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For several decades the propagation characteristics of acoustic pulses (attenuation
and sound speed) have been inverted in attempts to measure the size distributions
of gas bubbles in liquids. While this has biomedical and industrial applications,
most notably it has been attempted in the ocean for defence and environmental
purposes, where the bubbles are predominantly generated by breaking waves. Such
inversions have required assumptions, and the state-of-the-art technique still assumes
that the bubbles undergo linear, steady-state monochromatic pulsations in the free
field, without interacting. The measurements always violate, to a greater or lesser
extent, these assumptions. The errors incurred by the use of such assumptions have
been difficult to quantify, but are expected to be most severe underneath breakers
in the surf zone, where the void fraction is greatest. Very few measurements have
been made in this important region of the ocean. This paper provides a method
by which attenuation can be predicted through clouds of bubbles which need not
be homogeneous, nor restricted to linear steady-state monochromatic pulsations. To
allow inversion of measured surf zone attenuations to estimate bubble populations
with current computational facilities, this model is simplified such that the bubble
cloud is assumed to be homogeneous and the bubbles oscillating in steady state
(although still nonlinearly). The uses of the new methods for assessing the errors
introduced in using state-of-the-art inversions are discussed, as are their implications
for oceanographic and industrial nonlinear bubble counters, for biomedical contrast
agents, and for sonar target detection in the surf zone.

Keywords: acoustic propagation; bubble; oceanic bubble size distribution;
acoustic cross-section; echo-contrast agents; sonar target detection

1. Introduction

The ability to determine the sizes and numbers of gas bubbles in a population has
biomedical, defence, environmental and industrial applications (Leighton 1994a). If
the acoustic propagation is linear, it may be modelled using a complex representa-
tion, and the introduction of a bubble population into the liquid is assumed to result
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in a modification of the complex wavenumber. Measurement of the changes in acous-
tic attenuation and phase speed caused by the addition of bubbles is at first sight
simple enough, and has been frequently attempted over the last 50 years (Medwin
& Clay 1998). The bubble population is then estimated by inverting these measured
propagation characteristics using some model. Given the long history of application
of this technique, it is therefore surprising that the assumptions inherent in the mod-
els are still extensive. All measurements violate one or more or these assumptions.
The state-of-the-art inversion (Commander & McDonald 1991; Melville et al . 1997;
Dumbrell 1997; Duraiswami et al . 1998; Terrill & Melville 1998; Terrill et al . 2001) is
based on a theory (Commander & Prosperetti 1989) which assumes that the bubbles
are undergoing steady-state monochromatic linear pulsations in the free field without
interacting.

In general, the greater the range of bubble radii present in the population, and
the greater the void fraction (the proportion of a given volume of bubbly water
that comprises free gas), the greater the extent to which the assumptions of the
inversion are violated when the measurement is made. This is not simply because
of the non-interaction condition, but also because the greater reverberation and
attenuation which result from higher void fractions will tend to promote the use
of shorter insonifying pulses of higher amplitude. The problem is that, provided
the inversion converges to a plausible solution, the temptation is to accept that
solution without examining its correctness. Prior to this paper, such examinations
could only be attempted by comparing the solution with the result of an independent
(e.g. optical) measurement. Such comparisons are rarely done, and are of limited use
because of differences in the sampling, and the limitations of bubble radius range and
resolution (Stokes & Deane 1999), that are inherent to the different techniques. With
intense surf zone breakers, they become impractical. However, without such testing,
it is not even possible to put limits of confidence on the result of the state-of-the-art
inversion, unless there is a technique which is not so constrained by assumptions.

This study presents such an advance, based on methods of predicting attenuation
in inhomogeneous bubble clouds without the assumptions of linearity, monochro-
maticity and steady-state bubble pulsations (the ‘forward problem’). This technique
is of use when high driving pressures are incident on the bubble population being
measured, causing a nonlinear response, or when the excitation is sufficiently short
that not all bubbles are oscillating in steady-state. Incorporating the assumptions of
steady-state and cloud homogeneity to allow for tractable computing times, bubble
populations are estimated from the measured propagation (the ‘inverse’ problem) in
the surf zone in November 2001. The results are processed using both the state-of-
the-art technique and the new approach.

The ocean represents probably the most common of the challenging environments
where inversions are made to estimate bubble populations. The population estimates
so obtained have been used for a variety of processes, including studies of the fluxes
of mass, energy and momentum between the atmosphere and the ocean (Thorpe
1982; Thorpe et al . 1992; Farmer et al . 1993), and for enhancement of the operation
of sonar in the surf zone (Meers et al . 2001). The populations so encountered can be
sufficiently polydisperse, and have a high enough void fraction, for it to be reasonable
to question the effects of violating the key assumptions. (While it is possible to
find populations with higher void fractions, for example, in the food industry, an
advance in theory is probably a prerequisite before bubble size distributions are
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Figure 1. A single frame from an animation by M. D. Simpson and T. G. Leighton (available
at http://www.isvr.soton.ac.uk/fdag/UAUA/research.html). The air–sea interface is flat and
at depth 0 m; the sea bed is flat and at depth 2 m. A bubble population is injected into a
three-dimensional section of ocean measuring 2 m×10 m×10 m. This ‘entrainment’ population is
based on measurements of the passive noise from breaking waves, and the bubbles are introduced
at the origin. The population then evolves under the influence of buoyancy, turbulence, surface
tension and hydrostatic pressure, and gas flux occurs as, for example, the bubbles dissolve
(Thorpe 1982; Phelps & Leighton 1998). (a) The bubble cloud 30 s after injection. The bubble
size distribution is colour coded, and it is, for example, clear that, while turbulence has dispersed
the cloud spatially, both buoyancy and hydrostatic effects result in the tendency for small
bubbles (blue) to appear at depth, with the larger (yellow/orange/red) bubbles tending to
occur only close to the surface. Leighton (2001) investigated the accuracy of such models by
comparing the predicted bubble population as a function of depth with the measurements of
active acoustic techniques, such as those described in this paper. The two frames on the right
show the bubble size distribution (number of bubbles per cubic metre per micrometre radius
increment, as described in the text): (b) volume-integrated result from depth 0 to 1 m; (c) the
volume-integrated result from depths of 1 m to the bottom (2 m). The peak in the population
at a bubble radius ca. 30–50 µm is more apparent in the bottom plot. This is because at these
greater depths the influence of hydrostatic pressure and dissolution (which tend to cause bubbles
to shrink the deeper they go) and buoyancy (which tends to allow only the smaller bubbles to
travel to depth) will be stronger than the effect of turbulence (which tends to homogenize the
cloud). Each of the 64 000 bubbles in the simulation represents ca. 104 bubbles in nature because
of computational limitations (hence the difference in magnitude on the vertical axes in figures 1
and 9). (First presented by Leighton (2001).)

realistically measured in these.) Bubbles in the ocean are generated through a variety
of processes, including biological activity, methane seeps, rainfall, etc. However, the
most important near-surface entrainment mechanism is wave breaking. This is not
only because of the number of bubbles involved, but also because of the ability of
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waves to entrain large bubbles which greatly affect the stability of the inversion (see
below). The bubble populations generated in the surf zone breakers are especially
problematic in this respect, and most of the at-sea bubble size distributions have been
measured in deeper waters (Melville et al . 1997; Terrill & Melville 1998; Farmer 2001;
Didenkulov et al . 2001). Those trials taken in the ‘surf zone’ tend to deploy sensors
in the relatively quiet transition region (Svendsen et al . 1978), O(100) m offshore.
Even those taken in shallow water (depths less than 2 m) tend to occur on sandy
beaches with slopes of gentler than 1 in 70 (Leighton et al . 1996; Phelps et al . 1997;
Deane 1997; Terrill et al . 2001; Farmer et al . 2001; Dahl 2001), so that the sensors
tend to be ca. 100 m offshore and the breaker activity is dispersed over a wide zone.
Very few (Meers et al . 2001; Leighton et al . 2001; Leighton 2001) have been taken
on shingle beach slopes steeper than 1 in 9, where all the dissipation from breakers
is confined to an intense region within ca. 20 m of the shoreline. It is in this most
difficult region that the measurements in this paper are taken.

