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The use of acoustic inversion to estimate
the bubble size distribution in pipelines
BY TIMOTHY G. LEIGHTON*, KYUNGMIN BAIK AND JIAN JIANG

Institute of Sound and Vibration Research, University of Southampton,
Highfield, Southampton, Hampshire SO17 1BJ, UK

The most popular technique for estimating the gas bubble size distribution (BSD)
in liquids is through the inversion of measured attenuation and/or sound speed of
a travelling wave. The model inherent in such inversions never exactly matches the
conditions of the measurement, and the size of the resulting error (which could well
be small in quasi-free field conditions) cannot be quantified if only a free field code
exists. Users may be unaware of errors because, with sufficient regularization, such
inversions can always be made to produce an answer, the accuracy of which is unknown
unless independent (e.g. optical) measurements are made. This study was commissioned
to assess the size of this error for the mercury-filled steel pipelines of the target test
facility (TTF) of the spallation neutron source at Oak Ridge National Laboratory, TN,
USA. Large errors in estimating the BSD (greater than 1000% overcounts/undercounts)
are predicted. A new inversion technique appropriate for pipelines such as TTF gives
good BSD estimations if the frequency range is sufficiently broad. However, it also
shows that implementation of the planned reduction in frequency bandwidth for the
TTF bubble sensor would make even this inversion insufficient to obtain an accurate
BSD in TTF.

Keywords: bubbles; acoustics; pipelines; neutron spallation

1. Introduction

The purpose of this paper is to devise a method of estimating the number and
sizes of gas bubbles in liquid from the measured attenuation and/or phase speeds
of a travelling acoustic wave that is suitable for the mercury-filled steel pipes of
the target test facility (TTF) of the $1.4 billion spallation neutron source (SNS)
at Oak Ridge National Laboratory (ORNL), TN, USA. A further aim is to use
that method to test whether a sensor based on such principles is practical when
it emits the frequency range originally designed, and when it emits the narrower
but more affordable frequency range enforced by the 2008 global financial crash.

In an inversion (the estimation of a parameter from measurements where
there is not a simple one-to-one mapping and a model is required), a basic
ideal requirement is that the assumptions of the model used in the inversion
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match the conditions under which the measurements are made. Strictly speaking,
this has never happened for the most widespread technique of measuring
bubble populations acoustically, when the bubble size distribution (BSD) is
estimated from the measured attenuation and/or sound speed of a travelling wave
(Commander & McDonald 1991; Duraiswami et al. 1998; Leighton et al. 2004).
This is because the model used assumes acoustic plane wave propagation in free
field (PWFF) conditions (Commander & Prosperetti 1989).

Some other techniques do not require the measurement of attenuation and
sound speed of travelling waves in bubbly liquid. Important examples are
the increasingly popular resonator technique (Farmer et al. 2005) and the
impedance tube method of Wilson et al. (2005). Both however could be affected
by coupling between the liquid and the container walls, and indeed Wilson
et al. carefully designed their impedance tube to avoid this regime, stating:
‘This impedance tube was designed such that when filled with bubble-free
water, both the radial component of the plane wave mode and the higher-
order mode are negligible and can be ignored…. An inversion scheme that
properly accounts for both components of both modes does not exist and for
now these elastic waveguide effects have been ignored’ (Wilson et al. 2005;
p. 1898). They later used the lossless model of Lafleur & Shields (1995) to
predict the effect of coupling on the phase speed in bubbly water, but could
not predict attenuation or invert for the bubble population. Boston University
collaborators on ORNL’s bubble detection programme attempted to use a
mercury-filled, flow-through, stainless steel cylindrical resonator to measure
sound speed. Although their system worked well with water (Ormonde et al.
2008; Roy et al. 2008), they encountered problems with imperfectly wetted
steel/mercury boundaries, particularly when bubbles were introduced (R. A. Roy
2012, personal communication).

Given coupling was a concern to Wilson et al. when studying propagation
in water-filled tube with thick steel walls, it is not surprise that it becomes a
dominant feature of propagation in the mercury-filled steel pipes of the TTF
at ORNL. The current paper provides an inversion method which included this
effect for measurement of attenuation and speed of travelling waves.

The mismatch between model and scenario has not prevented the PWFF
inversion being used in the past, since with sufficient regularization it can always
be made to generate an answer, and rarely is an independent measurement
made to check the correctness of that answer. In some scenarios (e.g. with low
bubble concentrations in deep oceans), the departure from PWFF conditions may
produce insignificant errors (Vagle & Farmer 1998). However, the petrochemical,
cement, food production, ceramic, power, mining and pharmaceutical industries,
etc., require methods for measuring bubble populations in liquids in pipelines
(Campbell & Mougeot 1999; Iskandrani & Kojasoy 2001; Punurai et al. 2006;
Yim & Leighton 2010). Here, the error produced in the mismatch between the
environment and the PWFF assumption used in the inversion has never been
quantified, let alone corrected for. This paper provides these two advances.
In §2, simulated data are used, because for this the input bubble population
is known and the errors in the inversion are clearly quantified. It is shown
that the PWFF inversion produces large errors in the estimation of the BSD
(greater than 1000% overcounts/undercounts). A new method of inversion
is provided, which takes into account the fact that the measurements were
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not made under PWFF conditions but instead occurred in a pipe where
coupling occurs between the pipe walls and the fluid inside it. This inversion
is validated against simulated data from pipes and is shown to give similar
levels of accuracy to those obtained when the PWFF inversion is applied
to data taken in PWFF conditions. Section 3 describes experimental tests
on water-filled poly methylmethacrylate (PMMA) pipes, which had previously
been shown to mimic the acoustic coupling that would occur in the mercury-
filled steel pipes of ORNL’s SNS TTF (Baik et al. 2010; Jiang et al.
2011). Although these data show that the new inversion technique would
provide accurate BSDs if the frequency range of the original sensor design
were to be used, budget cuts forced by the 2008 global financial crisis
dramatically reduced the frequency range that could be afforded. Section 4
demonstrates that it is not worth ORNL commissioning a sensor with this
reduced frequency range, because although it is affordable, the loss of accuracy
is unacceptable.

Measurement of the bubble population is however important for ORNL, since
helium bubble injectors are planned to be fitted to the SNS in 2013 to absorb the
shocks generated when the proton beam impacts the mercury. Such absorption
will mitigate cavitation damage to the casing surrounding the mercury (Chitnis
et al. 2010; Manzi et al. 2010; Leighton et al. 2011).

Assessment of the effect of applying PWFF inversions to pipe data, and
assessment of the investment which needs to be made to cover enough frequencies
to produce satisfactory results, are vital steps if industry is to make use of acoustic
inversions for BSD in pipes. This approach should replace the current faith that
the technique can produce an answer (as it always can be made to do) without
questioning the accuracy of that answer.

