times di-
agonal, , (as in control effort weighting) the real part
of the eigenvalues are guaranteed to be increased by an amount
depending on the value of .

By appropriately choosing the condition (11) is strictly pos-
itive real (SPR) can be used to derive the conditions for asymp-
totic convergence for the case of control effort weighting, output
weighting and uncertainty weighting.

III. MINIMAL REGULARIZATION FOR NORM

BOUNDED UNCERTAINTY

The following question naturally arises: what is the best
choice of to ensure asymptotic convergence for uncertain
plants but that does not degrade nominal performance. To
answer this question, we will assume is such that the model
error is contained in a bounded norm set

(12)

where is a given function of that determines the amount of
uncertainty and denotes the induced 2-norm of , i.e.,
its maximal singular value. Note, that the elements of are
in , the set of all linear (stable or unstable) systems,
rather then . Considering this more general class al-
lows us to consider at frequency independent of the
other frequencies. In practice, will however be stable.

To quantify some optimality criterion, one would be inter-
ested for example in the worst case performance, and design a
filter according to the problem

subject to the robust FXLMS algorithm (9)

and the eigenvalues of (11) being positive real (13)

However, it is very difficult to determine the
worst-case performance

where
the solution to which the

robust FXLMS algorithm converges. Therefore, we will allow
a simplification of the problem. It is known that will
result in a bias on , such that under the nominal condition
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Fig. 1. Eigenvalues of (A +���) A, A = diag(2; 1:2; 0:3), for 2000 real-
izations of ��� such that k���k � 1. The shaded region indicates � (A).

the solution will be suboptimal. When the norm of is
increased, the bias increases resulting in less performance for
the nominal, i.e., , condition. Therefore, our objective
will be to design such that its norm (to be specified below) is
minimized subject to the condition that the eigenvalues of (11)
are positive real. This does not guarantee best performance for
the case , however over-regularization is prevented.
The simulation example in Section IV also shows that for
this choice of better performance is achieved than for
leakage/effort weighting and output weighting. To design in
this minimum norm sense, first some results on the extreme
negative real part of the eigenvalues of uncertain matrices need
to be derived.

A. Some Matrix Results

In the following, and its singular value
decomposition (SVD) is given by , where

and both unitary and
for and

for and
, the singular values of . Let

be defined as ,
i.e., the union of the sets of eigenvalues of for
all such that . The following two lemmas will be
used in Section III-B to derive the minimal regularization filter

that guarantees asymptotic convergence. Their proofs are
given in the Appendix.

Lemma 1: Let and , then
, for some .

Lemma 2: Let and , then
where .

Fig. 1 illustrates Lemma 1, where and
, such that , and . The

eigenvalues of lay in the disks with centers

Fig. 2. Values of minRe[� (A)] (Lemma 2) and min min �((A+
���) A+A (A+���))=2 (Lemma 3) forA = diag(2;1:2;0:3).

and radius for . From this figure, it is clear that
the value of is given by , which is in
agreement with Lemma 2.

From Lemma 1 and 2 it follows that lies in the open
right half plane if and contains elements
with negative real part if . The following lemma will be
used in Section III-C to derive the minimal regularization filter

that also guarantees noncritical behavior. Its proof is given
in the Appendix.

Lemma 3: Let and . If let
be zero-valued singular values. Let

Then

From Lemma 3 it follows that if
and if .

Combining the results of Lemma 2 and 3 it follows that

, which is intuitive since the condition for non-
critical behavior is stronger than the condition for asymptotic
convergence (equality holds for and ). Fig. 2
illustrates the results of Lemma 2 and 3, and shows that the
results of both lemmas deviate especially for in the regions
around ( etc.).

B. Minimal Regularization for Guaranteed Convergence

Let be singular values
of . Then with the identifications ,
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and Lemma 2 says that for
and for each

(14)

where . If the value (14) is
negative for some , then according to Theorem
1 the nominal (i.e., with ) FXLMS algorithm will di-
verge for sufficiently large number of adaptive filter coefficients.
When is chosen such that

, where an arbitrarily small user chosen
number, then the value of will be no smaller
then . Hence, for this choice of the robust FXLMS will be
asymptotically converging according to Theorem 1. The result
is summarized in the following theorem.

Theorem 2: Let be singular
values of . For any , let be
such that

if
otherwise

then such that the robust FXLMS al-
gorithm (9) asymptotically converges in mean for sufficiently
small step-size .

Note, that (in the case where ) in-
duces an effort weighting, and thus can also be used to combine
effort weighting together with minimal norm regularization, cf.,
Table I.

