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Summary

The nonlinear response of a gas bubble to a low frequency w, pumping wave results in parametrically-generated
shape oscillations above a well-defined threshold. This may be detected through insonification of the bubble by a high-
frequency w; imaging wave, leading to the scattering of signals at w; + wp, wi & wp /2 (corresponding to pulsation
and subharmonic wall oscillation, respectively). The durations of the transient regimes of these two signals are very
different. In this study the complete theory of the transient processes near the threshold of excitation of distortion modes
has been derived. The growth of an instability is very slow in this domain, causing the transient processes associated
with establishing steady state surface oscillations to be of very long duration.

PACS no. 43.25.T’s, 43.25.Yw

1. Introduction

Non-spherical oscillations of gas bubbles in acoustic fields
have been the subject of numerous investigations {1, 2, 3,
4,5,6,7,8,9, 10, 11, 12]. It is known from experiments
that these surface oscillations arise as a bifurcation from the
basic purely radial oscillatory motion. They occur in liquids
of relatively low viscosity when the amplitude of the driv-
ing (or pump) acoustic field exceeds a threshold. The shape
distortion is greatest when the pump signal (of angular fre-
quency wjp) is tuned to the resonance of the bubble under
investigation. Under these conditions the frequency o; of the
parametrically excited surface waves approaches half the fre-
quency of the breathing mode [ 10, 13]. This resonance would
however be limited by damping due to acoustical reradia-
tion, thermal diffusion and viscous losses associated with the
breathing mode, and viscous damping of distortion modes.
A major success in recent theoretical studies has been a real-
ization of the importance of coupling between the radial and
the shape modes [14, 15, 16, 17]. These results are reviewed
in depth in [18].

Surface oscillations are readily detected by observing rel-
atively large bubbles visually [19, 3, 20] or by a modification
of the method of interferometry [21, 22].

Another manifestation of surface waves has been observed
by Leighton ez al. [23] by the use of a two frequency tech-
nique, when in addition to a pumping wave the bubble is
insonified by a high frequency imaging wave. For applica-
tions with millimeter- sized bubbles, the pumping frequency
is of kilohertz order, whilst the imaging frequency is usually
around a megahertz. Because of the great difference between
the timescales associated with these two fields, the slow shape
oscillations of the bubble wall (having frequency wy/2) will
modulate the scattering imaging wave. The wavelength of the
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imaging wave is comparable with the bubble size. Because of
this, the higher partial components (I > 1), corresponding to
the expansion of the imaging wave of angular momentum !,
will be scattered effectively by shape oscillations with wave-
lengths ~ R/1. As a result, they will give rise to spectral
components that are comparable with those associated with
scattering by the breathing mode! [24, 25].

More recently, Ramble et al. [26] have discovered that
there exists a significant difference in the transient times
taken to establish steady-state subharmonic and fundamen-
tal combination frequency signals (the so-called “ring-up”
times). The primary objective of this paper is to explain this
difference.

The approach is as follows. A phase space analysis of
the system is made, where “fixed points” (corresponding to
the equilibrium positions from which the system will not
deviate if unperturbed) are identified. The character of these
fixed points (attractor, repulsor, or saddle) is determined by
the signs of the real parts of the eigenvalues. Since these
eigenvalues reflect the rates of change of the parameter in
linear independent directions in phase space, they can be
identified with the damping (uniform negative values of the
real parts being required, for example, for an attractor). The

! The spherical harmonic expansion coefficients of the scattering
amplitude f(f, @) are named partial amplitudes (partial compo-
nents) f(0,a) = > fimYim (6, @). The incoming plane imaging
wave can also be expanded in spherical harmonics. The scattering
matrix S(I, m|lym, ) determines the effectiveness of transformation
from incoming partial components to scattering partial components
e.g. - the effectiveness of scattering. When the imaging wave is scat-
tered by the breathing mode (at k; Ro ~ 1), the scattering of some
first partial components [ ~ 0,1, 2 will be effective. In contrast,
scattering by the distortion modes will be effective for higher partial
amplitudes I ~ 8,9, 10, as the corresponding wavelength of the
surface modes Ro /I will be smaller than \; = 27/k;. As a result
the angular dependence of the radiation of the combinative compo-
nent (w; = wp) should differ markedly from that of the subharmonic
component (w; & wp/2).
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eigenvalues can be determined in the space close to each
fixed point through a linearised analysis.

The explanation proposed here for the difference in the
ring-up times of subharmonic and fundamental combination
frequency signals, relies on the fact that these measurements
were made slightly above the threshold of excitation of the
distortion mode [26]. In this domain, one of the eigenvalues
of the linear stability problem A; is small and positive (it
equals zero at the threshold, which would be likened to zero
damping).