The theory underlying the PWFF inversion technique assumes that plane
waves propagate, with a single sound speed and known frequency-dependent
attenuation in bubble-free conditions. When bubbles are added in PWFF
conditions, at any given frequency there exists a single sound speed (which
is frequency dependent), and the attenuation changes. These changes are
attributed wholly to the presence of bubbles. When modal propagation occurs
in pipes where the liquid is coupled to the walls, even in bubble-free conditions
each mode propagates with its own frequency-dependent longitudinal phase
velocity and attenuation (Baik et al. 2010). The differences between these
phase speeds and attenuations, and those assumed for infinite volumes of
bubble-free liquid, would be attributed by the PWFF inversion as being
caused by bubble presence. In such circumstances, if an industry cannot cancel
out this error by generating bubble-free conditions and instead relies on a
predicted bubble-free attenuation, then use of a PWFF inversion would give
a finite bubble count even when no bubbles are present. The errors in the
inversion when bubbles are added have not previously been investigated. It
should be noted that there are further sources of mismatch that are not
included in the formulation of this paper, but which have been considered
elsewhere (§4a).

The methods developed in this paper have also been used to provide
demonstrations for TV, public shows and student demonstrations of the ability
of bubbles in liquids, and aerosol drops in air, to absorb sound (Leighton et al.
2011, 2012).

Proc. R. Soc. A (2012)

 on August 27, 2012rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


2464 T. G. Leighton et al.

2. Theory

(a) The forward problem

For pipes with boundary conditions resembling those of the mercury-filled steel
pipes of ORNL or the water-filled PMMA pipes of §3, Baik et al. (2010) showed
how the complex axial wavenumber, q ′

0m of the axisymmetric coupled modes that
propagate in the axial direction is obtained by their eqn (6) with the matrix
elements of their appendix B (the ‘0’ in the subscript ‘0m’ refers to the mode
being axisymmetric and ‘m’ refers to the mode index). Eqn (6) of that paper
gives the infinite number of the axisymmetric modes (denoted as ETm where m
is mode index related to the radial motion) and the real and the imaginary parts
of the complex solution, q ′

0m , which give the phase speed and the attenuation of
the modes respectively in a pipe containing a bubble-free liquid.

The introduction of bubbles into the previously bubble-free liquid in the pipe
changes the elastic properties of the liquid. The complex wavenumber k ′

1 in the
liquid is far more influenced by the bubble-induced changes in compressibility
than it is by the changes in the spatially averaged density of the bubbly mixture
(at least up to gas volume void fractions of 10%). Changes in the complex
wavenumber k ′

1 affect both phase speed and attenuation, and bubbles moreover
scatter the sound and change the stress elements and displacement vectors in the
liquid contacting the inner pipe wall.

The sound velocity of a bubbly liquid in a thin elastic tube has been calculated
using a one-dimensional approach and the balance between equations of mass,
momentum and energy (Rath 1981; Schubert 1991). The result predicts subsonic
sound speeds as a function of the gas volume void fraction, but it is not sufficient
for the current study because acoustic coupling between the elastic solid and
the bubbly liquid will in practice also give an infinite number of supersonic
modes. To encompass such modes in this study, the characteristic equation for
the axisymmetric modes in a tube filled with bubbly liquid is implemented by
combining the description of acoustic modes in a pipe containing bubble-free
liquid (Baik et al. 2009, 2010) with an analysis which predicts the bubble-induced
changes in phase speed and attenuation that occur in an infinite bubbly liquid
(Commander & Prosperetti 1989). Wilson et al. (2005) applied the formulation
of Commander & Prosperetti (1989) in order to measure the phase speed and
attenuation that occurred in an impedance tube made of heavy stainless steel,
where the phase speed of the lowest axisymmetric mode at low frequencies does
not differ significantly from the intrinsic sound speed of the liquid within the
tube. In their approach, the phase speed of the dominant axisymmetric modes in
the bubble-free waveguide is used as an input parameter. In contrast, the current
study uses the BSD as a parameter to obtain the dominant axisymmetric modes
in the bubbly waveguide.

For a given homogeneous size distribution of bubbles in an infinite liquid
undergoing steady-state pulsations in the linear long-wavelength limit (Clarke &
Leighton 2000; Leighton et al. 2004), the complex phase speed of sound in bubbly
liquid, Cb, is given, with the −iut convention, by

C 2
1

C 2
b

= k ′2
1

k2
1

= 1 + 4pC 2
1

∫∞

0

R0nb(R0)dR0

u2
0 − u2 − 2ibu

, (2.1)
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where C1 is the intrinsic sound speed in bubble-free liquid (Commander &
Prosperetti 1989), R0 is the equilibrium bubble radius, u0 is the resonance
frequency and b is the total damping parameter (Ainslie & Leighton 2011). The
presence of bubbles changes the acoustic impedance of liquid, reducing it at low
frequencies in infinite media (Mallock 1910; Leighton & Robb 2008), but tending
to increase it at frequencies just above the bubble resonance (Commander &
Prosperetti 1989). This change is described by the transformation of the real
wavenumber in bubble-free liquid, k1, into the complex wavenumber in bubbly
liquid, k ′

1. The BSD is described by nb(R0), where nb(R0)dR0 is the number
of bubbles per unit volume having radii between R0 and R0 + dR0 (where
conventionally dR0 = 1 mm when such populations are represented graphically).
The gas volume void fraction, G, is given by G = 4p

∫
R3

0nb(R0)dR0/3. The total
damping parameter, b, includes bth, bvis and brad, corresponding to thermal,
viscous and radiation damping, respectively, and explicit forms of u0 and b
are given by Commander & Prosperetti (1989) (those authors, who unlike here
write with the + jut convention, have identified and thoroughly publicized a
typographical error in their expression for bth; Ainslie & Leighton 2011). A
key assumption is that the complex wavenumber k ′

1 in equation (2.1) refers to
the wavenumber in the infinite body of the bubble-free liquid. This must be
adapted for the situation when the bubbly liquid is contained within a tube,
where the bubbles change the pressure field within the pipe and, accordingly,
the complex wavenumber k ′

1 also changes. It is assumed that the bubbly liquid
axisymmetrically exerts on the tube wall an average pressure which is established
by equation (2.1). Therefore, when a bubbly liquid with a known BSD fills
an elastic pipe, the axisymmetric modes within the pipe are calculated by
substituting the expression of k ′

1 from equation (2.1) into eqn (6) (with the matrix
elements of appendix B) of Baik et al. (2010).