This paper discusses the most commonly used active acoustic technique, where
the attenuation of an acoustic signal between two points is related to the number
of bubbles per cubic metre per unit bubble-size bin (i.e. n(R0), where n(R0) dR0
is the number of bubbles per cubic metre having radii between R0 and R0 + dR0,
and where the radius bin width dR0 is usually taken to be 1 µm). There are alter-
native techniques, and these are usually listed with respect to the differences in
hardware or signals employed (Leighton 1994b; Nyborg 2002). What is rarely con-
sidered is that these techniques can be measuring different bubble populations: a
particularly important point, as in recent years the trend has been to compare the
results obtained using various techniques in an attempt to cross-validate them. While
the ‘measurement volume’ in the bubble density considered in this paper is an output
of the plane-wave assumption (see § 2), for combination-frequency systems it comes
directly from the well-defined volume of liquid formed by the cross-over of the vari-
ous transducer beam patterns (which are of course frequency dependent) (Phelps et
al . 1997; Sutin et al . 1998; Phelps & Leighton 1998; Didenkulov et al . 2001). The
bubble-mediated signals generated by the active acoustic techniques, such as those
described above, in principle include information from all the bubbles in the mea-
surement volume, because they are all driven to pulsate by an incident sound field.
Whether of course these signals are interpreted as a measure of all the bubbles present
is a function of the accuracy of the inversion algorithm, to be discussed shortly. In
contrast, passive acoustic techniques monitor the net sound field which results from
the impulsive excitation of bubbles. In practice this usually consists of monitoring
the overlapping emissions of bubbles excited upon entrainment in babbling brooks
and waterfalls (Leighton & Walton 1987), under breaking waves (Updegraff & Ander-
son 1989; Medwin & Beaky 1989; Deane & Stokes 2002), rainfall or ‘dripping taps’
(Pumphrey et al . 1989): to first order each bubble produces an exponentially decay-
ing sinusoid at a natural frequency which is roughly inversely proportional to its
radius (Minnaert 1933). However, this population of ‘ringing’ bubbles is a subset of
the total bubble population that an active acoustic technique would measure, a fact
which should be recognized when the two are compared. Indeed, it is a difference
which can be exploited, for example, in order to determine from their difference how
the population entrained under a breaking waves evolves into the steady-state ocean
population as a result of dissolution, bubble fragmentation and coalescence, buoy-
ancy, depth changes, etc. (figure 1). Even amongst optical techniques, the population
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Figure 2. Extinction cross-section for a fixed frequency of 165 kHz as a function
of bubble radius. Note that there is only a local maximum at resonance.

is sampled. In photography the sample volume can be inferred from the depth of field
blurring (Geissler & Jahne 1997) or by illuminating only a known volume (Stokes
& Deane 1999), while, if a count is made of those bubbles which have risen under
buoyancy to settle under a glass plate (Kolovayev 1976), the volume of seawater
sampled for the larger bubbles (which have the greater buoyant rise speed) of course
exceeds that sampled for the smaller bubbles. While it is possible optically to count
bubbles having radii from 10 µm (Su et al . 1994) up to more than 1 mm (Stokes &
Deane 1999), this cannot be done for a constant ‘field of view’.

The popularity of the state-of-the-art method of inverting measured propagation
along an array to estimate bubble populations probably stems from several sources,
one of which is the ability to encompass a wide range of bubble radii across a single
‘field of view’ (§ 2). Also, in an environment where every cubic metre of wave water
which impacts on the rig has a mass of a tonne, its ruggedness is probably an over-
whelming factor. Another might be its frequent ability to generate a result. The new
version described here uses the same rugged hardware (although the durability and
deployment requirements for trials taken on steep shingle beaches, as in this paper,
may exceed those of deployments made further offshore on shallow, sandy beaches,
the historically more popular site). The fundamental advance of the current study
over the state-of-the-art method is in the models used to interpret the data. In both
versions, each gas bubble is driven to pulsate by an incident sound field, and acts as
a resonant system: the stiffness comes primarily from the gas component, and the
inertia from the surrounding liquid (Leighton 1994a). Prior to the 1960s there were
doubts as to whether micro-bubbles existed in the sea at all. That they exist in great
numbers was demonstrated by Medwin (1977). A peak in the n(R0) distribution was
found by Farmer & Vagle (1989), who, for a depth of 0.1 m below the sea surface in
water 140 m deep, estimated numbers in excess of 105 m−3 in the micrometre-radius
bin centred on 20 µm. The earliest inversions assumed that only resonant bubbles
contributed to the observed changes in sound speed and attenuation. Although this
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rather extreme assumption is still applied in some inversions today, most accept the
guidance that in general the presence of off-resonant bubbles needs to be considered
(Commander & Moritz 1989). The importance of large bubbles, for example, can be
shown in figure 2 where the extinction cross-section at a fixed frequency is plotted as
a function of bubble radius. For a single bubble, the extinction cross-section (Ωext

b )
is defined as the ratio of the power lost through acoustic absorption and scatter,
to the intensity of the incident acoustic wave (which is assumed to be planar). The
cross-section has dimensions of area and can be thought of as representing, for a
single bubble, the ‘target area’ it presents to the beam. As can be seen from figure 2,
although there is a local maximum at resonance (20 µm), large bubbles can con-
tribute as significantly as resonant bubbles, not by pulsating at large amplitude but
simply by virtue of their size. This illustrates how the nature of the extinction cross-
section leads to ill conditioning in the inversion problem (Commander & McDonald
1991). This point is expanded upon in § 3.

The cross-section discussed above is indeed still found at the heart of the state-
of-the-art inversions (equation (2.16) will ingeminate that this description of atten-
uation is based upon the effect on a solution to the linearized plane-wave equation
of an appropriate summation of the extinction cross-sections of the bubbles in the
population). The pioneering state-of-the-art propagation model for the inversion was
provided by Commander & Prosperetti (1989) (and has been cited over 100 times
since), with various inversion routes tried over the following decade and more (Com-
mander & McDonald 1991; Duraiswami et al . 1998). As such, the state-of-the-art
method has the same limitations as the cross-section, which follow from the assump-
tions listed above. In addition, practical considerations usually mean that the bubbles
are insonified by a pulse of finite duration, which adds conceptual difficulties to the
state-of-the-art technique. For example, even if a time-dependent cross-section can
be defined during the ring-up to steady state (Clarke & Leighton 2000), the extinc-
tion cross-section clearly becomes undefined once the driving field has ceased but
the damped bubble continues to undergo decaying pulsations. If the cross-section
concept is abandoned, the power loss during the ring-down period can still be cal-
culated, by combining a nonlinear description of the bubble-wall time history with
a linear monochromatic damping constant (Clarke & Leighton 2000). If the latter
is evaluated at a frequency corresponding to a period twice the zero-crossing inter-
val of the radius, the damping constant becomes appropriately time-dependent. In
practice, during ring-down, the simplification that the bubble oscillates at its natural
frequency can be made (see figure 10). Fundamentally, however, the damping would
still be based on a linear model, even though the time history with which it is com-
bined can encompass nonlinearities. In § 2 we use the first law of thermodynamics to
produce a method capable of calculating nonlinear and time-dependent losses at all
times during insonification.

2. Theory

The insightful review of the propagation issues by Commander & Prosperetti (1989)
is recommended to readers (as are the key texts by van Wijngaarden (1968) and
Caflisch et al . (1985)). By linearizing the problem, they predict the effects on acoustic
phase speed and attenuation that the addition of bubbles to a previously bubble-
free liquid will have, through consideration of the complex wavenumber of plane
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waves. Such an approach is not possible for the nonlinear problem, where complex
representation is inappropriate. Assume throughout that each bubble radius is much
smaller than the acoustic wavelength. A cloud of bubbly water, having volume Vc
and bulk modulus Bc, is made up of a volume Vw of bubble-free water (having sound
speed cw and bulk modulus Bw) and a volume Vg of free gas (having sound speed cg
and bulk modulus Bg) distributed in a population of bubbles, and hence

Vc = Vw + Vg. (2.1)

Mass conservation is simply expressed by multiplication of the volumes with the
respective densities (of the cloud, ρc, bubble-free water, ρw, and gas, ρg), i.e.