Full consideration is here given to the problem of paramet-
rically driven distortion modes, accounting for all spherical
harmonics. With one exception [9], papers on this subject
have discussed only those spherical harmonics Y;o which ex-
hibit axial symmetry [4, 5, 6, 8, 10, 11, 12, 13, 14, 18, 25].
However the environment around the bubble, and the long-
wavelength pumping field, are isentropic. Since no unique
direction is distinguished, inclusion of only the axially sym-
metric spherical harmonics is inadequate. All spherical har-
monics corresponding to (20 + 1)-fold degenerate resonant
frequency o; should give comparable contributions to the
overall oscillations. '

2. Parametric generation of surface waves

Consider an air filled bubble of radius R driven by a pump-
ing wave of amplitude P, and angular frequency wy, in the
absence of an imaging wave. The water compressibility can
be ignored in the limit of Rowy/co < 1 [9] and the velocity
potential, denoted by ¢, is governed by

Ap=0, wv=Vg, (1)
P = —po[¢+(V$)?/2] + Po + P sin(wpt),

where v is the velocity and P is the pressure in liquid, pg
and P, are the equilibrium density and pressure, and P, is
the amplitude of pumping wave. We shall use the spherical
coordinates (7,6, ) and write the equation of the bubble
surface as = R+ £(6, @, t). Then the kinematic boundary
condition takes the form

[% + (v, V)] (r = R)r=Ro+¢ = 0. (2)

The dynamic boundary condition is that the pressure on
the two sides of the surface differ only because of surface
tension i.e. if P} and P, denote the pressure in the water and
in the bubble respectively, then

o
Pi=F, - %(V,n), Py =R (W/V), ()
where n is the unit vector normal to the surface r = Ry +
£(8, a,t); o is the coefficient of surface tension. We adopt
a polytropic law for the gas in the bubble and V', Vj are
the instantaneous and equilibrium bubble volume, + is the

polytropic exponent, Py is the equilibrium pressure in the
bubble.

We express v and P through the velocity potential ¢,
and write down the kinematic (4) and dynamic (5) boundary
conditions in a form which is correct to second order in

(€/Ro) [9, 10, 13]:
000 P L (%20

ot dr  or:° R:\9990
1 (0€0¢ _
Sinz GR% (aa aa) (T - RO)’ (4)
645 g 2 27 _ ¢

( %)~ 2o[(%) (2]
+ b1+ Ve + [ - 37207+ )]
_——Pmsz)( ) (= Ry), (5)

where w3 = 3Py /poR2 is the frequency of the fundamen-
tal (breathing) mode, Vi is the surface Laplacian, and the
spherical average of ¢ is defined by

_ 1 2w m .
&= E/o doz/0 &(8,a)sin 6 de.

Equations (4) and (5) are distinguished from those of Mei
and Zhou [13] by terms accounting for the dependence of &,
¢ on the polar angle a.

Using the isentropic nature of the problem we expand £
and ¢ in terms of the spherical harmonics

oo m=l

= Z Z Elm(t)ylm(gaa)a
1=0 m=-1
oo m=l I+1

=3 Y om®(2) Fint,0)
=0 m=-1
Vin(8,0) = (~1)™ | G B coso)éme
(m > 0),
Yiem = (_1)myz=;n’ (6)

where P/™ denotes the associated Legendre polynomial and
Yi_m = (=1)™Y}},, (m > 0). The spherical harmonics are
normalized such that

2w ™
/ da/ singdf Y, Yim =1,
0 0

and £go = &+/4m. The displacement and potential are real,
so that £ = £, ¢ = ¢* (here an asterisk denotes the com-
plex conjugation). These conditions lead to definite relations
between the components of expansion of the Legendre poly-
nomial of & = (=1)™&_ .., dim = (=1)™¢}_,,. On
substituting equation (6) into equations (4) and (5) we obtain

O0&im l + 1
6lt ¢lm = Z Z éllml¢l2m2 m,mi+maz

limy lama
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1 @ _ 1 ot | o—iout b
= |2+ Dl + 2)<lm[Yllml l2m2> im = 5 (@me™™" + bime ) (10b)
0
1. 0R ; ;
- (im| g g e i = =3y (o™ = e ™)
Y, w? = wi —20/poRy,
p 1m1
+m1m2<lm 79 l m2>], (7) of = —-p;;s (-1D+1)(+2),
0
0 *
g?n " po R2 (l = D)(I + 2)ém — Rowd€V4méim,00 bim = (=1)™aj_p,
P, . — We shall analyze the case of the near resonant interaction
= ——=sin(wpt) V4T im0 between the breathing and distortion modes: w. ~ 20; +
Po
. Aw(Ry), |Aw| < wy. Here Aw(Ryp) denotes the frequency
+ { Z Z &lyma Dlama Om,ma+me mismatch for a given Ry. The definition of amplitudes given
lymy loms here differs from the one used by Mei and Zhou [13] by a
lo+1 co-factor 1/2, thus providing more physical sense of agop and
. e <lm Yiim, l2m2> Q-
5 The evolution equations for the complex amplitudes a;m,
- Z Z Plyma PlamaOm,ma+me result from the conditions under which the secular forcing
limy lam terms vanish in the second order equations [13]. We omit
1 [(l2 +1)(I2 +2) these cumbersome calculations, as the procedure is straight-
B3 Im }/llml lzmg
'R2 2 forward and well known. The final result is

+ <lm‘ay!1m1 -?—

o)

20
- R Z Z €l1m1§l2m2 m,mi1+mz

PO 0 lIT‘IH lzmz

CERIE 1] <lm’Yzlm1

l2m2>
+ w? [5_2 -3/2(v+ 1)5_2] \/‘G(Slm,OO}a (8)

where the following notation for the matrix elements of op-
erators has been used

<lmlﬁ“l2m2> = /027r da/oﬂ sin @ 8 Yy, F'Yiym,.

We find to first order approximation

%0 . 1, _g
at RO 00 ’
3‘1’(()})) 2¢(1)
5t Rowiboy = 0, (92)
86(1) l+1 (1)

6t + —d)lmo =0,

opt)  o(l-1)(I -
ot poRg

)g(” (1> 0). (9b)

Homogeneous solutions satisfying (9a,b) consist of a shape
preserving (breathing) mode and shape distorting (surface)
modes

1 . .

o 3 (aooe“‘"t + agoe““’*t), (10a)
1 .