This is done in figure 1. The solid curves predict the phase speed (identical
solid curves in (a) and (c)) and attenuations (identical solid curves in (b) and
(d)) of three modes when the PMMA pipe is filled with bubbly water. The BSD
of the bubbly water is based on the smoothed version of the optically measured
BSD (the solid black mCORT curve of figure 3), where equation (2.1) in this
paper and eqn (6) of Baik et al. (2010) are used to predict all the solid curves in
(a–d). These are plotted as a function of wavenumber-radius product, x = k1a,
where a is the inner radius of the tube. To show the effect made by the addition
of bubbles, the dashed lines in figure 1a,b show the modal phase speeds and
attenuations when the same pipe is filled with bubble-free water. To show the
effect made by the pipe walls, the dashed lines in figure 1c,d show the modal
phase speeds and attenuations for PWFF propagation in an infinite (unconfined)
volume of bubbly water with the same BSD (as calculated by equation (2.1)). This
clearly indicates the degree of error which would occur if the measured sound
speed in a pipe were inverted using PWFF theory to infer BSD, the method
currently used in such inversions (Hansen et al. 2004). Looking at figure 1a for
example, an accurate inversion should be based on this change in the modal
speeds caused by the introduction of bubbles. It should not be based (as the
PWFF inversions would do) on the departure of any curve from the horizontal
line given by C0m/C1 = 1, an approach made worse when the ‘time of first arrival’
is used to calculate sound speed (without recognizing modal propagation) as this
selects data for the faster modes.
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Figure 1. Solid lines show the modal phase speeds (solid lines in (a), identical in (c)) and
attenuations (solid lines in (b), identical in (d)) in the PMMA tube filled with bubbly water.
The dashed lines in (a,b) show the effect of removing the bubbles from the tube. The dashed lines
in (c,d) show the phase speed and attenuation for PWFF propagation in an infinite volume of
bubbly water, unconfined by the tube. All BSD’s are based on the solid black line of figure 3.
(Online version in colour.)

If the only measurements available were the dispersion relation of the modes
with (solid curves in (a) and (b)) and without (dashed curves in (a) and (b))
bubbles present, could the BSD be inferred uniquely? The two sets of dispersion
curves are sufficiently similar to allow identification of features, but the question
is whether these features change sufficiently to act as a good indicator of BSD
directly. For example, the break points (Baik et al. 2010) where two modes come
into closest approach (barring the tendency to converge as x → ∞) occur in
bubble-free conditions at x ∼ 2.8 for ET1 and ET2, and x ∼ 6.4 for ET2 and
ET3. When this BSD is introduced, these break points shift to slightly higher
frequencies. Another potential indicator is that the phase speeds of the supersonic
modes in the bubbly pipeline are higher than those in bubble-free conditions over
most of the frequency range shown.
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Figure 1b shows that throughout most of this frequency range in the pipe, for
this BSD the attenuation of a given mode in bubbly water is larger than that in
the bubble-free case. This might be expected from the high absorption per metre
seen in infinite volumes of bubbly liquid (shown for convenience using the dashed
curves in figure 1d). It is interesting to note that for ET1 the attenuation rate in
the pipe is less (e.g. in the frequency range of x < 4) than for plane waves in an
infinite body of water for the same BSD as shown in figure 1d. The reason for this
is that the longitudinal and the shear ultrasonic absorptions in the PMMA are
less than the absorption in free field bulk bubbly water in that frequency range.
As a result, the acoustic coupling between bubbly water and the PMMA results
in the intermediate attenuation of the ET1 mode between the absorptions of the
PMMA and bubbly water.

In summary, it is important to note that the significant discrepancy between
the phase speeds and attenuation for plane waves in an infinite body of liquid
(the dashed curves in figure 1c,d) and the values predicted for the same BSD
contained within the pipe (solid lines) means that inversions that apply the
standard methods (Commander & McDonald 1991; Duraiswami et al. 1998) to
bubbly water contained in vessels will generate errors in the inferred BSD.

(b) The inverse problem

It is now routine to compare the attenuation measured across a wide range of
frequencies between two hydrophones before and after the injection of bubbles to
infer the bubble population through inversion in conditions of low void fraction
(Commander & McDonald 1991). Although in principle this can also be done
for phase speed (Duraiswami et al. 1998), in practice, this is not so useful,
since small changes in phase calibration of the hydrophones, or displacements
or inaccuracies in hydrophone position, can give large artefacts, and at the very
least good practice would require that the measurement be repeated with the
hydrophone positions swapped to an accuracy very much less than the smallest
wavelength used.

Even if used in actual PWFF conditions, there are complications with such
inversions: for example, the algorithms assume no bubbles exist that are resonant
outside of the bandwidth of insonification, so that attenuation caused by any
bubbles that occur in these two forbidden size regions must be accounted for
by erroneously enhancing the bubble count within the allowed bandwidth. An
iterative approach to estimating the BSD can be undertaken to mitigate this
effect, but this is rarely done (Caruthers et al. 1999). Most importantly, with
sufficient regularization almost any measured attenuation could be inverted to
give an estimated BSD, but there is no in-built validation that this estimate of
the BSD is accurate. This can be illustrated by the way in which changes to the
regularization can yield different estimates of the BSD for the same input data.
Hence provision of an answer from this method does not indicate that it is the
correct answer.

Assume that the liquid is effectively infinite and homogeneous, that the void
fraction is �∼ 0.0001 unless multiple bubble–bubble interactions are taken into
account (Kargl 2002) and that all bubbles are spherical and pulsate linearly in
the steady state (Clarke & Leighton 2000). If the perturbations in the radius of
the oscillating bubble, DR, are small (i.e. DR � R0), then from equation (2.1)

Proc. R. Soc. A (2012)
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the real and imaginary parts of the squared complex wavenumber, k ′2
1 , can be

respectively approximated as follows

u2
j − y2

j ≈ 1 + 4pC 2
1 DR0

M∑
x=1

(u2
0jx − u2

j)R0x

(u2
0jx − u2

j)2 + 4b2
jxu2

j

nb(R0x)

and ujyj ≈ 4pC 2
1 DR0

M∑
x=1

bjxujR0x

(u2
0jx − u2

j)2 + 4b2
jxu2

j

nb(R0x),

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.2)

where uj = Re[k ′
1]/k1 and yj = Im[k ′

1]/k1 are the jth elements of the normalized
real and imaginary parts of the complex wavenumber k ′

1. The subscripts x and j
are necessary in the statement of u0jx because of the dependence of the resonance
frequency in the matrix element on the driving frequency through the frequency
dependence of the polytropic index (Ainslie & Leighton 2011). Because M is the
total number of discretized elements in the implementation of equation (2.2),
the sampling interval of bubble radius DR0 is related to M by DR0 = (R2 − R1)/
(M − 1) where R1 and R2 are the minimum and maximum equilibrium radii
contained in the bubble distribution. Equation (2.2) shows how uj and yj are
related to each other for a given frequency element uj. Stacking equation (2.2)
along a frequency range of [u1, u2] (where u1 and u2 are minimum and
maximum frequencies in the measurement) recasts equation (2.2) into the
following matrix form:

ZNb = 1, (2.3)

the matrix 1 is a N × 1 matrix representing unity throughout a given frequency
element uj, and Nb is a M × 1 matrix of which each element is the bubble size
spectrum nb(R0x) at a given equilibrium radius of bubble, R0j. The matrix Z has
a dimension of N × M and each element Zjx can be represented as

Zjx = 4pC 2
1 DR0R0x

(u2
0jx − u2

j)2 + 4b2
jxu2

j

[(
1

Yj

− Yj

)
bjxuj − (u2

0jx − u2
j)

]
, (2.4)

where Yj = yj/uj is the ratio of the imaginary part to the real part of
the complex wavenumber k ′

1. The bubble resonance frequency, u0, and total
damping parameter, b, are also functions of uj and R0x (Ainslie & Leighton
2011). Equation (2.4) requires knowledge of both the phase speed change and
the attenuation caused by bubbles in order to estimate the BSD, Nb. Such
knowledge is provided by the measurement of Yj = yj/uj in the formulation.
The conventional acoustic inversion problem (which only requires measurement
of the attenuation) is reconstructed when only the term associated with 1/Yj

inside the square bracket of equation (2.4) is considered, and the condition of
Re[k ′

1] = k1 is imposed. Estimation of the measured BSD, Nb, from the attenuation
(a) that was measured across a sufficiently wide frequency range (i.e. one that
encompasses the pulsation resonances of all bubbles present) is a problem of
linear algebra that is an ill-posed inversion requiring regularization (Tikhonov &
Arsenin 1977; Commander & McDonald 1991; Hansen 1998; Leighton et al.
2004). The current study uses Tikhonov regularization (Tikhonov & Arsenin
1977; Hansen 1998), which requires the user to define a regularization parameter
close to the optimal value. In order to find the optimal value, the current study
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adopted the L-curve method which finds the vertex of the curve that plots
the Euclidian norm of the regularized solution against the norm of the error
(Leighton et al. 2004).