So, given a particular bound Theorem 2 can be applied
to compute the spectrum such that
is minimal. To obtain an explicit expression for a para-
metric spectral factorization has to be made. The good news is
that only a scalar (single-channel) spectral factorization has to
be computed, even in the matrix case. However, the
spectrum obtained by Theorem 2 is not guaran-
teed to be rational, i.e., there may not exist a finite dimensional
spectral factor with real coefficients such
that for all . In
this case the spectrum has to be approximated.
There are various techniques for computing the (approximate)
spectral factor (such as based on the cepstrum). In our
simulations, we obtained good results with the Power Spectrum
SubSpace Identification (PSSSID) algorithm [9] that estimates a
state-space realization of the (minimum-phase) spectral factor.
The algorithm is based upon subspace estimation and solving
a conic programming problem and is numerically well condi-
tioned even for spectra that are close to singular.

C. Minimal Regularization for Guaranteed Noncritical
Convergence Behavior

A similar approach can be taken to prevent critical behavior.
To this end, the stronger condition

(15)

for need to be satisfied for all , that is
obtained by application of [1, Theorem 3] on the augmented
plant. By Lemma 3, it is inferred that for each

(16)

which is negative if . Hence, because
is

known, we can choose such that (15) is guaranteed to be
satisfied and the following theorem can be stated.

Theorem 3: Let be singular
values of and . If let

, else let be such that for allaa

then (15) is satisfied for all such that the robust
FXLMS algorithm (9) asymptotically converges in mean for
sufficiently small step-size and does not show critical
behavior.

As aforementioned, it may be impossible to find a rational
spectral factor such that Theorem 3 holds, and a rational
approximation has to be made.

If the uncertainty bound is such that
for some , then observe that for there always exists
a such that the condition for asymptotic conver-
gence is not satisfied as well as the condition for noncritical be-
havior. For both conditions there exists a “worst-case” model
error . It is illustrative to determine this worst-case for
the single-channel case. Note, that in the single-channel case
the conditions for asymptotic convergence and noncritical be-
havior are equivalent. The SVD of scalar systems is given
by where ,

and . Then it can be easily
verified that the that minimizes (14) as well as
(16) satisfies . This model
error has maximal magnitude and also maximal phase-differ-
ence with .

IV. SIMULATION RESULTS

To illustrate and support the results of this paper let us con-
sider the following (academic) example, where
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Fig. 3. Worst case uncertainty bound 
(!) on ���G(e ) together with the
largest and smallest singular value of G(e ), denoted by s (!) and s (!),
respectively.

and is a full 2 2 transfer-function matrix, which
magnitude is dominant at high frequencies. Each , th element

of is determined as follows. Let

be a second order high-pass Butterworth filter with cut-on
frequency at . Let where the
coefficients are realizations of a Gaussian distributed
random variable with zero mean and variance 0.04. Then the
entries are obtained by convolution of and the
20-taps FIR approximation of , resulting in a realization of
a (stable) random that is dominant at high frequencies.
The off-diagonal elements of cause a cross-coupling,
that distorts the decentralization of the filtering problem.

The bound is approximated on the basis of the
worst-case realization of each , , using
100 realizations of . The resulting is depicted
by the solid curve in Fig. 3. The figure also shows the largest
and smallest singular value of , denoted by
and respectively. Observe that for it
holds that , such that there exists
bounded by for which the conditions for asymptotic
convergence and noncritical behavior are not satisfied. For each
of the 100 realizations of the minimal real part of the
eigenvalues of and the minimal eigenvalue of

have been computed to
evaluate the conditions for asymptotic and noncritical behavior
respectively. Taking the minimal values over all 100 realiza-
tions, for each , yields the values and

, which are depicted in Fig. 4. If the 100 real-
izations sufficiently cover the model uncertainty set defined
in (12) will be equal to the optimal value in
(14), denoted by . Similar, would
be equal to the optimal value in (15) divided by 2, denoted by

. From Fig. 4, that also shows and
(dotted curves), we observe that is below

and is below , because the

Fig. 4. � and � , the minimal real part of the eigenvalues
of G (e )G(e ) and (1=2)(G (e )G(e ) + G (e )G(e )) for
100 realizations of���G respectively, together with � and �
that are obtained by minimizing over the whole uncertainty set S .

Fig. 5. Magnitude of the diagonals of the regularization filters F and
F together with their rational approximations.