(()})) = —--2—iw,,, (aooe“"‘ — aaoe"“"*t);

D™ aimai—m

0 aoo — 0l oi(2o1—w.)t l
5 (_\/E) = iQoe Z (

m=-—1
Pmﬁ ei(w,,—w,,)t’ (11)
QW*PORO
Oaim -0 i(wa—207)t aopo
— i(ws=201)t(_1ym *
ot lQle ( ) \/E A —m>
where we define
Q! = G
07 64n(l+ 1Ry’
o -1
Ql - 4R0 .

Expansion of the bubble wall displacement and the poten-
tial over the normalized set Y}, (see equation 6) leads to
different normalization factors (constants) in the definition
of amplitudes a;,, and coefficients QY and QL from those
obtained when non-normalized associated Legendre poli-
nomials P, ~ Yjo are used [9, 10, 13]. For example, the
radial component of bubble wall displacement is equal to
AR = &Yoo = &oo(1/ V/47) and thus the amplitude of ra-
dial pulsation (see 10a) is ago / V4. Accounting for damping
and converting system equations (11) to an autonomous one
by the transformation

ago = dgoe’“rr)t,
aim = almei(wP/2_wl)t;

we get the desired evolution equations
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o0&, . _ ~ .. . . . )
3tm = i(o) — W, /2)atm — Yiditm (12b) stability analysis. The corresponding five eigenvalues are:

+ et (S,

1 2v /2D
Yo = §(k,,Ro)wp + —R—Z +3(’}’ - )Ro

v =(+2)2+ 1)-}-?—3-

Here 7 is the sum of radiation damping, viscous damping
and damping due to thermal diffusion for the breathing mode;
v is the viscous damping of the [-th distortion mode, as
estimated by a linear analysis. These equations reduce? to
the expressions derived by earlier investigators [13, 25], when
one retains only the axi-symmetric (m = 0) modes.

3. Steady state solutions

To use the stationary solutions of the evolution equations
derived by Mei and Zhou, we introduce collective variables
for the description of the distortion modes:

l

l
S= > (~D)"ambt-m, N= Y (-

m=-—I m=-1

D)™,

The governing equations for S and N follow immediately
from equation (12b).

N = -2y N +iQ? [(;%0_) S* —

$=2 [i(al —w,/2) - 7,] S +2iQ
() = [0 =] (%)

P
2‘*)* Po RO ’

~o
[ ~N

+iQhS +

The stationary states are realized when the right hand sides of
equations (13) become zero. This dynamical system of fifth
order for N,U,V,z,y (S = U +iV, oo/ Va7 = z + iy)
has the following fixed points:

N1:0, U1=0, Vle,
T = Pm Yo
2wy poRo (Wx — wp)? + ¢’
Py Wy — Wp
Y= 2wupoRo (we — wp)? +5

This means that purely radial oscillations can occur. The
nature of the solution trajectories is determined by a linear

% Because of the normalization and definition adopted (10a,b) the
partitional amplitudes differ from those found by previous workers
[9, 10, 11]. To obtain agreement one should simultaneously change
the sign and the value of the coefficient () and sign of Aw.

A2 = "’Yli\/Q (2} + 1) = (01 — wp/2)?,
)\4’5 = =% + i(w* - w,,), (14)

where the convention is that A; given by the positive root
and Ay by the negative one etc. Any small perturbation of
shape will remain small - i.e. the purely radial oscillation is
stable, when all real parts of the eigenvalues are negative. The
eigenvalue \; can change its sign, and thus this fixed point
(i) is transformed into a saddle point. The condition under
which A; vanishes determines the threshold of instability of
distortion modes:

Az = =2

2
D (@3 + D) = (00 —wp/2) + 7. (15)

Another two fixed points (ii) and (iii) are given by the fol-
lowing expressions

Noz = —Q—glj@ [(0; — wp/2)(wx — wp/2) — 'ylfyo]
+ ([(01 —wp/2)(ws — wp/2) — %70]2
Pn@? \?
" (201*/)0;%)
1/2
—km—%ﬂf+ﬂkm—%ﬁ+ﬁm

2 _ 2 2 _
N3z =Ujs + Vs, U3 = Np3cosby s,

V2,3 = Ny 3sinfs g, sinf; = —sinfs,
To3 = %%sin@z,s - %;‘RECOSQZ&
Ya3 = _a ‘—thpﬂ sinfy 3 — (FJY_I? cos by 3,
cosflz = - ;:135322750(2; - ‘*’P)‘ (16)

The linearized stability of these fixed points leads to an eigen-
value problem given by an algebraic equation of fifth order.
Note that A3 = —4, is the solution that is the same for fixed
points (ii) and (iii). The expressions for the remaining eigen-
values (four for fixed point (ii) and four for fixed point (iii))
can be obtained in closed form but are very cumbersome.
However, since we are interested only in whether these fixed
points are stable or unstable, and how this stability is af-
fected as the control parameters are varied, it is possible to
use simpler arguments.