ρcVc = ρwVw + ρgVg. (2.2)

Under the assumption that each of the three media conserve mass separately, the
differential of equation (2.2) with respect to the applied pressure P is, of course,
zero. In an infinite body of either water or gas that contains no dissipation, sound
speeds (cw and cg, respectively) may be defined according to

c2
ε =

Bε

ρε
=

[
∂P (ρ, S)

∂ρ

]
ε

, ε = w, g, (2.3)

where S is the entropy and the subscript ε can refer to application to water (w) or gas
(g). Similarly, differentiation of equation (2.1) with respect to the applied pressure
gives, with equation (2.3), the relationship between the bulk moduli:

1
Bc

=
Vw

Vc

1
Bw

+
Vg

Vc

1
Bg

. (2.4)

Let us define a function ξc (which is not an inherent property of the bubble cloud
in the thermodynamic sense), equal to the root of the ratio of the bulk modulus of
the bubbly cloud to its density, which with equation (2.4) gives

ξc =

√
Bc

ρc
=

√(
Vc

ρwVw + ρgVg

)(
Vw

VcBw
+

Vg

VcBg

)−1

≈ cw

(
1+

BwVg(t)
VcBg(t)

)−1/2

, (2.5)

where the final approximation is valid under low-void-fraction conditions. Specif-
ically, it is assumed that the density and volume of the cloud are approximately
equal to those of its bubble-free water component. If the bubbly cloud were not dis-
sipative, then this would equal the sound speed in the cloud, but (as will be shown)
such an identity is not rigorous in lossy bubble clouds.

Evaluation of equation (2.5) requires calculation of the bulk modulus of the gas, as
it is distributed through a (presumably) numerous population of bubbles pulsating
with a broad range of amplitudes, phases, frequency content, damping and start
times. The inhomogeneous bubbly water must be divided into volume elements which
are sufficiently small to ensure that all the bubbles in that element are subjected to
the same pressure change dP (t) simultaneously. This would allow calculation of a
value for ξc for each volume element, since from equation (2.3) the bulk modulus
Bgl of the gas within the lth element is related to the volume changes dVi of the I
bubbles in that volume element,

1
Bgl

= − 1
Vgl

I∑
i=1

dVi

dPl
, (2.6)
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where Pl denotes the pressure in the lth volume element. Consider one such volume
element Vcl of a cloud which has total volume

Vc =
L∑

l=1

Vcl. (2.7)

Substituting equation (2.6) into equation (2.5) gives ξcl, the time history of ξc
within the volume element Vcl,

ξcl ≈ cw

(
1 − ρwc2

w

Vcl

I∑
i=1

dVi

dPl

)−1/2

. (2.8)

To understand the meaning of this quantity, consider that, if the system were
linear, monodisperse and lossless, dVi/dPl would be a constant throughout the oscil-
latory cycle: in pressure–volume space, as one progressed throughout the oscillatory
cycle one would move back and forth along a locus of points mapping out a straight
line. The constant gradient of that line could be related to the sound speed in the
cloud through equation (2.8), which would equal the constant ξcl. If the system were
nonlinear and lossless, dVi/dPl would vary through the cycle, and the single line
mapped out by the locus of points in pressure–volume space would not be straight.
In this case the sound speed would vary through the oscillatory cycle, and could
again be identified with ξcl through equation (2.8). This could then be related to a
sound speed for nonlinear propagation. If, however, dissipation occurs, the locus of
points in the pressure–volume plane would, during a single oscillatory cycle, map out
a finite area. In such circumstances ξcl cannot strictly be identified with any sound
speed. If dissipation is very small, then one might identify a characteristic value of
dVi/dPl which is not much different from the true value for most of the acoustic
cycle; for the linearized case, this is in effect what Commander & Prosperetti do.
This will be discussed further in relation to figure 4.

To evaluate equation (2.8), the bubble population of the volume element is classi-
fied into j discrete bins according to bubble size. Every individual bubble in the jth
bin is replaced by another bubble which oscillates with radius Rj(t) and volume Vj(t)
(about equilibrium values of R0j and V0j ), such that the total number of bubbles Nj

and total volume of gas NjVj(t) in the bin remain unchanged by the replacement.
If the bin-width increment is sufficiently small (1 µm is normally chosen), the time
history of every bubble in that bin should closely resemble Vj(t) = V (R0j , t) (the
sensitivity being greatest around resonance). Hence, the total volume of gas in the
lth volume element of bubbly water is

Vgl(t) =
J∑

j=1

Nj(R0j , t)Vj(t) = Vcl

J∑
j=1

nj(R0j , t)Vj(t). (2.9)

Here nj(R0j , t) = Nj(R0j , t)/Vcl is the number of bubbles per unit volume of bub-
bly water within the jth bin. It will vary more slowly than the acoustically driven
pulsation Vj(t), and so the approximation is made that it is stationary over the
duration of the measurement. This in practice can be in the range 0.001–1 s; smaller
volume elements and more dynamic oceans would sensibly suggest finer time resolu-
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tion. Expressing equation (2.8) in terms of this bin scheme gives

ξcl ≈ cw

(
1 − ρwc2

w

J∑
j=1

nj(R0j )
dVj(t)
dPl(t)

)−1/2

. (2.10)

Crucially, equation (2.10) provides a generic framework into which any bubble
dynamics model may be inserted (giving dVj(t)/dPl(t) appropriate to bubbles in
water, tubes, sediments, etc., as the chosen model dictates). Equation (2.10) con-
tains low-void-fraction limitations identical to those discussed by Commander &
Prosperetti (1989). However, so far no assumptions of small amplitude, steady-state,
monochromatic or linear bubble pulsations have been included, nor have the bubbles
and their wall motions been assumed to be spherically symmetric. If these assump-
tions are introduced, the state-of-the-art formulation is recovered, as follows. If the
oscillations are spherically symmetric and of small amplitude, then

dV

V0
=

(
1 +

(
dR

R0

))3

− 1 = 3
(

dR

R0

)
+ 3

(
dR

R0

)2

+
(

dR

R0

)3

. (2.11)

Truncating after the first term in the expansion is one of the linear assumptions
that may be included, and with this

dV

dP
= 4πR2

0

(
dR

dP

)
.

Substituting this limitation into equation (2.10), then expanding the square root
binomially and re-expressing the bubble population as a continuous integral, gives

c2
w

ξ2
c

≈ 1 − ρwc2
w

∫ ∞

0
n(R0)

dV

dP
dR0

≈ 1 − 4πρwc2
w

∫ ∞

0
n(R0)R2

0
dR

dP
dR0, (2.12)

where the subscript l has been dropped because the cloud in the state-of-the-art
inversion has always been considered to be homogeneous.

If it is further assumed that the linear bubble pulsations are the steady-state,
monochromatic response to a constant-amplitude (PA) monochromatic driving field
of the form P (t) = PAeiωt, then (Leighton 1994a)

dR

dP
=

−1
R0ρw((ω2

0 − ω2) + i2βtotω)
, (2.13)

where i =
√

−1, ω0 is the undamped natural frequency of the bubble and βtot is a
damping constant having dimensions of time−1, derived assuming monochromatic
conditions, that accounts for the bubble damping by viscous, thermal and acoustic
radiation mechanisms (and others, potentially). Equation (2.13) provides the state-
of-the-art model with the required constant value for dV/dP for each bubble driven
under given monochromatic conditions, allowing equation (2.10) to generate a phase
speed, a feature which is not strictly possible with finite dissipation, as discussed
earlier.