As stated in §2a, PWFF theory assumes that there exists a single frequency-
dependent attenuation, and a single sound speed that is frequency-independent
in the bubble-free condition and frequency-dependent when bubbles are added.
However, in pipelines both sound speed and attenuation are multi-valued at any
given frequency and are functions of frequency in both bubbly and bubble-free
conditions. The two sets of observations cannot match over a broad frequency
range, as was shown by the mismatch between the dashed and solid lines in
figure 1c,d. Application of equation (2.3) to invert attenuation to estimate BSD
in pipelines would be erroneous. There are further sources of mismatch that are
not considered by this paper (§4a).

In order to invert the complex wavenumber measured in a bubbly pipeline
to estimate the BSD, this paper develops a technique based on estimating the
complex wavenumber that would occur in the infinite body of bubbly liquid that
had the same BSD as was present inside the pipeline. This is achieved by applying
a Taylor expansion to the formulation of the forward problem described in §2a.
For a given complex wavenumber (k ′

1) in the liquid contained inside the tube, the
complex wavenumber of the propagating mode inside the tube, q ′

0m (the real part
of which is used to calculate C0m) satisfies the following equation:

F(k ′
1, q

′
0m) = 0, (2.5)

where F appears in Baik et al. (2010) as the left-hand side of their eqn (6) with the
matrix elements in their appendix B. Let the complex wavenumbers in the infinite
body of bubble-free liquid and bubbly liquid be k ′

1f and k ′
1b, respectively (where

the infinite bubbly liquid has the same BSD as is occurring in the pipe). Let the
complex wavenumbers of the axisymmetric modes in the bubble-free liquid and
bubbly liquid inside the pipe be q ′

0mf and q ′
0mb, respectively. Suppose that the

phase speed and the attenuation are measured in the pipe when it is filled with
the bubbly liquid. This measurement gives q ′

0mb. The complex wavenumbers, k ′
1f

and q ′
0mf , can be measured, although it is safest to check that nominally bubble-

free measurements agree with the truly bubble-free predictions of Baik et al.
(2010) in cases where, as in TTF, the convoluted sealed pipework has a history of
previous injection of barely soluble gas. The only unknown variable is the complex
wavenumber, k ′

1b, which is the input parameter in the acoustic inversion problem
to estimate the BSD. This is obtained from the following step. The variables, k ′

1f ,
k ′
1b, q ′

0mf and q ′
0mb should satisfy equation (2.5), that is:

F(k ′
1f,q

′
0mf ) = 0 (2.6)

and

F(k ′
1b,q

′
0mb) = 0. (2.7)

Provided that the introduction of bubbles inside the pipe does not change phase
speed and the attenuation of the modes much from those in bubble-free liquid
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such that |q ′
0mb/q

′
0mf − 1| � 1 (figure 1), then equation (2.7) can be expanded to

the first order by Taylor expansion:

F(k ′
1b,q

′
0mb) ≈ F(k ′

1f,q
′
0mf ) +

[
vF(k ′

1,q
′
0m)

vk ′
1

Dk ′
1 + vF(k ′

1,q
′
0m)

vq ′
0m

Dq ′
0m

]
. (2.8)

The current study adopted the model by Commander & Prosperetti (1989) to
describe the complex wavenumber in a bubbly liquid that was developed from
the linearized Keller equation. We assume that the small deviation between axial
wavenumbers in bubble-free liquid and in bubbly liquids is linear, allowing use
of a Taylor expansion to map from one to the other. Although the choice of
a linear method imposes technique-sensitive limitations, it has the advantage
over other options (such as use of Bayesian statistics) in the situation where
measurements are only possible over certain limited frequency regimes. In such
circumstances, the probability distribution (defined in terms of frequency or
number of modes) does not change smoothly, generating discontinuities in the
probability distribution.

From equations (2.6)–(2.8), the changes in the complex wavenumber in
liquid are

Dk ′
1 = −Dq ′

0m

[
vF(k ′

1,q
′
0m)/vq ′

0m

vF(k ′
1,q

′
0m)/vk ′

1

]
{k ′

1 → k ′
1f , q

′
0m → q ′

0mf}. (2.9)

Therefore, k ′
1b is estimated to be k ′

1f + Dk ′
1, and this is used as an input parameter

of the acoustic inversion described in equation (2.3). The bubble-free and bubbly
conditions inside the tube are accounted for by Dq ′

0m which contains the change
of phase speed and additional damping.

Numerical error is always a problem when equation (2.9) is applied to an inverse
problem to estimate the BSD contained in the pipe. Such errors contain values
of k ′

1b which are either too small or too large. In the worst case, the value of k ′
1b

estimated through equation (2.9) generates negative values, which will be shown
in figure 4a. These numerical errors come from steep changes of derivatives of the
characteristic equation F(k ′

1, q
′
0m) with respect to change of q ′

0m or k ′
1. Sometimes,

it changes phase, and therefore negative elements of the wavenumber can be
obtained within the linear variances of q ′

0m and k ′
1. Of course such errors can be

mitigated by expanding the Taylor series to higher order. However, this makes
the estimation of k ′

1b more complicated, and even with higher-ordered expansions,
such numerical errors still exist whenever large changes between bubbly and
non-bubbly conditions are observed. Therefore, in the actual implementation of
equation (2.9), limitations of the range of Dk ′

1 are imposed so that if the resulting
estimate of k ′

1b were to be too large or too small, it is abandoned and q ′
0mb is used

in its place. It is apparent in figure 1 that the differences between the imaginary
parts (corresponding to the attenuation) of k ′

1b (for an infinite volume of bubbly
water) and q ′

0mb (for bubbly water in the pipe) are greater than those between
the real parts of k ′

1b and q ′
0mb across most of the frequency range. This is due to the

fact that bubbles change the attenuation more effectively than they do the phase
speed of media. Thus, in the present study, the extent of possible values of k ′

1b was
set to go from 0.5Re[q ′

0mb] to 2Re[q ′
0mb] in the real part, and from 0.1Im[q ′

0mb] to
1000Im[q ′

0mb] in the imaginary part, ranges which were estimated from the data
in figure 1. Outside of these ranges, k ′

1b was simply substituted with q ′
0mb.
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3. Experimental method

Experiments were carried out in a water-filled PMMA tube of 2 m length, 4.445 cm
inner radius and 0.5 cm wall thickness which is supported vertically (Baik et al.
2010; Leighton et al. 2012). The driving frequency of the function generator, which
does not necessarily equal the peak frequency of the energy in the water (Baik
et al. 2010) was incremented from 15 to 35 kHz in 1 kHz steps, with 20 cycles
per pulse. To obtain the sound speed and attenuation at each frequency, the
two-dimensional Fourier Transform technique and Prony’s method were adopted
(Baik et al. 2010; Jiang et al. 2011).