Consider a bifurcation diagram in the plane of the control
parameters (wp/27), Pp, (see Figure 1). The curve Ly is
the threshold of instability of the fixed point (i), described by
(15). This state is unstable (ReA; > 0) above this curve and
is stable (ReA; < 0) below it. The plot is made of an air bub-
ble in water of equilibrium radius 1.19 mm. This is the case
studied experimentally by Ramble et al. [26], who measured
the growth of surface waves at P,;, = 50 Pa on a bubble hav-
ing a breathing-mode resonance of 2.7 kHz. A horizontal line
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on Figure 1 indicates this amplitude. The figure shows that
for this bubble the lowest threshold for parametric excitation
of surface waves corresponds to the modes with [ = 11.
Following values of damping are adopted 7o /w. = 0.0126,
Y11]/ws = 0.0171 (see [271). For comparison the threshold
for the nearest resonance with I = 12 modes is shown by a
dashed line.

If the fixed points are hyperbolic (i.e., none of eigenvalues
lie on imaginary axis), varying of control parameters does not
change the nature and the stability of the fixed points, since
the hyperbolic points are structurally stable [28]. The fixed
point (i) is hyperbolic on the plane of control parameters
with the exception of the curve Lyy. The fixed points (i)
and (ii) coalesce at the values of control parameters on the
branches of the curve L;j, between the points F'y, F__. The
states realized when the control parameters take the values
corresponding to the points F., F_ are critical. Here the
confluence of all fixed points (i), (i), (iii) takes place. The
points F. occur at frequencies fi such that:

2nfe = (0 +w./2) £ .\/(Ul — w./2)% + 2701,
(P)+@Q7

2pw. Ro == [7’(01 —wp/2) + o (_w* - wp)].

The fixed points (i) and (iii) coalesce on the branches of the
curve L;p, located at the higher points F., F_. The fixed
points (ii) and (iii) coalesce on the lines L4, where:

PQ?
T = E[rlor =@/t e )] an)
The point of intersection of these lines (L, L_)is given by:
1-2 x
P, =0, wbzw*[l —ﬁlfi"—]

T 1-2y/7

The fixed points (ii) and (iii) are nonhyperbolic only on these
lines and on the corresponding branches of the curve Lyp,
where confluence takes place.

In this paper we shall analyze only the neighborhood of
the threshold of the generation of distortion modes, that is,
the neighborhood of the branch of the bifurcation curve Ly,
located between the points F, F_. In this case the fixed
point (ii) has a single zero eigenvalue with the remaining
eigenvalues having negative real parts. Below the threshold
the fixed point (i) is stable and (ii) is unstable. These two fixed
points coalesce at the threshold, and above the threshold (i) is
unstable and (ii) is stable. Thus, an exchange of stability has
occurred at the threshold. This type of bifurcation is called a
transcritical bifurcation [28].

Notice that N, by definition, is a sum of the squares of
(2! + 1) amplitudes and thus is positive. States (ii) and (iii)
are physical only if Na, N3 > 0. This condition leads to the
following classification.

The only stable state (i) exists in the domain below the
lines L4 (lightly shaded and labeled (A) in the figure). An-
other domain in Figure 1 (darkly shaded and labeled (B) lies
above the lines L., L_, but below the threshold (below the

200
— Threshold
=11
180 = = = $ifeihoa
1=12)
160 {— ping (50 Pa),

140

120 -

100

: . ; i,
2.55 2.6 2.65 2.7 2.75 28
Pump frequency, o /2n (kHz)

Acoustic pressure amplitude of pump field P_ (Pa)

Figure 1. The control space for the acoustic pressure amplitude (Pp, )
and frequency (w/2) of the pump field, as relating to an air bubble
of equilibrium radius 1.19mm in water under 1 atmosphere. The
bifurcation curves for parametrically driven shape oscillations (I =
11, solid curve; I = 12, dashed curve) are shown. The neighbouring
threshold curve for I = 10 does not fit on this graph: its minimum
occurs at a frequency of 2.70kHz and takes a value of 220 Pa. Hence
the figure shows the threshold curve which gives the lowest minimum
of these three is | = 11 (giving 49 Pa at 2.69 kHz.) A horizontal line
indicates a pump field amplitude of 50 Pa. Points F'y , F_, lines L,
L_ and domains A-D, are discussed in the text.

curve L;p). In this, there is a stable state (i) and two un-
physical states (ii) and (iii), as N2 and N3 are negative. In
domain (C), above the threshold Ly, state (i) is unstable.
The corresponding fixed point is a saddle, Ny is positive,
but N3 is negative and thus it corresponds to an unphysical
state. State (ii) describes the steady state amplitude of the
collective variables of distortion modes given by (16). The
final domains (D) are located between the lines L, L_. and
the curve L;p. Here state (i) is stable, and Ny and N3 are
positive.

Having identified the regions of instability of surface
waves, the transient regime will now be examined in that
region to determine how rapidly the instability will develop.

4. Transient regime

The solution of the system equations (13) is based on the use
of the master-slave principle [29] known in applied math-
ematics as center-manifold reduction [28]. Near the point
where the dynamical system equations (13) loses its linear
stability (in our case this occurs at the threshold), one can re-
duce the dimentionality of the system and exclude the stable
(fast) variables (i.e. those which decay to central manifold on
timescales determined by the corresponding eigenvalues Ag,
A3, A4, As). Thus, if we are interested in long-time behavior,
we need only to investigate the system restricted to the central
manifold which is determined by a relatively simple equation
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for the parameter of order (using Landau terminology) that
varies “slowly” (i.e. on time scales comparable with. 1/);).
As the first step we transform the linear part of equation
(13) into block diagonal form.
The new coordinates in phase space (7, i, ¢) correspond
to the eigenvectors of eigenvalues (A1, A2, A3) respectively.