Substitution of (2.13) into (2.12), and multiplication by the square of the angular
frequency ω gives the complex wavenumber kc within the bubbly mixture, as derived
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by Commander & Prosperetti (1989, eqn 35), and used in the state-of-the-art inver-
sions discussed in § 1:

k2
c ≈

(
ω

cw

)2

+ 4πω2
∫ ∞

0

R0n(R0)
(ω2

0 − ω2) + i2βtotω
dR0. (2.14)

If a plane harmonic acoustic wave

P (x, t) ∝ ei(ωt−kcx) = ei(ωt−Λx)e−xχ/2 (2.15)

were propagating at phase speed ω/Λ along the x-axis through a bubble cloud with
wavenumber kc = Λ − 1

2 iχ described by equation (2.14), the plane-wave intensity-
attenuation coefficient χ can be expressed in terms of a population-weighted inte-
gration of the extinction cross-sections Ωext

b (see figure 2) of the individual bubbles
(Leighton 1994a), giving a Fredholm integral equation of the first kind,

χ ≈ 8πcw

∫ ∞

0

ω2βtot

(ω2
0 − ω2)2 + 4β2

totω
2 R0n(R0) dR0

=
∫ ∞

0
Ωext

b (ω, R0)n(R0) dR0, (2.16)

such that the attenuation coefficient in terms of dB m−1 is numerically equal to
10χ log10 e in the linear formulation. In order to calculate the attenuation from a
bubble population which is characterized by representative bubble counts at a few
discrete sizes, as discussed earlier, it is useful to discretize equation (2.16):

χ = Kn, (2.17)

where the vector representing the attenuation at discrete frequencies χ is calculated
from the vector n, which gives the representative bubble count at a finite number
of discrete bubble radii. This calculation requires evaluation of the operator matrix
K, the elements of which may be constructed after the manner of equation (2.16),
using a simple finite-element method in which linear B splines provide the element
shape functions

Kqj =
∫ ∞

0
Ωext

b (ωq, R0j )Bj(R0j ) dR0, (2.18)

where the suffices q and j refer to the driving frequency and bubble radius respec-
tively, and where Bj(R0j ) is the jth linear B spline which represents the continuous
bubble distribution as a linear combination of spline basis functions (Commander
& McDonald 1991). If equation (2.17) represents the forward problem, then equa-
tion (2.18) illustrates how the extinction cross-section is at the heart of the state-of-
the-art expression of this problem.

Two features of the propagation through a bubbly cloud make it strictly not pos-
sible to follow a similar route with equation (2.10) to estimate bubble populations.
First, it is of course mathematically possible to produce complex entities from the
real values for ξcl generated by equation (2.10) (using, for example, the Hilbert
transform (figure 3)). However, Im(ξcl) cannot be used to calculate the attenuation,
because in nonlinear systems energy is transferred between frequencies, a fact that
the complex sound speed model fails to take into account. Second, the values of ξcl
derived from equation (2.10) cannot be equated to a sound speed, and (Re(ξcl) − cw)
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Figure 3. (a) (Re(ξcl) − cw) and (b) Im(ξcl), based respectively on the real and imaginary
parts of equation (2.10) as constructed through use of a Hilbert transform for a single 71 µm
radius bubble insonified by a 35.1 kHz semi-infinite pulse starting at t = 0 with an amplitude
of 7.95 kPa. There is transient period lasting ca. 200 µs caused by the impulse response of the
bubble before a steady-state oscillation is achieved.

cannot strictly be identified with the phase speed anomaly. This is because, as dis-
cussed earlier, finite dissipation means that the locus of points in the pressure–volume
plane map out a finite area over the oscillatory cycle. However, it is this very feature
which provides the solution by which the measured propagation characteristics can
be inverted to obtain the size distribution of bubbles that are behaving nonlinearly.

Consider a plot of gas volume against applied pressure for a single bubble subjected
to a semi-infinite driving pulse. The locus consists of a single point until the onset
of insonification, at which it performs orbits until reaching steady-state, after which
it repeatedly maps out a given orbit. Assume the gas is perfect. Its internal energy
U is a state function, such that, whenever an orbit crosses its previous path, at both
moments represented by the intersection the value of U is the same. More specifically,
consider that

dU = dQ + dW = dQ − P dV, (2.19)

where the notation indicates that both the incremental heat supplied to the bubble
(dQ) and the work done on the bubble (dW ) are not exact differentials, while dU is.

Because the plot uses the applied acoustic pressure P (t), the area mapped out
by any loop represents the energy subtracted from the acoustic wave by the bubble
in the time interval corresponding to the perimeter of the loop. This is because
the bubble dynamics equation (such as the Keller–Miksis with thermal losses used
here; see below) may be interpreted simply as a statement of the equality between
that pressure difference (∆p) which is uniform across the entire bubble wall and a
summation of other terms. These terms relate to the pressure within the gas and
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Figure 4. Bubble responses for a 49 µm radius bubble insonified by a semi-infinite pulse starting
at t = 0 with an amplitude of 7.95 kPa at (a) 84.2 kHz, (b) 65.7 kHz and (c) 31.5 kHz. The top
graph in each case shows the volume time history calculated using the Keller–Miksis equation
(with damping after Prosperetti et al . (1988)). The middle graph in each case shows the cor-
responding pressure–volume curve. The darker area in each P–V curve shows the steady-state
regime, where the successive loci overlap each other. Nonlinear components will cause crossovers
in a loop (as in figure 4c, where a second harmonic arises from driving the bubble close to half
resonance frequency), such that the integration of equation (2.22) causes the areas of the clock-
wise loops to be subtracted from those of the anticlockwise. The bottom row superimposes the
steady-state loops of the middle row (thin line) with the corresponding linear solution using the
steady-state formulation of Commander & Prosperetti (thick line).

vapour inside the bubble (pi), surface tension pressures (pσ), and the dynamic terms
resulting from the motion of the liquid required when the bubble wall is displaced
(Leighton 1994a), which we shall call pdyn:

∆p = pi − pdyn − pσ. (2.20)

The energy subtracted from the sound field by the pulsating bubble in each circuit
of a loop is given by

Eloop = −
∮

pi dV +
∮

pdyn dV +
∮

pσ dV (2.21)
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(noting that the details of the chemistry of the bubble wall may make the final
integral non-zero). However, ∆p equals the spatial average over the bubble wall of
the blocked pressure 〈pblocked〉, which in the long-wavelength limit equals the applied
acoustic pressure P (t) that would be present at the bubble centre were the bubble
not present. Substituting equation (2.20) into (2.21) therefore shows that the area
mapped out by a loop in the pressure–volume plane is the energy subtracted from
the acoustic wave in the time interval corresponding to that loop:

Eloop = −
∮

∆p dV = −
∮

〈pblocked〉 dV ≈ −
∮

P dV, kR � 1. (2.22)

Therefore, the rate at which the acoustic field does work on the bubble can be
found by integrating the area in the pressure–volume plane enclosed by the loops
formed by the intersections described above, and dividing the energy so obtained
by the time interval taken to map out that loop. In this way, the rate at which
the bubble subtracts energy from the driving acoustic field can be calculated as a
function of time, for example, during bubble ring-up; and while steady state is strictly
only achieved as t → ∞, loops approximating it can readily be identified (figure 4,
middle row). Of particular interest is the bottom row of figure 4, which superimposes
the steady-state nonlinear loops of the middle row (thin line) with the corresponding
linear solution using the formulation of Commander & Prosperetti (which is of course
steady-state; thick line). At frequencies much greater than or less than resonance (not
shown), both models predict loci indistinguishable from straight lines (dissipation
and nonlinearities being negligible at such extremes). The gradients of these lines
have opposite signs, in keeping with standard knowledge of the sound speed for a
monochromatic bubble population above and below resonance. In such cases a sound
speed can be readily calculated from equations (2.8) or (2.10). Closer to resonance,
increasing dissipation imparts finite areas to the loops, and the sound speed must
be inferred from the ‘spine’ of the loop. While in some cases the nonlinear model
would impart a similar spine to its loop as would that of Commander & Prosperetti
(figure 4a), closer to resonance, identification of the optimum spine becomes more
difficult (figure 4b; note that the conditions for resonance in the nonlinear and linear
models are slightly different). The increasing dissipation and indeterminate gradient
of the spine may lead to inaccuracies, and indeed Commander & Prosperetti note that
‘In the presence of resonance effects, the accuracy of the model is severely impaired’.
In figure 4c, the nonlinear model displays a second harmonic (which is of course not
apparent in the linear result). The ‘spine’ of this double-loop would be curved, and
its identification would allow calculation of nonlinear propagation through bubble
clouds, waveform distortion, parametric signal generation, etc.