Air was injected 15 cm above the tube base using a lumbar puncture needle
(90 mm length and 0.6 mm outer diameter), the needle being vibrated using
a mobile phone vibrator to prevent bubble coalescence at the needle tip
(Leighton et al. 2011, 2012), changing the bubble radius range from 1–2.5 mm
to approximately 30–1000 mm.

An optical method, called mCORT (Multi-Color Rise Time, a version of which
also exists in monochrome—Leighton & White 2012) provided an independent
(non-acoustical) estimate of the BSD by exposing each frame of the cloud of
rising bubbles to a red flash, followed by a blue flash a short time later (0.025 s
for figure 2; 0.042 s for the 0.0058% void fraction of figure 3). This removes the
need to image the bubble wall accurately (and assume a given dimension in
the third dimension) that are requirements of most photographic techniques for
obtaining BSD, and therefore restricts them to the bubble size range that can
be imaged accurately in the field of view. By eliminating that need, mCORT
overcomes such limitations, expands the field of view and depth of field, and
extends the bubble radius range. mCORT is immune to image distortion caused
by the curvature of the pipe walls, and overcomes errors introduced by software
that cannot recognize that what it might perceive to be a bubble perimeter in
fact only extends to a highlight of the illumination on a fraction of the bubble
wall. mCORT automatically calculates the rise speed of each of the thousands
of bubbles in the field of view by correlating the locations of the neighbouring
red and blue images in the frame to pair up automatically the images of the
same bubble, and hence its displacement during the interval between the flashes.
The potential errors come in then converting those rise speeds to bubble radii.
While calibration curves exist which might allow conversion of rise speed into
bubble size for air–water mixtures such as used here (Clift et al. 1978), the
tendency of the bubbles to act collectively, and for the pipe geometry to affect rise
speed (Krishna et al. 1999; Mukundakrishnan et al. 2007), must be considered.
The rise times of bubbles in swarms in tubes of similar size to the one used here
have been studied previously (Garnier et al. 2002; Simonnet et al. 2007). Given
that Garnier et al. (2002), working with larger bubbles (up to 2.75 mm radius) at
higher void fractions (1–40%) than used here (approx. 30–1000 mm and 0.005%,
respectively) concluded that wall effects could be neglected in terms of rise speed,
and that the results were applicable for void fractions of less than 1 per cent, that
assumption is also applied here. However, Garnier et al. (2002) indicate that, for
bubbles smaller than 2.75 mm radius, if an isolated bubble were to rise at a speed
V∞ in a quiescent liquid, then its equivalent rise speed (Vrel) relative to the
liquid flow when it is part of a cloud of void fraction G is Vrel = V∞(1 − G1/3).
This correction was tested by Guet et al. (2004) for bubbles smaller than 3 mm
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Vrel = 0.064 m s–1

R0 = 0.3 mm
Vrel = 0.019 m s–1

R0= 0.1 mm

Vrel = 0.013 m s–1

R0 = 0.07 mm

Vrel = 0.038 m s–1

R0 = 0.2 mm

Vrel = 0.12 m s–1

R0 = 0.5 mm

Vrel = 0.15 m s–1

R0 = 0.65 mm
1 cm

Figure 2. A single stills frame images each rising bubble twice by a red flash and then a blue flash
0.025 s afterwards, allowing calculation of the rise speed Vrel and hence the spherically equivalent
bubble radius R0. The void fraction calculated from this particular image was 3%.

radius and void fractions smaller than 20 per cent (scenarios which cover the
current case). This correction, though small (approx. 4%) for the void fractions
(less than 10−4) studied here, is applied in this paper.

The effect of containment in a pipe on bubble resonance is rarely calculated
(Leighton et al. 1998a, 2002). Using the worst case formulations of Leighton
(2011), neglect of this effect causes a systematic error which underestimates
the bubble inertia associated with its pulsation resonance by 3 per cent for
bubble radii of 30 mm, rising to approximately 100 per cent for bubble of radius
1mm. However, the lowest frequency applied to the population is here 15 kHz,
corresponding to a resonance with a bubble of radius approximately 200 mm where
the inertia is underestimated by 20 per cent. Though significant, an iteration step
was not applied to undertake this correction because it was small compared with
the error discussed in §4.

The grey solid curve in figure 3 shows the raw optical BSD (bubble population
present during the acoustic tests) obtained by the mCORT method. In order
to obtain smooth curves of calculations for bubbly media, raw optical BSD
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Figure 3. The bubble size distribution (BSD) measured by the mCORT method is shown by a solid
grey line. After filtering, it becomes smoother (solid black line) and this was used as a reference
BSD in this study. A 10 megapixel camera with the field of view used here could measure the
rise speed of bubbles as small as 10 mm although, rather than a strict cut-off, undercounting
will become progressively worse as this limit is reached. These data are then used to predict
sound speeds and attenuations for figure 1, then inverted in the standard manner (i.e. under the
assumption that the data were taken under PWFF conditions) to recover an estimate of the BSD.
Open circles are used to plot the BSD estimated by an acoustic inversion using the theoretical
complex wavenumber for the free field bulk bubbly water (the dashed curves in figure 1c,d), free
field being assumed both for the forward problem (to generate the dashed curves in figure 1c,d)
and the inverse problem, to generate the open-circle curve here. Agreement is good because the
assumptions of the inversion match those of the inversion. However, for the other curves on this
plot (ET1 (triangles), ET2 (squares) and ET3 (asterisks)) the free field assumption of the inversion
do not match the in-pipe conditions used to generate the data for these modes in figure 1. This
corresponds to applying the standard free field inversion to data taken in pipes. (Online version
in colour.)

is digital filtered to produce the black solid curve, which is the BSD adopted
throughout this paper. The meanings of other symbols (circles, triangles, squares
and asterisks) are explained in the figure caption and §4a. Note that the
average bubble radius is approximately 300 mm, and for such bubbles the
resonance frequency (approx. 10 kHz) is lower than the lowest frequency
the affordable acoustical source can generate, illustrating the practical limitations
of acoustic inversions of this type. This BSD has a gas volume void fraction
of G ≈ 0.0058%.