z1(01 — wp/2) —y1Rd
Q7 (23 +97)
yi1(o1 —wp/2) + 1 Rd
Q7 (=1 +97) ’
z1(01 —wp/2) +y1 Rd
Q7 (= +47)
y1(o1 —wp/2) — z1Rd
Q7 (=3 +v7)
¢ = (01 —wp/2)N + 2:Q)U + 11 QVV,

Rd = \/QP(@2 +12) — (01 —wp/22.  (18)

Differentiating equations (18) by ¢ and expressing derivations
of N, U,V by use equation (13), we obtain

g—;’ = Mn =209 (WU (n, 1, €) — =V (1, 1,C)
- 2Q?N(’I7,,LL, C)
' (yxl (01 —wp/2) —y1Rd
Q) (=% +y?

n=N+ U

+

=N+

+

v,

_ yi(on —wp/2) + led)
@ o)
g_/t‘ = M€ = 2Q7 (yU(n, 1, Q) — 2V (0, 1, C))

- 2Q?N(7L Hy C)
' ( z1(01 —wp/2) + y1 Rd
TN D)

Y1 (UlQ?(L;z%/i)y%)ﬁRd) (19b)
o = X5~ 20001 ~ /2
(WU, 1, ¢) — 2V (0, 1,0))
- 2Q?N(n, 11, ¢)(z1y — y12), (19c)
= 0@~ 1)~ (o~ )y~ )
- QV(n,1,0), (19d)
W = (e~ wp)@ ~21) ~ 20y~ )
~ Q4U(m,1,€)- (19€)

Here N, U, and V are expressed in terms of 7, u, ¢ by
inversion of transformation (18).

The relaxation of the variables p, ¢, , y is fast compared
with 7. Thus one can find local equilibrium values of p,
¢, x, y (depending on 7)) from the conditions under which
the right hand sides of (19b,c,d,e) vanish. Substituting these
values in (19a) we get the desired self-consistent equation
for the parameter of order 7.

Resolving the equations for z, y we get
Qb [(we —wp)U + V]
(W* - UJp)2 + ’Yg
_ Q(l) [’YOU — (wa — wp)V]
(UJ* - CUp)2 + ’Yg

(z—1) = -

I

y-uy) = (20)
On substitution of equation (20) into the right hand sides of
equations (19) one can see that in the main order of magnitude
#, ¢ = 0. The first non-vanishing contribution arises only in
the second order p,{ ~ n?. Further simplifications arise
from neglecting the deviation from the threshold in all terms
excluding ;.

A & (Pm @7 /2wspoRo)*
M [(We = wp)? +42]
1

= [(or = /2 +97] (21)

As a result, the system equations (19) leads to the desired
equation for the parameter of order

% = { (PmQ?/2w*PoRo)2 (22)
~ [lov =2 7] (0 = 0 48 } 2
~ QPQb | (. = wp) (o1 = wp/2)* o]
[(or = wp/2)? + 2] [0 — ) 98] T,
with

N ~ (o1 = wp/§)2 +’Yl2
27

 PuQ) [(@e = wp) + (01 = wp/2)%]
2wepoBo 297 [(we — wp)? + 3]

~ PmQ? [(w* — wp) (o1 — wp/2) — 'YI’YO]
2wipoRo 297 [(ws — wp)? + )

For the accuracy adopted one can use N as a parameter of

order, as it has more direct physical sense - the sum of the

squares of amplitudes of the resonant distortion modes (that is

the sum of occupation numbers of these modes). Introducing

an approximate expression for Ns equation (16) near the
threshold:

Ny & = [(PnQf /2wapoRo)? (23)
= [(o1 = wp/2) + 7] [(wn = wp)? + ]
- [200Gh [(w. — wp) o1 = wp/2? = 2om]]

we get the final result

ON N

)

b

Here \; and N, are given by equation (21) and equation (23)
correspondingly. The range of applicability of equation (24)
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is the neighborhood of the threshold, but not too close to the
critical points F';, F'_, where there are two zero eigenvalues
(co-dimension two points). The reason is that equations (4),
(5), and (7) are only correct to second order in nonlinear
terms. Near the critical points Fy, F_ the coefficient before
N, in equation (24) (A1 /N3) is small (it equals zero at crit-
ical points) and one should account for the terms of third
order, but that would be exceeding the accuracy of the initial
equations.
The solution of equation (24) has the form

N(0)N,
N(0)[1 — e=21t] + Npe—Mit’

where N (0) is the initial value. As equation(25) is only valid
at times greater than the damping of the unforced breathing
5" and distortion ;" modes, the physical sense of N (0)
is the characteristic value of the sum of the squares of ampli-
tudes (occupation numbers) of the resonant distortion modes
at times, (’yo—l, 'yl_l) Lt K )\1_1. For the conditions of
the experiment [26] (wp/27) = 2700 Hz and adopted val-
ues of damping (yo/wx) = 0.0126, (y11/ws) = 0.0171;

1~ 4.6-107%s, v} ~ 3.4-107%s. At greater times
t > A7Y, N(t) approaches N, asymptotically. One should
note that the parametric resonant excitation (unlike the or-
dinary resonance) requires the presence of initial distortions
- there is no unstable rise of the state N(0) = 0. These
distortions comprise natural fluctuations or are stipulated by
the excitation of surface modes at the onset of insonification.
The time to establish the steady state of the slow degree of
freedom of the distortion modes ~ A7 " In(No /N (0)) - will
greatly exceed the corresponding time for the fast degrees
of freedom 7y ! This discrepancy will be determined not
only by the smallness of (70/)) ™! but by the greatness of
In(Ny/N(0)).