In this paper we will proceed, however, by using the time-dependent rate of
loss of energy from the acoustic wave which nonlinear bubble oscillation engen-
ders, as illustrated in figure 4 (the middle row). There are many routes by which
the attenuation of the acoustic wave could be calculated. To follow most simply
from the theory presented earlier, the power loss calculated in any time interval
could be divided by the intensity of the driving sound field to generate a time-
dependent nonlinear acoustic extinction cross-section. This in turn can be used in
equation (2.18) to generate time-dependent, nonlinear elements for the K matrix.
The method can be used to examine the evolution of the extinction cross-sections
of each bubble as a function of the frequency, amplitude and pulsing characteristics
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of the driving field, and similarly to follow the evolution during ring-up of the cor-
responding Kqj elements (as will be done to obtain the attenuations in figure 12.)
The limits of linearity can be examined, for example, by determining under what
conditions Eloop in the steady state departs from a linear dependence on incident
intensity (e.g. for the semi-infinite driving field of amplitude PA discussed earlier,
nonlinearity is diagnosed by the degree to which Eloop/P 2

A is not constant as PA
increases).

It is clear that evaluation of ξcl via equation (2.10) for a volume element of bubbly
liquid requires calculation of dV/dP over the relevant time period, for one bubble per
size bin (these being the bubbles having equilibrium radii R0j ). Similarly, calculation
of the attenuation requires maps resembling figure 4 for each bubble radius, insonifi-
cation frequency and amplitude considered. Clearly, the resulting values can only be
as accurate as the numerical model which is used to calculate the time histories. In the
small-amplitude monochromatic limit it is relatively simple to incorporate thermal,
viscous and radiation losses through damping coefficients (Eller 1970; Prosperetti
1974). However, when conditions are not monochromatic (e.g. during the transient
period prior to steady state for bubbles driven off-resonance; during nonlinear pulsa-
tions; or if the bubbles are driven by a non-monochromatic sound field (Didenkulov
et al . 2001; Phelps et al . 1997)), then, while most nonlinear bubble dynamics models
include viscous losses with relative ease, thermal and radiation damping require care-
ful consideration. The popular Rayleigh–Plesset model includes only viscous losses,
and attempts to include thermal and radiation losses through artificial ‘thermal’ and
‘acoustic’ viscosities (Prosperetti 1974) add no further physics beyond that present
in the monochromatic damping coefficients. (With a polytropic gas law and the use
of such an artificial viscosity to model radiation damping, Kumar & Brennen (1991,
1993) used the Rayleigh–Plesset equation to predict harmonics in the bubble wall
motion, and in the pressure field on a vibrating wall near a bubble cloud, but did
not model acoustic propagation.) No such restriction to monochromatic damping
physics applies to the representation of radiation loss in the Herring–Keller–Miksis
family or in the Gilmore–Akulichev family of equations, which are accurate to first
order in Ṙ/cw. The former are used to calculate the volume–time histories of the
bubbles in this paper. These equations assume that the bubble exists in an infinite
medium, stays spherical at all times during the pulsation, and has a radius which
is much smaller than the wavelength of the driving sound field. Furthermore, con-
ditions within the bubble must be spatially uniform, no body forces (e.g. gravity)
act, bulk viscous effects are negligible, and the density of the surrounding fluid is
much greater than that of the internal gas. Some versions allow the gas content of
the bubble to change, but limited computing resources do not allow for this in the
current study.

Incorporation of thermal losses into either family of equations is computationally
expensive. Hence, one option, in generating time histories to find dV/dP for use
in equation (2.10) to find ξcl, or in generating plots resembling figure 4 to obtain
attenuation, would be to use a polytropic gas law in the Keller–Miksis equation.
However, this route only adjusts the gas stiffness for heat flow across the bubble
wall, and can never describe net thermal losses. This is because, unless the polytropic
exponent varies in time, P dV is an exact differential, and each value of P defines a
unique value for V . Recognizing that the results do not include net thermal losses, one
could indicate to the reader the importance or otherwise of this effect by quoting, for
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each time history used, the ratio of the thermal to the total dimensionless damping
coefficient. However, given that this ratio is large for many of the bubble/frequency
combinations, this would merely indicate that neglect of thermal damping could
cause significant error. Instead, therefore, in this paper thermal damping is directly
incorporated into the nonlinear model through calculation of the spatially averaged
pressure in the gas. This is done by applying the perfect gas law to the spatially
averaged temperature in the bubble (Nigmatulin et al . 1981; Prosperetti et al . 1988;
Prosperetti & Hao 1999).

It is worth noting that this method of calculating nonlinear cross-sections via
pressure–volume plots will be of value to nonlinear bubble-counting systems. Cur-
rently, in for example the analytical cross-sections used in second-harmonic or
combination-frequency detectors, it is common to use, for all bubbles, the value
of the damping coefficient calculated for resonant bubbles (Sutin et al . 1998). The
errors introduced by this approximation, which can now be replaced, have never been
quantified.

Having chosen the bubble-dynamics model, contour integration of graphs such as
the middle row of figure 4 can be used to calculate the dissipation during ring-up as
well as steady-state (as will be done for figure 12). However, during ring-down, in the
absence of a driving pressure, the energy loss can still be calculated using the method
of Clarke & Leighton (2000), as discussed at the end of § 1. We have found that a
useful continuity check (to ensure, for example, that the dissipation constant is evalu-
ated in the correct frame (Leighton 1994a)) is that the energy dissipated over the first
cycle of ring-down E1 is similar to that in any cycle of steady-state (Es). Assuming
linear exponentially decaying oscillations at the natural frequency (see figure 10), the
ratio of the energy dissipated during the (m+1)th cycle of ring-down (Em+1) to that
dissipated in the previous (Em) will be constant (Γ = Em+1/Em = E2/E1 = E1/Es).
Hence, the total energy dissipated during ring-down will be

∞∑
m=1

ΓmEs =
Γ

1 − Γ
Es. (2.23)

This completes the analysis required for the forward problem, which provides a
nonlinear time-dependent model of acoustic propagation through an inhomogeneous
bubble cloud. Its value might be illustrated by the fact that when stabilized gas bub-
bles are used in vivo as ultrasonic contrast agents to enhance diagnostic imaging,
they are subjected to pulses of ca. 10 MPa in amplitude and microsecond duration.
However, acoustic assessment of bubble populations of contrast agents is currently
done with the assumption that the bubbles behave linearly and are driven in steady
state. The signal scattered from contrast agents can be used to infer perfusion and
to make quantitative measurements of volume, while assuming a constant speed of
sound. The error is further compounded when one considers that, for these microbub-
bles at roughly 10 MPa, the time-averaged gas volume fraction (which provides the
correction to the sound speed) is actually much higher than the static fraction com-
puted using the equilibrium bubble sizes. This is a consequence of the nonlinear
oscillations of the bubbles. The forward model presented in this paper would allow
the errors resulting from these approaches to be assessed. Having therefore completed
the forward problem, the inverse will now be discussed.
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3. Inversion

The inversion method proposed is a refined version of the pioneering approach
employed by Commander & McDonald (1991), now including the advantage that
it incorporates a systematic approach to regularization rather than merely rendering
the solution stable. The true bubble population is divided into radius bins which
represent all the bubbles in a given bin by an appropriate number, n(R0j ), all hav-
ing a radius, R0j

, which typifies the bin (as described in § 2). This approximation
to the bubble population allows a matrix formulation to be used which relates the
propagation characteristics of a plane wave propagating through a bubbly medium
at discrete frequencies, ωq, to the size distribution of the bubbles in that medium, for
each volume element l of the cloud. Since matrix K is square (in a manner resembling
equation (2.18)), the total number of discrete frequencies ωq is J :

α = Kn, (3.1)

i.e.⎛
⎜⎜⎜⎜⎜⎝

α(ω1)
α(ω2)
α(ω3)

...
α(ωJ)

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

K(ω1, R01) K(ω1, R02) · · · K(ω1, R0J
)

K(ω2, R01) K(ω2, R02) · · · K(ω2, R0J
)

K(ω3, R01) K(ω3, R02) · · · K(ω3, R0J
)

...
...

. . .
...