Proc. R. Soc. A (2012)

 on August 27, 2012rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


2474 T. G. Leighton et al.

4. Results

(a) Validation tests using simulated acoustic data based on optical measurements

The optical (mCORT) estimation of the BSD that occurred in the pipe during
the acoustical tests (the black solid line in figure 3) was used as input in the
forward model of Commander & Prosperetti (1989) (equation (2.1) in this paper)
to predict what phase speed and extra attenuation the bubbles would have
generated for PWFF propagation in an infinite body of water (the dashed curves
in figure 1c,d). When these dashed line data in figure 1c,d are used as input in an
inversion which assumes an infinite body of bubbly liquid following the method of
Commander & McDonald (1991), equation (2.3), that inversion of course recovers
the BSD used as the original input (the open circles in figure 3, with characteristic
discrepancies at the ends of the size range illustrating the error introduced by the
inversion itself). Such agreement is of course meaningless to the circumstances
that actually exist in the pipe.

However, the importance of figure 3, and the raison d’être of this paper, is in
showing what would happen if sound speed and attenuation data taken in a pipe
were to be used to estimate the BSD under the traditional assumption of PWFF
conditions. The acoustic data are simulated (the ET1, ET2 and ET3 solid curves
in figure 1, calculated using the theory of Baik et al. 2010) because that allows
us to know the actual BSD data used as input (solid black line in figure 3),
against which we can compare the BSD estimated using PWFF theory in the
traditional manner. The inversion proceeds as follows. The predicted complex
wavenumber of the ET1, ET2 and ET3 modes for bubbly conditions (the solid
curves in figure 1) are directly used as simulated input data Yj. These data are
then inverted using equation (2.3) for the inversion (which assumes an infinite
body of liquid). Since the in-pipe conditions under which the solid line ET1, ET2
and ET3 acoustic data of figure 1 where ‘measured’ are not matched by the PWFF
assumptions of equation (2.3), the estimates of the BSD are expected to be wildly
erroneous. This is indeed shown to be the case in figure 3 for ET1 (triangles), ET2
(squares) and ET3 (asterisks). This demonstrates that the traditional inversion
technique, uncorrected for deviations from PWFF conditions, cannot be assumed
to be accurate when such deviations occur. For example, the ET1 data (triangles)
above approximately 200 mm radius in figure 3 record more than 1000 per cent
undercounts, while the other symbols (squares and asterisks) record more than
1000 per cent overcounts (too large to be plotted within the window of the
figure). Therefore, the standard PWFF inversion can produce large errors in the
estimation of the actual BSD inside the pipeline.

There is, however, a solution. As explained by equation (2.9), the complex
wavenumbers that would have occurred were the same BSD present in PWFF
conditions can be inferred from figure 1’s simulated data for the phase speed and
the attenuation of the modes in a pipe containing that same BSD. This can be
used to ensure that the inversion is undertaken on data which complies with
the assumptions inherent in that inversion. Since PWFF conditions never exist
in practice in bubbly liquids, strictly speaking no such inversion for BSD from
travelling wave attenuations and sound speed has ever done this, although clearly
under some circumstances the approximation is sufficiently good (Wilson et al.
2005). Note however that the method here does not account for the effects on
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the bubble dynamics themselves of the wall of a tank (Strasberg 1953; Leighton
et al. 2002) or pipe (Leighton et al. 1995, 1997, 1998b, 2000; Leighton 2011), or
the departure from linearity or steady-state conditions (Clarke & Leighton 2000),
all of which could be included given sufficient computational resources (Leighton
et al. 2004). Figure 4a plots Yj, the ratio of the imaginary part to the real part
of the complex wavenumber as defined in equation (2.4), for infinite volumes of
homogeneous bubbly liquid. The dashed line is the value of Yj that would have
been obtained if the BSD that occurred in the pipe (figure 3, black solid line)
were to have existed in just such an infinite body of liquid. The open symbols
and asterisks are the result of using equation (2.9) to convert the measured Yj of
the various modes in the pipe into approximate values appropriate for an infinite
volume of bubbly liquid. The shape of the ET1 result (triangles) is similar to
the dashed curve except an abrupt peak around k1a ≈ 3.4, where the break point
(the frequency where the phase speeds of the ET1 and ET2 modes (the solid lines
in figure 1a) approach closest with each other, Baik et al. 2010) is observed. In
the frequency range of k1a < 2, the approximated Yj is greater than the dashed
curve by the factor of about 10 (experienced users will often discard end-of-range
data because such effects are expected). Except for these two frequency ranges,
the approximated Yj converted from the ET1 mode is similar to the attenuation
in PWFF bubbly liquid. Since equation (2.9) assumes small deviations between
axial wavenumbers, q ′

0mf and q ′
0mb, and between free field wavenumbers, k ′

1f and
k ′
1b, wherever these conditions are disobeyed, the approximation inherent in

equation (2.9) does not work well. Therefore, conversion from the ET1 mode gives
a large discrepancy near k1a ≈ 3.4 where the difference between q ′

0mf and q ′
0mb

becomes greatest. This can be seen from figure 1, recalling that the normalized
phase speed C0m/C1 is calculated from k1/Re[q ′

0m], where Re represents real part
and q ′

0m is either q ′
0mf or q ′

0mb. In figure 1, k1a ≈ 3.4 represents the location where
the separation between the ET1 solid and dashed sound speed curves in (a)
becomes greatest, and where attenuation in (b) peaks. A similar large discrepancy
between these two curves is also observed in figure 1a for k1a < 2 where the
difference between k ′

1f and k ′
1b is large for the ET1 mode. Use of the Yj data from

the other modes (ET2 (squares) and ET3 (asterisks)) produces poorer agreement.
The ratio Yj converted from the ET2 mode (squares) is far from the free field
Yj for an infinite bubbly liquid (dashed curve) and, moreover, it gives negative
values for Yj around k1a ∼ 4.4 (which are not displayed in this picture). The same
trend is investigated in the ET3 result around k1a ∼ 8. This level of agreement
illustrates the difficulties inherent in comparing the values of Yj measured in real
scenarios with those predicted by PWFF theory.

The converted Yj plot is then used in the acoustic inversion using linear
matrix representation in equation (2.3). The input ratio, Yj, represents the
bubble-induced change of complex wavenumber between in bulk bubbly liquid
and in bulk bubble-free liquid (both being in PWFF conditions). For laboratory
experiments using the frequency span and source-to-receiver separations used
here, the attenuation in an infinite body of bubble-free liquid is usually negligible
(at least 1000 times smaller than that in bubbly water), which means Yj is very
small. Since use of equation (2.9) shows greatest success in converting the Yj

of the ET1 mode, it is not surprising that when this converted Yj (triangles)
is used in the inversion (that assumes an infinite body of homogeneous bubbly
liquid) in figure 4b, it is most successful at predicting the actual BSD that was
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Figure 4. (a) The ratio Yj defined just after eqn (2.4) in bulk bubbly liquid (dashed curve) and
the approximation to Yj obtained by using eqn (2.9) to convert the data in figure 1 from the ET1
(triangles), ET2 (squares) and ET3 (asterisks) modes (i.e. using eqn (2.9) to estimate the complex
wavenumbers in bubble-free liquid, and then calculating Yj from the ratio of the imaginary to
the real part of such estimated complex wavenumbers). All solid curves are obtained by removing
sudden peaks or dips observed in the raw converted data (as shown in the open symbols and
asterisks) and filling removed data by the interpolation. (b) The actual bubble size spectrum (the
solid black curve) and the BSD obtained by the acoustic inversion when the converted complex
wavenumbers from the ET1, ET2 and ET3 modes seen above are used. (Online version in colour.)

measured optically. Indeed, the level of agreement is similar to that shown here
for the standard technique, when data from actual PWFF conditions (the dashed
curves in figure 1c,d) is inverted using the PWFF inversion to generate the BSD
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shown by the open circles in figure 3. The other modes (squares for ET2, asterisks
for ET3) are, unsurprisingly, less successful in their estimates in figure 4b of the
BSD, because their estimates of Yj were less good in figure 4a.