Now we shall discuss the transient regime for the breathing
mode. According to equation (16), the steady state amplitude
of the breathing mode above the threshold does not depend
on the pump field acoustic pressure (see also [13, 16, 18]):

(25)

I&OO(OO)|2

L = a(o0)? + y(00)? = 73 + 3
™

= [(o1 — wp/2)* + 7]/ QY.

This can be seen in more detail by expressing z; and y; in’
terms of N by use of equations (21) and (25). The square of
the amplitude of the breathing mode is found to be

~ 2
ool _ 447
+ 2Qf) [(w* — w[’) (01 B wP/z) - 7071] N(t)

2
[(ws —wp)? +23]Q7
Here we retain only those terms which are linear in N. Since
N tends to Ny which is proportional to the deviation from
the threshold, one should recognize that the terms are of the
same order in calculating z;, y;. This gives

|aoo(00)|” (01 — wp/2)? + 47
47 - Q?2
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+ 2Q6 [(we — wp) (01 — wp/2) — Yo
[(w* —wp)? + 73] Q?
- (N(t) = Ns). (26)

This result shows that the steady state amplitude of the breath-
ing mode does not exceed its value at the threshold as pre-
dicted. This amplitude grows during the characteristic time
Yo ! until reaching a maximum magnitude. It then decreases
slowly until it attains the steady state level, parametrically
exciting distortion modes.

We have examined the problem of nonlinear bubble shape
oscillations in terms of collective variables. Finding the evo-
lution of the breathing mode permits us to analyze the dy-
namics of (2/ + 1) resonant distortion modes.

5. Standing surface waves

We shall find the solution of equation (12b) on the time scale
t > 'y,_l when the parametric forcing term is a known
function of time. Equation (12b) describes the paramet-
ric interaction of breathing mode with “progressive surface
waves” having equatorial wavenumbers m, and propagat-
ing eastwards (m > 0) or westward (m < 0) around the
sphere. We pass from the complex amplitudes @y, G,
to the real amplitudes and phases @, = /Ny, exp(it/m),
G—m = V/Ny exp(it)—p, ). Interms of these variables, equa-
tion (12b) is represented as follows:

i+ 2(-1m gl
- /N N sin (¢m + ¥—m) — arg(doo)),

ymorl (21b)

/N N_p sin ((¥m + —m) — arg(d@oo)),

N,

Il

(27a)

N_m = —-2’)’[N_m.+2(

G = (01— wp/2) +2(~1)™ Q"l\j‘ﬂl (27¢)
1\;: cos ((¥m + ¥—m) — arg(@oo)),

bom = =/ 201 mQP ()
N_ Cos ((wm +Yom) — arg(ﬁoo)),

With N,,,, N_,, given by the equations (27a,b) we find

%(Nm = Nom) = =2%(Nm = Nom).

It follows from this equation that over a short time inter-
val (within the timescale under consideration, i.e. )\1_1) the
amplitudes of waves encountered with the same equatorial
wave number m will be equal. Similarly, from the equations
(27¢,d) one gets

% (wm - 1/)_m> ~0, (28)
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which means that the phase difference between these two
waves will be approximately constant, and equal to the phase
difference when the waves are initially set up. This initial
phase difference is accidental by its nature as it is stipu-
lated by fluctuations. It will now be shown that the sum of
the phases is a fast variable which reaches its local equilib-
rium value, depending on the slow variable N (t), over the
characteristic time fyl_l. On substituting N,,, & N_,, into
equations (27), summation of equations (27c) and (27d) gives

%(d,m ~9m) =201~ wp/2) (29)

+ (—1)""2Q?% cos ((¥m + t—m) — arg(@oo)).

Vi

To facilitate the solution, we use the derived expressions
for the amplitude and the phase of the breathing mode and
neglect small terms proportional to N(t), N». In this ap-
proximation, equation (29) takes the form of an equation
with constant coefficients and it can be integrated immedi-
ately. The solution decays exponentially to a stationary one
ast>>’yl_1 to give )

cos ((Ym + P—m) — arg(@oo))
(=)™ (01 — wy/2)Vam
Q?aoo ’

(=1)™sin ((¥m + ¥—m) — arg(doo)) > 0.

—

(30)

One should note, that unlike condition (28), expression (30)
leads to synchronization between the sum of the phase of
progressive surface waves and the phase of the breath-
ing mode. Introducing the notation 8 = arccos[—(o; —
wp/2)V4wQ) " |doo| ] and recalling that the principal
value of arccos is defined in the interval [0, 7] [30] we have
Ym + Yy = arg(doo) + B + mm. On the other hand
equation (28) leads to ¥y, — Y_m = Ym(0) — Y_n(0).
Combining these equations we get

Ym = 5 (ar8(@o0) + f+mr + Yin(0) ~ Y-m(0)),
Vom = 5 (a18(@00) + B + M7 + Y (0) ~ Y- 0)).
By excluding the fast variables ¥n, , ¥, (N —N_p,), and

thus reducing the problem to one of studying of “occupation
numbers” IV,,,, we have

U Jix
N (t) = Nin(0) exp {2 /Ot dt[— o/

" \/ L - (o1 aprop) } (31)

Substituting equation (26) into the integral, and retaining
only those terms which are linear in IV, the integration can

be carried out to give the following simple and expected
result:

Nm(0)

Np(t) = N(0)

N(t). (32)

Note that (32) implies that the amplitudes of the partial stand-
ing waves excited on the bubble wall are proportional to ini-
tial, parametrically unstable fluctuations Ny, (0). Therefore
they can not form any regular patterns. Now the appearance
these standing waves is addressed.