K(ωJ , R01) K(ωJ , R02) · · · K(ωJ , R0J
)

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

n(R01)
n(R02)
n(R03)

...
n(R0J

)

⎞
⎟⎟⎟⎟⎟⎠ , (3.2)

where in this paper α represents the attenuation measured at discrete frequencies
(the sound speed could also be used); K is generated by the application of equa-
tion (2.18) to a range of single bubbles insonified by a set of discrete frequencies
(here using the method of figure 4 to calculate the nonlinear cross-section); and
n represents the bubble size distribution as discussed above (note that the poten-
tially nonlinear attenuation α in equation (3.1) is distinct from χ in equation (2.17),
which must be linear; hence, the associated kernels in the two equations will differ).
In principle the inversion can be based either upon both phase speed and attenu-
ation or upon either phase speed or attenuation. Bubbly liquids being dispersive,
in this study a rigorous distinction is made between the predicted phase speed and
the measured group speed, which results from the common practice of measuring
transit times of acoustic pulses; particular techniques would be required to compare
the two (Sasche & Pao 1978). This, with the restrictions against calculating a phase
speed for dissipative bubble clouds mentioned earlier, means that here solution of
equation (3.1) will be based upon attenuation only.

The formulation of § 2 has in it two features which, while available for calculating
propagation through an arbitrary cloud in a forward problem, are simplified to allow
inversion (considering available computing resources and the useful number of param-
eters which may be allowed to vary). Specifically, while the formulation allows the
modelling of time-dependent propagation through an inhomogeneous bubble cloud,
the inversion assumes that the cloud is homogeneous. That is to say, all the bub-
bles within the cloud are assumed to be driven by the same pressure amplitude.
The inversion is based on the steady-state values determined from calculations such
as those shown in figure 4. To illustrate why these simplifications were introduced,
note that when thermal damping was incorporated into the Keller–Miksis model,
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calculation of a small (10 × 10) matrix of bubble responses can take over 24 h on a
1 GHz Pentium III PC with 512 Mb of RAM. The neglect of amplitude variation in
the driving field and temporal pulse profiles saves massively in computing time, and
is justified by the eventual agreement of the forward modelling of the actual pulse
with state-of-the-art predictions (figure 9). These two assumptions are not funda-
mental requirements, and certainly at whatever position within the bubble cloud a
hydrophone is placed (here every 15 cm) the actual pressure time history as it varies
through the cloud is monitored and could be used to form the elements of the K
matrix. If finer spatial resolution were required, the pressure time history between
hydrophones could be inferred once a first iteration of the population had been made,
but currently this would represent unfeasibly greater computing costs for a minor
saving in hardware.

The inverse problem of equation (3.1), i.e. estimating a bubble population from
the measured attenuation, requires calculation of the matrix inverse of K:

n = K−1α. (3.3)

However, as discussed in § 2, because the bubble scattering cross-section contains
only a local maximum at the bubble resonance (figure 2), the matrix to be inverted
is ill-conditioned and requires regularization for solution. This is true in both the
state-of-the-art and the current techniques. To illustrate the need for regulariza-
tion, consider the case when the vectors α and n in equation (3.2) are constructed
such that the elements forming the leading diagonal of the matrix K describe the
resonance condition (the local maximum in figure 2). With vector α running from
high to low frequencies top to bottom, and n running from large to small bubbles,
then the terms below the leading diagonal decrease (with the smallest value being
for K(ωJ , R01), corresponding to the negligible cross-section presented by individ-
ual small bubbles to low-frequency fields). This is illustrated in the linear steady
state by the behaviour close to the origin in figure 2. However, the upper right term
K(ω1, R0J

) is large (the large-bubble effect in figure 2) because large bubbles scatter
high-frequency fields strongly. The method of regularization chosen for this paper
was Tikhonov regularization (Tikhonov & Arsenin 1977) making use of the L-curve
method (Hansen 1998) to determine a suitable regularization parameter. The error,
e, associated with the solution, n, can be expressed as

e = α − Kn. (3.4)

Assuming that the functions being considered are real (i.e. only the measured
attenuation or phase speed forms the input of the system), regularized solution for
n is obtained by minimization of the composite cost function Ψ defined as

Ψ = eTe + βnTn, (3.5)

where the superscript ‘T’ denotes a transposed matrix and the scalar β controls the
amount of regularization. With some simple manipulation one obtains

Ψ = nT(KTK + βI)n − 2αTKn + αTα. (3.6)

Minimization of Ψ with respect to n leads to the required value, nopt:

nopt = (KTK + βI)−1(KTα). (3.7)
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Figure 5. Typical L-curve calculated for bubble inversion.
The optimal value of β lies at the corner of the ‘L’.

One method of selecting the regularization parameter β is to plot the Euclidian
norm of the regularized solution ‖n‖2 against the corresponding residual norm ‖e‖2
(Hansen 1998). When plotted on a log–log scale, this often forms a well-characterized
‘L’ shaped curve, the corner of which represents a good compromise between an over-
and under-regularized solution. Figure 5 shows a typical curve calculated during an
inversion of K.

This technique provides a systematic method for achieving a well-regularized solu-
tion. In contrast, the method proposed by Commander & McDonald (1991) provides
a value which merely renders the system stable. The corner of the ‘L’ shaped curve
in the (y, z)-plane can be obtained by finding the maximum of the curvature, C(y),
given by

C(y) =
|z′′|

(1 + z′2)3/2 , (3.8)

where z = ‖n‖2 and y = ‖e‖2 and the primes refer to first and second derivatives
with respect to y.

4. Experiment

A field trial employing this technique was carried out on 24 November 2001 in an
attempt to estimate the bubble population in the surf zone. A feasibility study was
held 12 months earlier (Leighton et al . 2001). The site in both cases was at the base
of Hurst Spit (50◦ 42.48′ N, 1◦ 35.01′ W), which is on the south coast of England near
the westerly entrance to the Solent. Attenuation under breakers with a mean wave
height of ca. 1.0 m (i.e. smaller than during the feasibility study) was measured at a
single site within ca. 20 m from the water line on the beach (figure 6).

While the feasibility study proved that acoustic data could be obtained (Leighton
et al . 2001), it emphasized the extreme difficulties in making the measurement. Three
different rigs were tested. The protocols ranged from inserting into the ocean a fixed
scaffolding frame and then attaching transducers and sensors to it (see figure 7) to
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Figure 6. Topographical profile of the measurement site. The results of four surveys are shown:
topographical surveys carried out on 1 September 1997 and 1 May 2001 and hydrographical
surveys carried out on 1 December 1998 and 19 June 2001. Changes of up to 5 m in bed height
between surveys are indicative of the dynamic nature of the site. The insert shows the topo-
graphical data in close-up and indicates the position of the measurement rig. Heights in metres
corrected from Ordnance Datum Newlyn using tidal data at 16.00 GMT on 24 November 2001
to give height relative to sea level. (Data supplied by C. Eastwick & A. Bradbury.)

(a) (b)

Figure 7. Two photographs, taken a fraction of a second apart in November 2000, showing
(a) two of T.G.L.’s PhD students (S.D.M. and M. D. Simpson) attempting to bolt sensors to a
scaffolding rig the team has just deployed at sea; (b) Simpson’s feet (S.D.M. is completely buried
by the wave). The waves at the measurement point are clearly more active than those further
from shore in the picture (where most surf zone measurements have historically been taken).
Later on during this feasibility study, the winds increased from the calm conditions shown here
to speeds in excess of 50 miles per hour.
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Figure 8. Schematic of rig design. The rig was wheeled down the beach in a horizontal configu-
ration (shown in the figure as semi-transparent) and into the water to a depth of ca. 2 m, where
it was flipped into a vertical configuration (drawn as opaque in the figure).

deploying a fully pre-assembled rig into the ocean. While at that trial the first of
the options (figure 7) proved to be most successful, it was decided that, if the pre-
assembled rig could be made sufficiently manoeuvrable, it would eventually prove
superior. Hence the rig for the current trial was designed to be built on the beach
and then deployed in a mean water depth of ca. 2 m. In order to maximize the depth
to which the rig could be deployed against the force of the breakers, a ‘flipping’ design,
making use of a mast ca. 3 m tall, was ‘wheeled’ out to the measurement position
in a horizontal configuration. Once the measurement position was reached, the mast
was flipped into a vertical configuration. Stability of the rig during measurement
was ensured by scaffolding poles, which quickly embedded into the sea bed. Upon
retrieval, a shore-based winch was used to apply a turning moment to the top of the
mast, thereby levering the rig out of the sea bed and then allowing it to be safely
dragged out of the surf. Figure 8 shows a schematic of the rig design.