100 realizations of do not cover the whole set . Hence
the regularizations based on and may
be (a bit) too conservative. Moreover, at higher frequencies

and deviates, such that
the regularization to prevent noncritical behavior need to be
stronger in this frequency range than for achieving guaranteed
asymptotic convergence. Using Theorem 2 and Theorem 3 the
power spectra of the filters and are computed
that guarantee asymptotic convergence and noncritical behavior
of the general robust FXLMS algorithm respectively (
to guarantee a positive definite spectrum). Fig. 5 shows the
magnitude of the diagonal elements of and
together with their finite dimensional (8 order) approximations

and , determined by the PSSSID algorithm [9].
Several robust FXLMS algorithms have been evaluated: 1)

leakage and effort weighting , which provide the
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Fig. 6. Control effort versus optimal value of the performance measure
achieved by various robust FXLMS algorithms averaged over 100 realizations
of���G (only depicted cases for which the adaptive algorithms are stable).

same result since ; 2) output weighting ;
3) uncertainty weighting , where the esti-
mated uncertainty spectral factor as in [4]; 4) guaranteed sta-
bility weighting ; and 5) guaranteed noncritical
behavior weighting . The weighting param-
eter , that is used as a tuning parameter in leakage, effort, output
and uncertainty weighting, has been used in the other methods
as well for comparison. Though, usually for guaranteed stability
and guaranteed noncritical behavior weighting is set to .
To get insight in the tradeoff between control effort and the value
of the performance measure as well as to determine the minimal
value of for which the update algorithm is stable, has been
varied over 81 logarithmically spaced values between and

. The length of the adaptive filter has been set to
taps, for which the nominal disturbance suppression is 66 dB
(note that is minimum phase and and have the same
poles and approximately the same zeros).

For each value of the asymptotic solution of the various ro-
bust algorithms for vanishing stepsize have been computed for
100 realizations of the uncertainty . Note, that Fig. 6 shows
the resulting tradeoffs between control effort and the mean-
square error (mse) to which the FXLMS algo-
rithm converges for vanishing stepsize . In this figure,
both the control effort and the mse
are averaged over the 100 realizations of , provided the up-
date algorithm is stable (i.e., the eigenvalues of
are in the right half plane).

We observe that the results for uncertainty, stability and non-
critical behavior weighting do not differ that much, whereas the
output weighting yields a rather bad tradeoff and leakage/effort
weighting has lower cost but is not able to give best perfor-
mance. The behavior of output weighting can be explained by
the fact that the 1,1 element of consists of a low pass filter. To
be able to stabilize the update rule for the model uncertainty in
the high frequency band a large value for needs to be selected,

which significantly suppresses the performance at the lower fre-
quency band. Similarly, for leakage/effort weighting the regu-
larization, though less severe as in output weighting, is not ac-
cording to the model uncertainty. Note, that for very small the
control effort becomes significant but due to the uncertainty in
the system the performance is getting worse.

Table II shows the values of , and the asymptotic values of
(in dB) and (in dB) for vanishing

stepsize averaged over the 100 uncertainty realizations of
for several situations. The first rows and columns give the values
for which the update algorithm is just stable, i.e., the eigenvalues
of are in the right half plane. The values on the
first rows and last columns are obtained for being such that
the SPR condition of Theorem 1 is just satisfied. Comparing
both results, we infer that to assure stability of the update rule,

can be significantly smaller than is necessary to satisfy the
SPR condition. This is because the number of adaptive filter
coefficients is not too large, i.e., . When is increased
the values of to achieve stability will approach the values of
that satisfy the SPR condition. Note, that for the
SPR condition is, indeed, satisfied for .

Also observe, that the minimal to achieve stability, does not
yield best performance. This is because the uncertainty in the
secondary path distorts the performance significantly. The
influence of on the performance is reduced by increasing
the regularization parameter , such that there exists a partic-
ular value for which the performance, on average over all re-
alizations , is optimal. These values are given on the last
rows of Table II, that show the optimal performance averaged
over all the 100 realizations of obtained by the adaptive
algorithms and obtained by the model-based offline computed
filter . We observe,
that, except for output weighting, the optimal performance ob-
tained by the adaptive robust FXLMS algorithms is better than
the performance achieved by the model-based offline computed
filters. Observe, that in this experiment the robust FXLMS al-
gorithm with and the offline computed filter with

give optimal performance for . How-
ever, this need not to be the case in general. Note, that though
the regularization by to achieve noncritical behavior is
stronger than by to achieve asymptotic convergence, this
difference does not influence the performance significantly. For
the case of output weighting, the nonadaptive offline computed
filter provides better performance than the adaptive algorithm,
because can be much smaller in the offline case
than is necessary to guarantee stability in the adaptive case.