Substitution of the derived expressions for the amplitudes
and phases in the expansion (6), and utilizing the definitions
(10) and (12), gives

| ool

£ = \/—4_; cos (wpt + arg(aoo))

+ [\/No 2l4-:rlP[(cosé‘)

l
N

- COS [ma + %(wm()ﬂ) - ¢~m(0)) + %n—]]

- cos [%t + %(arg(&oo) + ﬁ)], (33)

where we have distinguished the contributions from the
breathing mode and the distortion axi-symmetric mode, and
combined the terms with plus and minus m.

This result shows that the excited distortion modes form
(I + 1) standing waves oscillating in synchronous fashion
relative to the phase of the breathing mode. The sum of the
squares of the amplitudes of the breathing modes N (t) is
a regular quantity. However, the relations between the am-
plitudes of different modes, as well as the relative phases
with respect to the polar angle, are accidental depending on
the initial fluctuations. The unstable growth of this distortion
fluctuation due to the parametric interaction with the breath-
ing mode leads to the steady state distribution of energy
between the breathing and distortion modes (for the range of
the control parameters under discussion).

6. Discussion

We have examined the important features of transient bubble
oscillations near the threshold of excitation of the distor-
tion modes. The amplitudes of the shape oscillations are not
large in this range, and so visualization of the distortions
is a difficult problem. For the conditions of the experiment
[26] P, = 50Pa, the magnitude Ny is too small to allow
visualization of the angular structure.

Nevertheless these distortions can be easy registered by
acoustical methods. As has been shown by Leighton et al.
[23], the insonification of the bubble by a high frequency
w; > wp imaging signal leads to the reradiation of the
combinative components w; £wp, w; *wp /2. The mechanism
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of generation of the combination frequencies is rather simple.
The imaging wave scatters on the absolutely soft bubble
surface, the instantaneous position and shape of which are
determined by the slow motion forcing of the pumping wave.

The reradiated pressure in the far field can be written as
[25]

Pi(,})(w) = i

. (aOO)w—w;—wP Pmi

B Var  Rok;
i P,(cos(eki/k;))
=0 27| l(j-)l/Z(k RO)]

(34)

where Pilp) (w) and filp) are the Fourier components of the
pressure and the amplitude radiated by the breathing mode,
H 1(41—)1 /2 is the Hankel function of the first kind; k; is the
wave number of the imaging wave, e is the unit vector in the
direction from the center of the bubble to the receiver and
7} is the distance between these points, equation (34) shows
contribution from the band w; + wp.

The expression for the pressure component near the w; +
wp/2 given by [25] should be modified, as it accounted only
for the single axi-symmetric mode contribution (m = 0).

1kn,

PO (w) =1 f )(w = w; — wp/2),

2) _; Z’: <\/]V—me"i(1/2)(arg(&oo)+v)>

m——l (w—wi—wp/2)

1(1/2)(11’"‘—111 m+l7rrn) sz
Rok;
[o.¢] "

Z z Z Z 2" VY, ()Y} (ki / i)

1 1)
o mimt i mimein B jp (ki Ro)H, 5 (kiRo)
: < m |Y,mz“m">. (35)

Here the matrix element (I'm'|Y,,l"m") is expressed in
terms of Wigner”’s 3j symbols. The absence of this co-factor
in expression (35) of [25] is a misprint.

It is doubtful that one can noticeably simplify equations
(34) and (35) as the wavelength of the imaging field is com-
parable with the bubble size. Nevertheless comparison with
the experimental results of Ramble et al. [26] can be made.
The data plotted in Figure 2 show the maximum amplitudes
of the subharmonic and the fundamental combination fre-
quency signals. The time is measured in cycles of the pump-
ing wave. From equations (34) and (35), the time-dependency
of these amplitudes during the ring-up period are described
by C1|a@oo(t)|/v/47 - for the fundamental combination fre-
quency signal; and Cy+/ N (t) for the subharmonic combi-
nation signal, where C; and C5 are constants. It is difficult to
find explicit magnitudes of these constants from (34), (35).
One should expect that Cy should be (21 + 1) times smaller
than C] as there is no spatial coherence between partial sur-
face modes. We will use them as adjustable parameters.

50 +

oyt

40 +

30 +

20 +

Signal Strength (dB, above noise floor)

10 +
*

0 , . I s
1 10 100 1000 10000

Time (in cycles of pumping wave)

Figure 2. The comparison of experimental data on the transient
regime of excitation of the fundamental o and the subharmonic e
combinative componems with the derived theoretxcal results: solid
line-A\; =9 - 10" %w., dashed line - A; = 6 - 10 3w,.