Signal generation was performed using a two-channel Sony Tektronix 2010 Arbi-
trary Waveform Generator. Each channel was amplified by an ENI 240L power ampli-
fier before being transmitted down the 200 m long umbilical cable. Each channel was
used to drive a custom made two-element piezo-ceramic transducer with a nominal
source level of 195 dB re 1 µPa at 1 m on-axis (equivalent to 7.95 kPa zero-to-peak
pressure). The first element of the transducer was designed to have a frequency
response that is flat to within ±2 dB from 30 kHz to 79 kHz and the second element
from 80 kHz to 270 kHz. The beamwidth of each element varied from 16◦ at 30 kHz
to 5.4◦ at 79 kHz and from 9.3◦ at 80 kHz to 3.1◦ at 270 kHz. This frequency range
allowed the bubble population to be evaluated in the radius range 16–115 µm.

The signals generated were sequences of 10 narrowband pulses each centred about
a specific frequency (corresponding to the ωq of equation (3.2)) with a pulse length
of 500 µs. This was sufficiently short that multi-path effects would not interfere with
the direct pulse, but sufficiently long to confirm (through calculations such as shown
in figures 3 and 4) that the use of steady-state bubble response in the inversion is
warranted. Each pulse was separated from the subsequent one by 20 ms to allow any
reverberation to die away. Use of narrowband pulses rather than broadband pulses
improved the signal-to-noise ratio, enabling more accurate determination of signal
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levels, while allowing measurement across the whole frequency range to take place in
less than 250 ms. This therefore corresponds to the temporal resolution of the bubble
population measured since the shorter the pulse, the closer to stationary (over the
duration of the pulse) the bubble population appears, even in an environment as
turbulent as the surf zone.

Signal acquisition was achieved using a line array of Bruel & Kjaer type 8103
hydrophones with a spacing of 0.15 m, the closest being 1.65 m from the source (fig-
ure 8). The pulsed-source beam pattern was modelled and mapped in an 8×8×5 m3

test tank, to ensure far-field conditions and planarity of the waveform (assumed in
§ 2) at the hydrophones, regardless of the driving frequency and transducer element
used. The output from each hydrophone was charge amplified before being transmit-
ted down a twisted pair in the armoured 200 m umbilical cable using a ‘push-pull’
amplifier configuration to enable transmission of high-frequency signals and to min-
imize channel cross-talk and distortion. Upon receipt at the shore end, the signals
were acquired at a sampling frequency of 1 MHz by a National Instruments 6110E
Data Acquisition card directly onto a PC hard disk drive.

Attenuation per unit distance, A(f), was calculated at each hydrophone by com-
parison of the amplitudes of the fast Fourier transform of the received pressure in a
bubble-free laboratory environment and that measured in the surf as follows:

A(f) = 20 log10

(
H2(f)
H1(f)

)
1

Ld
(4.1)

where H1(f) and H2(f) are the amplitudes of the Fourier transforms at the mea-
surement frequency and Ld is the propagation distance, i.e. the separation of the
hydrophones.

5. Results and discussion

In order to demonstrate the implications of this work, the sea-trial data have been
processed using both the state-of-the-art (i.e. linear monochromatic) and the new
nonlinear techniques of this paper. Figure 9 shows the two estimated bubble size
distributions, each colour representing a measurement at a different time: the dashed
line for a given colour represents inversion using the linear monochromatic technique,
and the solid line represents inversion of the same acoustic data using the nonlinear
technique.

Comparisons of measured data (as shown in figure 9) with the dynamic modelling
of figure 1 are as yet at an early stage. However, it is heartening to note the qualita-
tive similarities, for example, the position of the peak of the distribution in the radius
domain. While the assumption of monochromatic linearity inherent in the state-of-
the-art technique has been violated by the measurement (as illustrated by figure 10),
nevertheless, the bubble populations inferred by the state-of-the-art method are very
close to those estimated using the new technique at the 10 kPa-or-less driving pres-
sures used here.

The effects of changing the driving amplitude are illuminating. A single bubble
population, calculated using the linear kernel (black curve), was used as the basis for
the calculation of attenuation (the forward problem, described above). This linearly
calculated attenuation was then compared with the attenuations calculated using the
new, nonlinear kernel, making the assumption that the driving pressures were 100 Pa,
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Figure 9. Histogram of the number of bubbles per cubic metre of sea water, per micrometre incre-
ment in radius, as a function of bubble radius, taken from 15.20 to 16.00 GMT on 24 November
2001. The average wind speed during these measurements was 4 m s−1 from a southwesterly
direction, the water temperature was 8 ◦C and the air temperature was 11 ◦C. The electrical
conductivity was 49.5 mS cm−1, the pH was 8.07 and the salinity was 34.1 %% . Each separate
colour indicates measurement at a different time. For a given colour, the dotted curves show
the bubble population obtained by applying the state-of-the-art inversion to the acoustic data.
The solid curve of the same colour shows the population obtained when the same acoustic data
are inverted using the new theory. Hence the solid curves present, for the first time, bubble
populations obtained by an inversion which does not assume linear monochromatic conditions.
The void fractions are around 5×10−6. The arrowheads at the top of the figure are aligned with
the bubble radii which would be resonant with the discrete centre driving frequencies chosen
(data corresponding to R0 = 60 µm were not processed owing to sea-trial difficulties).

20 kPa and 50 kPa. Linear mathematics would predict that the attenuation is inde-
pendent of the driving amplitude. Figure 11 shows that the low-amplitude nonlinear
solution is indistinguishable from the linear solution (such convergence can only ever
be a partial check of correctness, since any errors in the nonlinear terms will also be
small under such conditions). However, there is increasing deviation from the linear
prediction as the driving amplitude increases. These higher amplitudes are achievable
by many commercial and military ocean acoustic systems (Urick 1983). It is at these
higher driving pressures that the calculation of the nonlinear effects described in this
paper becomes increasingly important. If, for example, higher driving pressures tend
to produce lower-than-expected attenuations, the bubble population inferred by the
high-amplitude state-of-the-art system may be an underestimate.

As attempts are made to explore populations with higher void fractions and conse-
quently attenuations, the amplitude of the insonifying field will need to increase, and
so too will the errors in the state-of-the-art methods. Such fields might be used in
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Figure 10. A spectrogram plot of power spectral density (arbitrary reference) calculated for the
radius time history of a 106 µm radius air bubble being driven at 30 987 Hz and 7.95 kPa. Sig-
nificant energy is present at higher harmonics, indicating a departure from the monochromatic,
linear regime. The drive frequency, which equals the bubble fundamental during steady-state
(200–500 µs), is lower than the bubble pulsation natural frequency, which can be seen both
during ring-down (corresponding to times greater than 500 µs) and the transient period.
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Figure 11. Steady-state attenuation calculated assuming the bubble population estimated in
the black dotted curve of figure 9. The calculation is performed using the linear formulation of
Commander & Prosperetti (equation (2.14); solid line) as well as the new nonlinear formula-
tion assuming different driving pressures: 100 Pa (dotted line), 20 kPa (dashed line) and 50 kPa
(dash-dotted line). The 100 Pa nonlinear solution (dotted line) almost overlies the linear solu-
tion (solid line). Note that the lines do not imply data across a continuum of frequencies: the
calculation is performed at the 10 specific pump frequencies used in the experiment (indicated
by arrowheads at the top of the figure). Since these frequencies were chosen to give even point
spacing in radii for figure 9, the spacing of points is sparse at high frequencies.
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industry, biomedicine or the oceans, including waves, wakes and the bubble curtains
of cetaceans (Leighton et al . 2004b). It should be noted that, on the day of the trial,
conditions in the surf zone were milder than expected. Hence, denser populations
than seen in figure 9 might be observed (using a nonlinear technique, Phelps et al .
(1997) measured bubble populations in the surf zone peaking at nearly 107 m−3 per
micrometre radius increment).