It is sensible in such inversions to eliminate unphysical peaks (such as that
seen in the ET1 mode (triangles) around k1a ≈ 3.4), typical of inversion artefacts,
and fill the resulting absent region with the interpolated Yj using the remaining
smooth raw data (greater regularization would eliminate such artefacts but
smooths data unnecessarily, so good practice is to add just enough regularization
to make the last negative bubble count turn positive, then eliminate likely
artefact peaks).

Using identical symbols schemes, figures 3 and 4b, respectively, show the BSDs
obtained from the processed (by equation (2.9)) and the unprocessed modes. Of
the three modes tested, the ET1 mode (triangles) produces an estimate from this
new approach (triangles in figure 4b) that is closer to the actual BSD than simply
using the unprocessed ET1 attenuation (triangles in figure 3). While the BSDs
obtained from the processed ET2 and the ET3 modes still give poor results, as
expected, they illustrate the cause of this error: the fact that in order to obtain a
good estimate of BSD, the lowest frequency for which data is available must be
lower than the pulsation resonance of the largest bubble present in the population,
as discussed earlier. The cut-off frequencies of the ET2 and the ET3 modes are
around k1a = 3 and k1a = 5.5, respectively, corresponding to resonance frequencies
of 200 and 100 mm radius bubbles. Because there is therefore no information for
Yj at lower frequencies than these cut-offs for each mode, the acoustic inversion
of the modes only gives finite bubble counts in figure 4b for bubbles smaller than
the radii corresponding to these cut-off frequencies. Although it is possible to
obtain estimates of the BSD above these radii, those are expected to be highly
ill-posed despite regularization. Therefore, in order to get the best estimation of
the BSD, it is necessary to have a measurement of the Yj at frequencies less
than the resonance frequency of the largest radius of the bubble in the BSD.
This is a challenging requirement experimentally, since for a given broadband
source, the cost per octave is roughly constant with today’s manufacturers,
making the low-frequency region particularly problematic: it costs roughly as
much to cover the 1.5–3 kHz band as it does to cover the 20–40 kHz band.
To save cost, experimenters will choose a low-frequency limit for their sources,
but should not then apply this system unless they know that no bubbles with
resonances lower than this low-frequency limit will be present. Use of optical
techniques to measure the larger bubble sizes, can mitigate this problem. Optical
techniques can fail to resolve the smallest bubbles but become more accurate
and cost-effective for larger ones. In this way, they exhibit the opposite trend
to acoustic methods, and are therefore complementary to acoustic techniques.
The proposition that parametric sonar might be applied to explore the low-
frequency regime is complicated by the fact that bubbles affect the parametric
sonar operation itself, not just the wave once generated.

(b) Acoustic measurements

Section 4a illustrated how difficult is the problem of inferring BSDs using
acoustic inversion in a pipe when the data are simulated (and so covers the
full frequency range without gaps). Real measurements produce less idealized
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coverage, and hence the problems of using it in an inversion are greater. The
original design for this system commissioned transducers (that would wet when
immersed in mercury, but not react with it) covering the 1 kHz–1 MHz frequency
range, but this was no longer affordable after the 2008 global financial crash.
Therefore, the current exercise was conducted to see if the affordable bandwidth
was worth purchasing. Figure 5 shows the measurements of phase speed and the
attenuation of the ET1 (triangles), ET2 (squares) and ET3 (asterisks) modes
taken in the bubbly water-filled PMMA pipe. The theoretical dispersion curves
under the BSD in figure 3 (black solid curve) are calculated from the theory
of Baik et al. (2010) and plotted for comparison as solid curves. Although all
three modes produce theoretical curves across the frequency range studied, in
practice certain modes are observed preferentially in particular frequency ranges
for the reasons discussed by Baik et al. (2010). It should be noted that although
the pipe used here is the same as that used in Baik et al. (2010), the frequency
ranges over which modes are observed change because figure 5 is for bubbly water
whereas Baik et al. (2010) made measurements in bubble-free water. The ET1
mode is only observed above the frequency of k1a ∼ 3.5. Below that frequency, the
ET2 mode is observed instead. The ET2 mode is again observed above k1a ∼ 6.5.
The ET3 mode is observed below this frequency and its phase speed becomes
infinite when the acoustic excitation is close to the cut-off frequency of the ET3
mode. Compared with the agreement seen in the ET2 and ET3 measurements,
the phase speed of the ET1 modes in figure 5a was measured to be generally less
than the theoretical prediction.

Figure 5b shows the measurement of the attenuation of the modes, using
the same symbol notation as for figure 5a. As discussed by Baik et al. (2010),
the attenuation obtained from Prony’s method is sensitive to the sampling range
along the axis of the tube (where the z1 and z2 locations of hydrophone along
the tube axis represent the start and endpoints of the sampling). The error bars
represent ±1s.d. in the mean of results obtained by taking different sampling
ranges for |z2 − z1| from 0.3 to 1.3 m in 1 cm increments. Although error bars
are also plotted in figure 5a, those are very small and mostly extend inside the
markers (Baik et al. 2010). Although at first sight, the experimental data appear
to follow the theoretical predictions, validating the theory, the degree of validation
must be tempered by the large size of the error bars, as was predicted by Baik
et al. (2010). In reality, the large error bars imply that all that can conclusively
be stated is that the data do not contradict the theory proposed in this study.

Since Yj = yj/uj is the quantity which is used in the inversion, attenuation
associated with yj must be neither so great that there is poor SNR, nor so small
that the value of the Yj parameter fed into the inversion has a proportionally
massive uncertainty. Because of this, and because it does not have a cut-off
frequency (and therefore incorporates information about the large bubbles), the
ET1 mode is the most useful of those measured here for inferring the BSD.
In fact, a peculiarity of the actual measurement conducted here relates to the
issue mentioned above, whereby unlike the simulated data tests of the previous
section, the real dataset is incomplete. The peculiar consequence here is that, in
the frequency range over which signal for ET1 is detectable (3.9 < k1a < 6.2), its
attenuation is almost identical to that which the optically measured BSD would
give in an infinite body of bubbly water (figure 1). Therefore, one would not
expect this ET1 data to be affected much by conversion through equation (2.9),
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Figure 5. Phase speeds in (a) and the attenuations in (b) of the modes. Solid curves are theoretical
predictions of the axisymmetric modes in the PMMA tube filled with the bubbly water which has
a BSD given by the black solid curve in figure 3. Measurements (in the PMMA pipe filled with
bubbly water) are for the ET1 (triangles), ET2 (squares) and ET3 (asterisks) modes. Error bars
represent ±1 s.d. in the mean (each point being an average of 101 measurements). The error bars
in sound speed in (a) are no larger than the size of the symbol. (Online version in colour.)