First, consider the fundamental combination frequency
signal. For |Goo(t)|? given by equation (26), the values of
the relevant coefficients must be chosen to correspond with
the conditions of the experiment, specifically P,,, = 50 Pa,
(w«/2m) = 2700Hz, (yo/w«) = 0.0126, (y11/ws) =
0.0171. The frequency ratio (wp/wx) is set equal to 0.998.
This is condition for which the numerical difference between
the 50 Pa pump amplitude, and the threshold for generation
of surface waves, takes the greatest positive value (Figure 1).
The reasons for choosing this condition are discussed later.
As a result, putting in values for the parameters in equation
(26) we obtain

laoo ()

=2-107°R}
y 07°R3

—4-107%(N(t) — N2), (36)
with N, given by equation (23) Ny = 2- 10~ R2. Thus the
variation of the fundamental combination frequency signal
at the timescale )\1—1 is negligibly small

|doo(00)|? — oo (0)[?
laoo(0)[?
B 4-1073(N2 — N(0))
"~ 2-10-5R2 +4-10-3(N, — N(0))
4. 10_3N2
¥ 2 105R2
(N2> N(0), N(c0) = N2)

=4-1072,

in comparison with its value reached during the initial char-
acteristic time 7, ! This fact is in agreement with the experi-
mental data plotted in Figure 2 where no noticeable variation
of the fundamental combination frequency signal is observed
at the timescale )\1"1. We use C; = 2.2 - 105(Pn/Ry) to
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adjust equation (36) to fit to the data located at ~ 40dB
above the noise floor Py .

To compare the subharmonic combination frequency sig-
nal, we must first find the magnitude of A1, given by equation
(21). On substituting the accepted values for the parame-
ters (see above), we obtain A\; = 9 - 10~ %w,. The specific
problem arises in finding IV (0), contained in equation (25).
It is reasonable to take it as (2! + 1) times the square of
the amplitude of shape oscillations corresponding to noise
level Py . However, as follows from the experimental data,
the amplitude of the distortion mode increases by ten times
from the noise level during a few periods. In the “master-
slave” approximation employed, we cannot analyze the pro-
cess on that small time scale, so we shall use N(0) as an
adjustable parameter. From the data point at ten periods we
have Cy = 10(Pn/+/N(0)). We take the second condi-
tion for finding Cy and \/N(0) from the steady state level
of the combination signal ~ 35dB above the noise level.
Thus Cy = 103*(Py/+/N3) and eliminating Cy we get
N(0) = 1075 N5. It should be noted that the values derived
for the adjustable parameters C;, Cs are not contradicting,
as it was expected that C; /Cs ~ 10.

The transient regime of the subharmonic combination fre-
quency component, calculated on the basis of equation (25),
is plotted in Figure 2 as a solid line. This result shows that the
theory derived here can explain the greatly increased time re-
quired to establish bubble shape oscillations. However there
is quantitative disagreement between the predicted rise time
and measured data. In reality the increment of instability of
the distortion modes is higher than follows from the presented
theory. The dashed line in Figure 2 is obtained by letting
At = 6107 3w,. This gives better agreement with the data.
One should point out that the location of the threshold curve
(see Figure 1) is very sensitive to the precision of satisfaction
of resonant conditions |wy, — wy| K wp, |07 —wp /2| K wp.
At the exact resonance w, = wy, 0] = wp/2 the lowest
threshold amplitude is equal to Py, & 23 Pa and correspond-
ing value of \; (at 50 Pa) is equal to A; ~ 20-10~3w,. Thus
the likeliest origin for this discrepancy is in the limited preci-
sion with which the threshold was determined. Certainly the
published data shows that the threshold can be lower than the
values used for the numerical calculations. The greater the
amount by which the pump signal amplitude (here, 50 Pa) ex-
ceeds the threshold, the greater A; . Increasing \; in the above
calculation reduces the discrepancy. This does not validate
the theory, but shows that to test it properly, the threshold
needs to be known very accurately.

The end-point of the current paper is a comparison of the-
ory with the existing experimental dataset. Given the limita-
tions of the dataset, further experimentation is required. This
is not only to determine the experimental parameters with
greater precision (which, as was shown above), is necessary
if a meaningful comparison with theory is to be made). It
is also required because the existing literature suggests pos-
sible dependencies. First, the threshold might be influenced
by the nature of the gas and liquid (“...the shape- distorting
oscillations of bubbles are significantly affectedby the phys-
ical properties of both liquid and bubble gas”; [31]). Second,

bubble surface oscillations are known to be very sensitive
to the presence of surface contaminants [32, 33]. Third, the
experiments have required the bubbles to be tethered by fine
wire, or held under surfaces, which might lead to shape and
acoustic effects that are not currently incorporated into the
theory. Other developments to the theoy include considera-
tion of the third order nonlinearity that alone can explain the
appearance of regular structures in parametrically generated
Faraday’s ripples, observed on bubble walls. The final ques-
tion is one of accounting for the near resonance interaction
(01/0n)? =~ (integeer)? between shape distortion modes. It
is correct to ignore this interaction in our case when one con-
siders [ > 1 and accounts for the quadratic nonlinearity (in
this case the resonance condition is reduced to o; & 207,).
For | = 11 (011/207) ~ 0.03, but the coupling constant
that is proportional to the corresponding 3j symbol is small
due to the relatively large discrepancy between I = 11 and
n = 7. That is not the case when one can excite only first
spherical harmonics [ = 2,3... The coupling constant for
the near resonance interaction is a unity on the order of mag-
nitude as [ = 3 close to n = 2 and this process plays an
important role in energy transfer [31, 20].

7. Conclusions

In the present work the problem of parametrically driven bub-
ble shape oscillations has been given full consideration, ac-
counting for all spherical harmonics corresponding to (21+1)
degenerate resonant surface modes. The derived theory can
explain the significant difference, which has been experi-
mentally observed, in the ring up times taken to establish
subharmonic and fundamental combination frequency sig-
nals. The suggested explanation is based on the fact that the
observed discrepancy takes place near the threshold for exci-
tation of distortion modes, where the growth of an instability
is very slow, which leads to a very long duration transient
interval while establishing steady state surface oscillations.
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