As discussed in § 2, the technique can incorporate time-dependent, as well as
nonlinear, bubble-cloud behaviour. As a demonstration, figure 12 shows the time-
dependent response of the same bubble cloud as was used to provide the data in
figure 11. The cloud is subjected to a semi-infinite pulse, and the loss is calculated
by contour-integration of the P–V loops from time zero up to the number of cycles
of the pump field indicated in the legend. Dividing this integration by the number of
cycles over which it was performed allows calculation of the average attenuation per
cycle. As expected, as time increases (20 or 50 cycles), this tends to the steady-state
solution of figure 11, with the amplitude dependence already discussed. The attenu-
ation per cycle is almost independent of pulse amplitude for the shortest integrations
(1–2 cycles). At 50 kPa driving pressures, the greatest attenuation per cycle is seen
for the five-cycle integration at most frequencies. These observations are of course
preliminary, referring specifically to the cloud used and the frequencies at which the
calculations are performed (show by arrows above the graphs). Production of fig-
ure 12 required calculation of time-dependent kernels Kqj and hence would make
time-dependent inversions possible.

Figures 11 and 12 also suggest a further advance in bubble counting, specifically by
performing the inversion based upon pulses which are closely spaced in time but have
different amplitudes and/or temporal profile. From analysis of the different estimated
size distributions it would be possible to infer a confidence level upon the estimate
of the bubble population. Furthermore, inversion of both high- and low-amplitude
data by the state-of-the-art method should incorrectly indicate two different bubble
populations. However, inversion of both by the new technique (which for the low-
amplitude pulses is equivalent to the state-of-the-art method) would for the first time
provide measurement of an oceanic cloud by two techniques which sample it iden-
tically, using the same hardware (not achieved previously—see § 1). This would, for
example, allow a single-frequency source to obtain bubble population data over an
octave or more (Leighton et al . 2004a). This advantage can be extended to other tech-
niques which currently assume linear bubble oscillations (e.g. the resonator method;
Medwin & Clay 1998; Farmer et al . 1998). In the special case of high void frac-
tions this dual-amplitude technique presents another intriguing possibility: because
the attenuation in the nonlinear regime will vary with driving pressure, it may be
possible to infer the bubble population from the difference in attenuation measured
for two high amplitude pulses. This has the potential advantage that bubble–bubble
interactions (the main obstacle to successful high void fraction inversions) would, to
first order, be accounted for in this method.

Recent studies (Ye & Ding 1995; Feuillade 1996; Henyey 1999) have considered the
effect of bubble–bubble interactions on acoustic propagation in bubbly environments.
Kargl (2002) proposes a corrected form of Commander & Prosperetti’s linear wave-
number (equation (2.14)) with the radiation damping re-expressed in terms of the
effective damping seen by the bubble. While this solution assumes linearity, it is still
useful for giving an indication of the likely effect of bubble interactions upon surf
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zone measurements. Figure 13 shows the linearly predicted attenuation with and
without the inclusion of bubble–bubble interactions for bubble populations based
on the size distribution of figure 9, but scaled to give void fractions (VF) ranging
between 5 × 10−6 and 10−3. This population was then used to solve the forward
problem employing both equation (2.14) and Kargl’s expression. Taking, for exam-
ple, a signal at 39.7 kHz in a void fraction of 10−4, the 78.4 dB m−1 attenuation
predicted by Kargl’s method would suggest a requirement for amplitudes sufficient
to excite bubble nonlinearity. Given, however, that even with such strong dissipation
this is only 0.2 dB m−1 less than that predicted when bubble–bubble interactions are
neglected, comparison between figures 11 and 13 suggests that the errors generated
by neglecting nonlinearity might exceed those produced by neglecting bubble–bubble
interactions over that part of the propagation path where the driving amplitude is
sufficiently high. Kargl’s equation presents the possibility of incorporating bubble–
bubble interactions into an inverse method. An iterative scheme could be developed
whereby estimated bubble numbers are used to modify the radiation damping term
and hence predict a new set of estimates. This process could be repeated until a
stable solution is achieved (experience with the forward solution indicates that a
small number of iterations would be required). However, this technique would only
be beneficial with higher void fractions than those measured in this study.

It should not, however, be thought that the inclusion of bubble nonlinearity is an
obligation made necessary only when void fractions or propagation paths are very
great, making high insonifying amplitudes necessary. Rather, the ability to generate,
describe and invert bubble nonlinearity in propagation provides an additional diag-
nostic tool even at low void fractions. The time-varying, nonlinear and amplitude-
dependent characteristics which the bubbles impart to acoustic attenuation, sound
speed and, particularly, scattering, could be exploited to distinguish from bubbles
those objects which do not (Leighton 2004). If, for example, the incident time-series
contains two consecutive pulses, the second having reverse polarity with respect to
the first, then addition of the scatter from these two pulses will enhance the echoes
from the nonlinear scatterers (bubbles) and suppress those from the linear scatterers
(e.g. for use when enhancing the signal from biomedical ultrasonic contrast agents).
However, subtraction of the scatter from these two pulses will enhance the echoes
from the linear scatterers and suppress those from the nonlinear ones (the bubbles)
(Leighton 2004). This would be important for the detection of, for example, solid
targets (such as mines) in the surf zone.

The technique outlined in this paper still maintains certain assumptions, including
linearity of the acoustic propagation and the limitations on void fraction discussed
earlier. While with some features (such as the planarity of the incident wave) it is
possible to control the experiment to see that they match the assumptions of theory,
for other features this is not possible. They are a necessary part of the environ-
ment being measured. For example, anomalous values of bubble damping have been
attributed to the existence of both bubble shape oscillations (Longuet-Higgins 1992)
and reverberation (Leighton et al . 2002). It is likely that no bubble acoustics data
have ever been gathered in a perfectly free field. It is interesting to note that, in
comparing their theory with data taken in reverberant (e.g. standing wave) condi-
tions, Commander & Prosperetti found that the poorest agreement occurred when
the effects of bubble resonances were strong. This is in agreement with the conditions
for maximum error in free-field theory predicted by Leighton et al . (2002).
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Figure 12. Averaged attenuation per cycle calculated for different pulse lengths and amplitudes.
Each graph shows the effect of increasing pulse length for a fixed driving amplitude. Note that
as the pulse length increases the attenuation tends toward the steady-state solution of figure 11
(black line). The driving amplitudes used are (a) 100 Pa, (b) 20 kPa and (c) 50 kPa. As with
figure 11, the data are plotted at 10 discrete frequencies corresponding to a linear spacing of
bubble radii, and hence there are few data points at high frequency.

6. Conclusion

This paper describes a technique for predicting attenuation during acoustic propaga-
tion through an inhomogeneous bubble cloud. The theoretical framework is generic,
in that any bubble dynamics model (even, for example, bubbles in sediment or mul-
tiply interacting bubbles) may be incorporated to predict propagation. The model
chosen for particular study incorporates time dependency and nonlinearity into the
response of bubbles, and includes the precise temporal nature of the sound field.
As a result, when this system is used to invert the propagation characteristics to
estimate the bubble population, the assumptions of monochromaticity, steady state
and linearity present in the state-of-the-art inversion are not in principle required.
However, to comply with computing resource limitations and to place sensible lim-
its on the inversion, assumptions of cloud homogeneity and bubble steady state are
used when this method is tested in a field trial. Preliminary calculations for higher
amplitudes than those used in the trial suggest that the state-of-the-art methods
may tend to miscalculate the attenuation predicted in the forward problem, and the
bubble population estimated when it is used in the inverse problem, as the driving
pressure increases. Such errors may be greater than those introduced by neglecting
bubble–bubble interactions. Time-dependent nonlinear attenuations have been mod-
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Figure 13. Attenuation predicted using both standard linear theory (solid lines) and Kargl’s
theory that accounts for bubble–bubble interactions (dashed lines). A typical bubble population
from figure 9 is scaled up to void fractions of 10−5, 10−4 and 10−3, and compared with the
attenuation caused by the original void fraction (5 × 10−6).

elled. Further advances are suggested through the application of signals containing
consecutive pulses of varying amplitude and profile.
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