and then to give a reasonable estimate of BSD over a limited range of bubble
sizes. Figure 6a shows the converted Yj from the average of measured Yj (ET1
(triangles), ET2 (squares) and ET3 (asterisks)) by the process in equation (2.9).
The theoretical Yj in the infinite body of bubbly water with the measured BSD

Proc. R. Soc. A (2012)

 on August 27, 2012rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


2480 T. G. Leighton et al.

10

0 1 2 3 4 5 6 7 8 9 10
k1a

1

(a)

(b)

10

10

102

102

103

103
1

0.1

10–2

10–3

10–4

Y
y

radius (mm)

no
. b

ub
bl

es
 m

–3
 m

m
–1

ET1

ET3
ET2

ET1

ET3
ET2

Figure 6. (a) Estimations of the Yj that would have occurred in free field bulk bubbly water by
eqn (2.9), obtained by converting the measured Yj data of the ET1 (triangles), ET2 (squares) and
ET3 (asterisks) modes. The theoretical Yj in bulk bubbly water with the measured optical BSD
(black solid curve in (b)) is superposed as a solid curve. (b) The optically measured BSD (black
solid curve; the grey solid line shows measured raw data) and the acoustic BSDs (open symbols
and asterisks connected by dashed lines) obtained from each measured Yj of (a). (Online version
in colour.)

inside the pipe (black solid curve in figure 6b) is represented by solid curve. When
these data in figure 6a are used in the acoustic inversion, the result is displayed
using the same symbols in figure 6b. Since the measurement of the ET1 mode
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is only obtained in the frequency range of 3.9 < k1a < 6.2 (equivalent to 20.6
to 32.8 kHz), the corresponding BSD estimation spans only from approximately
100 to 150 mm radius, which are bubble sizes giving those resonance frequencies.
Therefore, the BSD obtained from our measurement is limited to this bubble size
range. For such small size ranges, the end-of-range errors that are known to occur
with such inversions (and cause divergence of the result at the end of the range)
are given undue prominence: as expected therefore, closest agreement between
the optically measure BSD and that obtained from the acoustic inversion occurs
in the middle of the acoustic range. In order to obtain the BSD of the other
radii of the bubbles, it is necessary to measure the Yj over a wider bandwidth.
The estimated BSD obtained from the measurement of the bubbly cylinder is
greater than the actual BSD by the factor of from 2 to 4. In this frequency
range, the same trend is observed in figure 4b when the theoretical ET1 Yj in
bubbly cylinder was directly used in the acoustic inversion. However, as mentioned
above, the theoretical ET1 Yj in this frequency range is not far from the free
field Yj in bulk bubbly water. When the theoretical free field Yj was used in
the acoustic inversion instead, the estimated BSD is close to the actual BSD as
shown by the open circles in figure 3. Therefore, the BSD in this corresponding
radius range (from approx. 100 to 150 mm) is very sensitive to the Yj in the
corresponding frequency range (from 20.6 to 32.8 kHz). Consequently, a more
precise measurement is required to estimate the correct BSD by the acoustic
inversion. However, more precise measurements in this bubble radius range (or
corresponding frequency range) do not significantly change the gas volume void
fraction since the greatest contribution to the void fraction comes from the larger
bubbles, the resonance frequencies of which are far below this frequency range.

The BSDs estimated from the higher modes ET2 (squares) and ET3 (asterisks)
are also plotted in figure 6b. One might expect a poor estimate of the BSD from
ET3, because the converted values of Yj for this mode (the asterisks in figure 6a)
are far from the theoretical free field Yj in bulk bubbly water. Although part of
the measurement of ET3 is obtained beyond the frequency range of the measured
ET1 mode (k1a ∼ 6.4), and so might have been potentially useful in extending the
range of bubble sizes estimated, the accuracy of those estimations (the asterisks
in figure 6b) do not agree well with the actual BSD. (Indeed, although the BSD
estimated from the ET3 mode spans to a higher frequency range than that covered
by the ET1 mode, the BSD data points corresponding to these smaller bubbles
sizes are not plotted in this figure because (at nb(R0) ∼ 104 m−3 mm−1) the values
are out of range of the plotted bubble concentrations). The same trend is observed
for ET2 mode when the data at k1a ∼ 6.6 were used for the acoustic inversion (the
corresponding frequency resonates with bubbles of approx. 90 mm radius), which
gives BSD estimations (squares) that do not agree with the solid BSD curve.
However, the converted values of Yj from the measurement of the ET2 mode
(squares in figure 6a) are very close to the theoretical free field Yj for a bulk
bubbly liquid in the range of 2.9 < k1a < 3.9 which corresponds to frequencies
that are resonant with bubbles having radii from approximately 150 to 210 mm.
Consequently, the BSD estimated from the ET2 mode in the bubble radius range
of approximately 150–210 mm (the two squares in figure 6b) are close to the black
solid BSD curve. As expected, there is much poorer agreement for the estimations
of BSD from bubbles that are smaller than approximately 150 mm radius for the
ET2 mode. Because of the missing data in the range of 3.9 < k1a < 6.5, these
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estimates were obtained from the interpolation using existing ET2 data, which
is, of course, far from the theoretical Yj, and therefore gives poor agreement with
the actual BSD over the corresponding bubble size range (radii from approx. 90
to 150 mm).

5. Conclusions

Simulated and real data were used to explore how measured phase speeds and
attenuations in bubbly liquid in a pipe might be inverted to estimate the BSD
(which was independently measured using an optical technique). Use of the
standard PWFF theory generated large errors when applied to data in pipes. A
new inversion used a Taylor series to relate the complex wavenumber measured
in a pipe to what would, for the same BSD, have been measured in an infinite
homogenous volume of bubbly liquid. When simulated data for the frequency
range originally planned for the sensor were used, the new inversion performed
well. However, it performed poorly when using actual data from the more narrow
frequency range that could be afforded, the result being dominated by the known
end-of-range errors that occur during such inversions. The conclusion is that it
is not worth ORNL commissioning a sensor with this reduced frequency range,
because although it is affordable, the loss of accuracy is unacceptable While such
errors can be identified by using complementary optical techniques, this is not
possible in optically opaque media and pipelines (although the authors developed
an optical fibre which detected bubbles in mercury, a system which provided
statistically significant sampling was unaffordable). It is therefore important to
question the accuracy of estimated BSDs particularly when they inform high-
value decisions by industry. The planned addition of a controlled population of
helium bubbles to ORNL’s SNS TTF in 2013 is designed to mitigate damage to
the target, and so prolong the period between which the target is replaced. The
cost of a failed target could amount to £12 M, including $800 k for the new target,
$200 k for disposal of the old (now radioactive) target, and the cost of interruption
to the use of the facility (B. Riemer 2012, personal communication). The method
in this paper allowed industry to assess beforehand the cost/benefit of employing
a given inversion technique, including the cost of insufficient investment in a wide
enough frequency range.
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