Finally, Fig. 7 shows the mse, , averaged over
the 100 realizations of , obtained by the nominal robust
FXLMS algorithms with effort, output and stability weighting.
For the robust algorithms, is selected such that optimal av-
erage performance is achieved. The stepsize is chosen as

, which is relatively small, such that the misadjustment
can be neglected. The results for uncertainty and noncritical be-
havior weighting are comparable with stability weighting. We
observe, that indeed there exists realizations for which the
nominal FXLMS algorithm diverges. The converged values of

are in agreement with Table II (last rows, first
columns).
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TABLE II
VALUES OF �, E[e (k)e(k)] (IN dB) AND E[u (k)u(k)] (IN dB) AVERAGED OVER THE 100 UNCERTAINTY REALIZATIONS OF ���G FOR WHICH THE ADAPTIVE

ALGORITHMS ARE JUST STABLE (FIRST ROWS AND COLUMNS), FOR WHICH THE SPR STABILITY CONDITION OF THEOREM 1 IS JUST SATISFIED (FIRST ROWS,
LAST COLUMNS), FOR WHICH THE LOWEST AVERAGED VALUE FOR E[e (k)e(k)] IS ACHIEVED BY THE ADAPTIVE ALGORITHMS (LAST ROWS, FIRST COLUMNS)

AND BY THE OFFLINE COMPUTED FILTER (LAST ROWS AND COLUMNS)

Fig. 7. Mean-square error averaged over 100 realizations of ���G obtained by
the nominal Filtered-X LMS algorithm and various robust variants, the stepsize
is � = 0:001, and the vertical intervals indicate the upper and lower bounds of
the mse for all 100 realizations of ���G. (a) Nominal filtered-X LMS and effort
weighting; (b) output filtered-X LMS and stability weighting.

For this experiment uncertainty, stability and noncritical
behavior weighting show similar results that are better than
leakage/effort and output weighting. This does not mean that
in practice one always need to choose for these weightings. A
drawback is an increase of computational complexity because
of additional filter actions and an increase of the number of
columns in the regression vector. For example, for diagonal
with equivalent FIR filters of taps, the computational
complexity is increased by approximately
floating point operations (flops). In comparison, the increase of
computational complexity for online secondary path modeling
is approximately flops where the number of taps
of the FIR secondary path model.

The worth of the analysis of this paper together with the ex-
perimental results is an increase of insight in the behavior of
(robust) FXLMS algorithms and stresses the need to evaluate in
which frequency range the model uncertainty is dominant.

V. CONCLUSION

Model uncertainty not only may degrade the performance of
the FXLMS algorithm, it may also yield an unstable update rule.
Various regularization methods that may recover stability are
discussed. When the uncertainty is dominant in a particular fre-
quency region, regularization methods like leaky FXLMS, effort
weighting and output weighting FXLMS, may yield too conser-
vative results. Minimum norm regularization filters have been
proposed that stabilize the update algorithm for a norm bounded
uncertainty set and prevent critical behavior (i.e., the initial in-
crease of the error before decaying to zero). The minimum norm
regularization filters provide good performance, but the price to
be paid is an increase of computations.

APPENDIX

A. Proof of Lemma 1

Let be the SVD of . Assume such
that for some singular value . If
then which is an eigenvalue of for
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. Assume , then choose where
for and

for . Because
and the assumption , it follows that
such that this choice of is valid. Then,

is an eigenvalue decompo-
sition, where the th element on the diagonal of
equals such that .

On the other hand, assume that there exists a for which
such that is an eigenvalue of . But as-

sume that
such that for . Let

be an eigenvector of corresponding with
, such that and

. Now, define such that
. Hence,

, where we made
use of the assumption . This result contradicts
with and thus should be
contained in .

B. Proof of Lemma 2

By Lemma 1
, such that
, where is the singular value

nearest to the minimum of the function at
.

C. Proof of Lemma 3

Because is Hermitian
it holds that

[10, Th.
.2.2, p. 176]. Because of continuity the order of the mini-
mization can be changed such that

. Let and , then
.

For each , for which , and for each , for which
, there exists a for which

such that , e.g., choose . Hence can
point in every direction, only its magnitude is limited from
above by . Hence,

. The mini-
mizing value is obtained by perpendicular projection of

onto and given by for , and
.

In the trivial case , can point in any direction and
. Remains to minimize

subject to over all for which
. The unconstrained minimum of

is obtained at , which may or may not be achieved
because . Therefore, distinguish the three
cases (as in the lemma):

• : then is minimized for
such that , which

proves the first case.

• : then is minimized for
such that which proves

the second case.
• : then is minimized for

such that which proves the
third case.
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